
����������
�������

Citation: Obukhov, V.V. Maxwell’s

Equations in Homogeneous Spaces

for Admissible Electromagnetic

Fields. Universe 2022, 8, 245. https://

doi.org/10.3390/universe8040245

Academic Editors: Steven Duplij and

Michael L. Walker

Received: 31 March 2022

Accepted: 12 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Maxwell’s Equations in Homogeneous Spaces for Admissible
Electromagnetic Fields

Valery V. Obukhov 1,2

1 Institute of Scientific Research and Development, Tomsk State Pedagogical University, Tomsk 634041, Russia;
obukhov@tspu.edu.ru

2 Laboratory for Theoretical Cosmology, International Center of Gravity and Cosmos,
Tomsk State University of Control Systems and Radio Electronics, Tomsk 634050, Russia

Abstract: Maxwell’s vacuum equations are integrated for admissible electromagnetic fields in homo-
geneous spaces. Admissible electromagnetic fields are those for which the space group generates
an algebra of symmetry operators (integrals of motion) that is isomorphic to the algebra of group
operators. Two frames associated with the group of motions are used to obtain systems of ordinary
differential equations to which Maxwell’s equations reduce. The solutions are obtained in quadra-
tures. The potentials of the admissible electromagnetic fields and the metrics of the spaces contained
in the obtained solutions depend on six arbitrary time functions, so it is possible to use them to
integrate field equations in the theory of gravity.
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1. Introduction

A special place in mathematical physics is occupied by the problem of exact integration
of the equations of motion of a classical or quantum test particle in external electromagnetic
and gravitational fields. This problem is closely related to the study of the symmetry of
gravitational and electromagnetic fields in which a given particle moves. A necessary
condition for the existence of such symmetry is the admissibility of the algebra of sym-
metry operators, given by vector and tensor Killing fields, for spacetime and the external
electromagnetic field. The algebras of these operators are isomorphic to the algebras of the
symmetry operators of the equations of motion of a test particle—Hamilton–Jacobi, Klein–
Gordon–Fock, or Dirac–Fock. At present, two methods are known for the exact integration
of the equations of motion of a test particle. These are the methods of commutative and
noncommutative integration. The first method is based on the use of commutative algebra
of symmetry operators (integrals of motion) that form a complete set. The complete set
includes linear operators of first and second degree in momentum formed by vector and
tensor Killing fields of complete sets of geometric objects of V4. The method is known as
the method of complete separation of variables (in the Hamilton–Jacobi, Klein–Gordon–
Fock, or Dirac–Fock equations). The spaces in which the method of complete separation
of variables is applicable are called Stackel spaces. The theory of Stackel spaces was de-
veloped in [1–12]. A description of the theory and a detailed bibliography can be found
in [13–16]. The most frequently used exact solutions of the gravitational field equations in
the theory of gravity were constructed on the basis of Stackel spaces (see,
e.g., [17–19]). These solutions are still widely used in the study of various effects in
gravitational fields (see, e.g., [20–27]).

The second method (noncommutative integration) was developed in [28]. This method
is based on the use of algebra of symmetry operators, which are linear in momenta and
constructed using Killing vector fields forming noncommutative groups of motion of
spacetime G3 and G4. The algebras of the symmetry operators of the Klein–Gordon–
Fock equation constructed using the algebras of the operators of the noncommutative
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motion group of space V4 are complemented to a commutative algebra by the operators
of differentiation of the first order in 4 essential parameters. Among these spacetime
manifolds, the homogeneous spaces are of greatest interest for the theory of gravity (see,
e.g., [29–36]).

Thus, these two methods complement each other to a considerable extent and have
similar classification problems (by solving the classification problem, we mean enumer-
ating all metrics and electromagnetic potentials that are not equivalent in terms of ad-
missible transformations). Among these classification problems, the most important are
the following.

Classification of all metrics of homogeneous and Stackel spaces in privileged coor-
dinate systems. For Stackel spaces, this problem was solved in building the theory of
complete separation of variables in the papers cited above. For homogeneous spaces, this
problem was solved in the work of Petrov (see [37]).

Classification of all (admissible) electromagnetic fields applicable to these methods.
For the Hamilton–Jacobi and Klein–Gordon–Fock equations, this problem is completely
solved in homogeneous spaces (see [38–43]). In Stackel spaces, it is completely solved for
the Hamilton–Jacobi equation and partially solved for the Klein–Gordon–Fock equation
(see [14–16]).

Classification of all vacuum and electrovacuum solutions of the Einstein equations
with metrics of Stackel and homogeneous spaces in admissible electromagnetic fields. This
problem has been completely solved for the Stackel metric (see [17–20]). However, this
classification problem has not yet been studied for homogeneous spaces.

The solutions to these problems can be viewed as stages of the solution of a single
classification problem. In the first two stages, we find all relevant gravitational and elec-
tromagnetic fields that are not connected by field equations. In the third stage, using the
results of the first two stages, we find metrics and electromagnetic potentials that satisfy
the Einstein–Maxwell vacuum equations and have physical meaning.

Thus, for the complete solution to the problem of uniform classification, the Einstein–
Maxwell vacuum equations must be integrated using the previously found potentials
of admissible electromagnetic fields and the known metrics of homogeneous spaces in
privileged (canonical) coordinate systems. This problem can also be divided into two
stages. In the first stage, all solutions of Maxwell’s vacuum equations for the potentials
of admissible electromagnetic fields should be found. The present work is devoted to this
stage. In the next stage, the plan is to use the obtained results for the integration of the
Einstein–Maxwell equations. This will be the subject of further research. The present work
is organized as follows.

Section 2 contains information from the theory of homogeneous spaces, which will be
used later, and definitions and conditions for the potentials of admissible electromagnetic
fields, written in canonical frames associated with motion groups of a homogeneous space.

In the Section 3 Maxwell’s vacuum equations are written in canonical frames.
The Section 4 contains all solutions of Maxwell’s vacuum equations for homogeneous

spaces admitting groups of motions G3(I)− G3(VI).

2. Homogeneous Spaces

By the accepted definition, a spacetime manifold V4 is a homogeneous space—if a three-
parameter group of motions acts on it—whose transitivity hypersurface V3 is endowed
with the Euclidean space signature. Let us introduce a semi-geodesic coordinate system
[ui], in which the metric V4 has the form:

ds2 = gijduiduj = −du02
+ gαβduαduβ, det|gαβ| > 0. (1)

The coordinate indices of the variables of the semi-geodesic coordinate system are
denoted by the lower-case Latin letters: i, j, k, l = 0, 1, . . . , 3. The coordinate indices of the
variables of the local coordinate system on the hypersurface V3 are denoted by the lower-
case Greek letters: α, β, γ, σ = 1, . . . , 3. A 0 index denotes the temporary variable. Group



Universe 2022, 8, 245 3 of 15

indices and indices of nonholonomic frames are denoted by a, d, c = 1, . . . , 3. Summation is
performed over repeated upper and lower indices within the index range.

There is another (equivalent) definition of a homogeneous space, according to which
the spacetime V4 is homogeneous if its subspace V3, endowed with the Euclidean space
signature, admits a set of coordinate transformations (the group G3 of motions spaces V4)
that allow the connection of any two points in V3. (see, e.g., [44]). This definition directly
implies that the metric tensor of the V3 space can be represented as follows:

gαβ = ea
αeb

βηab, ||ηab|| = ||aab(u0)||, ea
α,0 = 0, det||aab|| = l02, (2)

while the form:
ωa = ea

αduα

is invariant under the transformation group G3. The vectors of the frame ea
α (we call them

canonical) define a nonholonomic coordinate system in V3, and their dual triplet of vectors:

eα
a , eα

a eb
α = δb

a , eα
a ea

β = δα
β

define the operators of the G3 algebra group:

Ŷa = eα
a ∂a, [Ŷa, Ŷb] = Cc

abŶc.

The Killing vector fields ξα
a and their dual vector fields ξa

α form another frame in the
space V3 (we will call it the Killing frame) and another representation of the algebra of
group G3. In the dual frame, the metric of the space V3 has the form:

gαβ = ξa
αξb

βGab, ξα
a ξb

α = δb
a , ξα

a ξa
β = δα

β, (3)

where Gab are the nonholonomic components of the gαβ tensor in this framework. The
vector fields ξα

a satisfy the Killing equations:

gαβ
,γ ξ

γ
a = gαγξ

β
a,γ + gβγξα

a,γ (4)

and form the infinitesimal group operators of the algebra G3:

X̂a = ξα
a ∂α, [X̂a, X̂b] = Cc

abX̂c. (5)

The Killing equation in the ξα
a frame has the following form:

Gab
|c = GadCb

dc + GbdCa
dc (|a = ξα

a ∂α). (6)

Indeed, substituting the expression:

gαβ = ξα
a ξ

β
b Gab

into Equation (4), we get

Gab((ξα
a|cξ

β
b − ξα

a ξ
β

c|b) + (ξα
a ξ

β

b|c − ξ
β
a ξα

c|b)) + ξα
a ξ

β
b Gab
|c = 0.

Substituting here the commutation relations (5), we get:

(Gab
|c − GadCb

dc − GbdCa
dc)ξ

α
a ξ

β
b = 0.

The Hamilton–Jacobi equation for a charged test-particle in an external electromagnetic
field with potential Ai is:

H = gijPiPj = m, Pi = pi + Ai, pi = ∂i ϕ. (7)

The integrals of motion of the free Hamilton–Jacobi equation are given using Killing
vector fields as follows:
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Xa = ξ i
a pi, (8)

Thus, the symmetry of the space given by the Killing vector fields is directly related
to the symmetry of the equations of the geodesics given by the integrals of motion. The
Hamilton–Jacobi method makes it possible to find these integrals and use them to integrate
the geodesic equations. Therefore, the study of the behavior of geodesics is necessary for
the study of the geometry of space.

The linear momentum integral of Equation (7) has the following form:

Xa = ξ i
aPi + γa, (9)

where γα are some functions of ui. Equation (7) admits a motion integral of the form (8) if
H and X̂a commute under Poisson brackets:

[H, X̂a]P =
∂H
∂pi

∂X̂a

∂xi −
∂H
∂xi

∂X̂a

∂pi
= 0→ giσ(ξ

j
aFji + γa,i)Pσ = 0. (10)

Hence:
γa,i = ξ

j
aFij, Fji = Ai,j − Aj,i. (11)

Thus, the admissible electromagnetic field is determined from Equation (11)
(see [41]). In [39,40] it was proved that in the case of a homogeneous space, the conditions
of (11) can be represented as follows:

Aa|b = Cc
baAc, (12)

at the same time:
γa = −Aa → X̂a = ξα

a ∂α.

Here, it is denoted that:
Aa = ξ i

a Ai,

It can be shown that Equation (12) forms a completely integrable system. This system
specifies the necessary and sufficient conditions for the existence of algebra of integrals of
motion that are linear in momenta for Equation (7). Note that in admissible electromagnetic
fields given by the conditions (12), the Klein–Gordon–Fock equation:

Ĥϕ = (gij P̂i P̂j)ϕ = m2 ϕ, P̂k = p̂k + Ak, p̂k = −ı∇̂k

also admits an algebra of symmetry operators of the form (see [39,41]):

X̂a = ξ i
a∇̂i

∇̂i is the covariant derivative operator corresponding to the partial derivative operator—
∂̂i = ı p̂i in the coordinate field ui. Function ϕ is a scalar field, m = const. All admissible
electromagnetic fields for the homogeneous spacetime are found in [39]. We will use the
results of A.Z. Petrov [37]. We follow the notation used in this book with minor exceptions.
For example, the nonignorable variable x4 will be denoted u0, etc.

3. Maxwell’s Equations for an Admissible Electromagnetic Field in
Homogeneous Spacetime

Consider Maxwell’s equations with zero electromagnetic field sources in homogeneous
spacetime in the presence of an admissible electromagnetic field:

1√−g
(
√
−gFij),j = 0, g = det|gαβ|. (13)

when i = 0 from the system (13), the equation follows:



Universe 2022, 8, 245 5 of 15

1√−g
(
√
−ggαβ Aβ,0),α = 0. (14)

Using the Killing Equations (4) and (5), we can obtain:
g|a
g

= 2ξα
a,α.

Indeed,

−
g|a
g

= gαβ

|a gαβ = Gbc
|a Gbc + 2ξα

a,α + 2Ca = 2ξα
a,α (Ca = Cb

ab).

Substituting this expression and the relation (12) into Equation (14), we get:

GabCbAa,0 = 0. (15)

In the case of spaces with groups G3(I), G3(I I), G3(VII I), G3(IX)Ca = 0. That is why
Equation (15) is satisfied. In the case of the groups G3(I I I),−G3(VII) Ca = constδa3, and
from (15) it follows:

η3aÃa,0 = 0, Ãa = Aαeα
a . (16)

For i = α we have:
1
√

g
(
√

ggαβFβ0),0 +
1
√

g
(
√

ggαβgγσFβσ),γ = 0. (17)

We transform Equation (17) using the (2) frame. The first term then has the form:
1√−g

(
√
−ggαβFβ0),0 = − 1

l0
(l0ηabÃa,0),0eα

b , (l0)2 = det|ηab|.

The second term using the (3) frame, the relations (12), and the commutation relations
between the operators of the group can be reduced to the following form:

1
√

g
(
√

ggαβgγσFβσ),γ =
1
2

Ga2b1 Ca
a2b2

(2Cb1 Gbb2 + Cb
a1b1

Ga1b2)ξα
b ξ

β
a ec

βÃc.

So Equation (17) can be written as follows:
1
l0
(l0ηabÃb,0),0 = W̃baÃb, (18)

where:

W̃ab = (ea
βξ

β
a1)(e

a
αξα

b1
)Wa1b1 , Wab =

1
2

Ga2b1 Ca
a2b2

(2Cb1 Gbb2 + Cb
a1b1

Ga1b2). (19)

Then, Maxwell’s equations can be represented as follows:

βa
,0 = l0W̃baÃb, (20)

Ãa,0 =
1
l0

βbηab. (21)

4. Maxwell’s Equations for Spaces Type I–VI According to Bianchi Classification

The group operators in the canonical coordinate set of homogeneous spaces type I–VI
according to the Bianchi classification can be represented as follows (see [37]):

X1 = p1, X2 = p2, X3 = (ru1 + εu2)p1 + nu2 p2 − p3. (22)

The values k ε, n for each group take the following values.)
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G(I) : k = 0, ε = 0, n = 0.

G(I I) :k = 0, ε = 1, n = 0.

G(I I I) :k = 1, ε = 0, n = 0.

G(IV) :k = 1, ε = 1, n = 1.

G(V) : k = 1, ε = 0, n = 1.

G(VI) :k = 1, ε = 0, n = 2.

Structural constants can be represented as follows:

Cc
ab = kδc

1(δ
1
a δ3

b − δ3
a δ1

b) + (εδc
1 + nδc

2)(δ
2
a δ3

b − δ3
a δ2

b)→ Ca = −(k + n)δ3
a (23)

Find the frame vectors [ξα
a ], [eα

a ] and their dual vectors [ξa
α], [ea

α].

ξα
a ξb

α = eα
a eb

α = δb
a , ξα

a ξa
β = eα

a ea
β = δα

β.

For this, we use the metrics of homogeneous spaces and the group operators given in
[37].

ξα
a = δ1

a δα
1 + δ2

a δα
2 + δ3

a(δ
α
1 (ku1 + εu2) + δα

2 nu2 − δα
3 ), (24)

ξa
α = δa

1δ1
α + δa

2δ2
α + δa

3(δ
1
α(ku1 + εu2) + δ2

αnu2 − δ3
α),

eα
a = δ1

a δα
1 exp(−ku3) + δ2

a(−δα
1 εu3 exp(−ku3) + δα

2 exp(−nu2)) + δα
3 δ3

a , (25)

eα
a = δa

1δ1
α exp(ku3) + δ2

a(δ
α
1 εu3 exp nu3 + δα

2 exp nu2)) + δ3
αδ3

a .

With these expressions, we find the matrix W̃ab (19).

W̃ab =
1

l02 [δ
a
1δb

1(εg11 + ε(n− k)g12 − kng22) exp(−2nu3) (26)

−(δa
1εu3 + δa

2)(δ
b
1εu3 + δb

2)kng11 exp(−2ku3)+

[δb
1(δ

a
1εu3 + δa

2)n(g12 + εg11)) + δa
1(δ

b
1εu3 + δb

2)k(g12 − εg11)].

Here (see [37]):

g11 = a11 exp 2ku3, g12 = (εu3a11 + a12) exp(n + k)u3, g22 = (εu32
a11 + 2εa12 + a22) exp 2nu3,

Maxwell’s Equations (20) and (21) become:

β̇b =
1
l0
[δa

1δb
1(εg11 + ε(n− k)g12 − kng22) exp(−2nu3) (27)

{−(δa
1εu3 + δa

2)(δ
b
1εu3 + δb

2)kng11 exp(−2ku3)+

[δb
1(δ

a
1εu3 + δa

2)n(g12 + εg11)) + δa
1(δ

b
1εu3 + δb

2)k(g12 − εg11)]Ãa,

βa = l0ηabÃb,0. (28)
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The dots denote the time derivatives. The components Ãa are defined by the solutions
of the (12) Ab system of equations using the formulas:

Ãa = eα
a ξb

αAb (29)

Further solutions of the system of Equation (27) for homogeneous spaces with groups
of motions G3(I −VI) are given. Spatial metrics are given in the book [37]. Solutions for
the system (12) can be found in [38],

αa = αa(u0).

4.1. Group G3(I)

As the parameters k, n, ε and Ca
bc equal zero, G3(I) is an Abelian group. The compo-

nents of the vector electromagnetic potential have the form:

Aa = Ãa = Aa = αa,

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

β̇a = 0→ βa = ca = const;

l0α̇a = abacb → αq =
∫ aabcb

l0
du0, l02 = det|aab|.

All components of aab are arbitrary functions of u0.

4.2. Group G3(I I)

For the group G3(I I) the parameters k, n, ε have the following values: k = n = 0, ε = 1.
The components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ]

have the form:

A1 = α1, A2 = α2 + α1u3, A3 = α1u3 − α3; Ãa = αa.

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

l0 β̇a = α1a11δ1a → l0 β̇1 = α1a11, β2 = c2, β3 = c3 (βa = δabβb); (30)

l0α̇a = a1aβ1 + a2ac2 + a3ac3, l02 = det|aab| (ca = const, ). (31)

Set of equations(30) and (31) contains five equations for 11 functions:

l0, aab, αa, β1.

We should consider separately the variants α1 = 0 and α1 6= 0.

1. α1 = 0→ β1 = c1 = const. Then the set of Equations (30) and (31) has a quadrature
solution:

αq =
∫ aqbcb1 δbb1

l0
du0 (q = 2, 3).

For a = 0, Equation (31) implies a linear dependence of the components a1q :

c1a11 + c2a12 + c3a13 = 0.

All independent components of aab are arbitrary functions of u0.
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2. α1 6= 0. Consider the following Equations (30) and (31) from the system:

l0α̇1 = (a11β1 + c2a12 + c3a13), l0 β̇1 = a11α1. (32)

Let us take the function a11 out of (32). As a result, we obtain:

(α1
2 − β1

2),0 =
2α1

l0
(c2a12 + c3a13).

Hence:

β1 = ξ

√
α1

2 − 2
∫

α1

l0
(c2a12 + c3a13)du0 (ξ2 = 1).

>From the remaining equations of the system, we get:

αq =
∫ (a1qβ1 + a2qc2 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0 β̇1

α1
.

The functions l0, α1, and all components of aab, except a11, a33, are arbitrary functions
of u0. The component a33 results from the equation l02 = det|aab|:

a33 =
l02 + a11a23

2 + a22a13
2 − 2a12a13a23

a11a22 − a12
2 (33)

4.3. Group G3(I I I)

For the group G3(I I I) the parameters k, n, ε have the following values: k = 1,
n = ε = 0.

The components of the vector electromagnetic potential in the frames [ξα
a ] and [eα

a ]
have the form:

A1 = α1 exp u3, A2 = α2, A3 = α1 exp u3 − α3.

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

l0 β̇a = α1a12δ2a → l0 β̇2 = α1a12, β1 = c1, β3 = 0; (34)

l0α̇a = a2aβ2 + a1ac. (35)

Here and further, Equation (16) is used, according to which β3 = 0. The system of
Equations (30) and (31) contains five equations for 11 functions:

l0, aab, αa, β2.

We should separately consider the variants α1 = 0 and α1 6= 0.

1. α1 = 0→ β2 = c2 = const. In this case the
Then set of equations (30) and (31) has a solution in quadratures:

αq =
∫ aqbcb1 δbb1

l0
du0 (q = 2, 3).

>From (31) it follows a linear dependence of the components a1q :

c1a13 + c2a23 = 0→ a12 = ba11, β1 = b, β2 = 1.

l0 and all independent components of aab are arbitrary functions of u0. The component
a33 is found from Equation (33).

2. Let α1 6= 0. Consider the following equations from system (30) and (31):
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l0α̇1 = a12β2 + c1a11, l0 β̇2 = a12α1. (36)

from system (36), it follows:

(α1
2 − β2

2),0 =
2α1

l0
c1a11.

Hence:

β2 = ξ

√
α1

2 − 2
∫

α1

l0
(c1a11 + c3a13)du0(ξ2 = 1).

>From the remaining equations of the system, we get:

αq =
∫ (a2qβ2 + a1qc1 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0 β̇2

α1
.

The functions l0, α1 and all components of aab, except a11, a33, are arbitrary functions
of u0. The component a33 results from Equation (33).

4.4. Group G3(IV)

For the group G3(IV) the parameters k, n, ε have the values: k = n = ε = 1.
The components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ]

have the form:

A1 = α1 exp u3, A2 = (α2 + α1u3) exp u3,

A3 = (α1(u1 + u2 + u2u3) + α2u2) exp u3 − α3;

Ãa = αa.

Maxwell’s Equations (20) and (21) reduce to the following system:

l0 β̇a = δ1a(a11(α1 + α2)− α1a22 + α2a12) + δ2a(α1a12 − a11(α1 + α2)). (37)

l0α̇a = β2aa2 + β1aa1, β3 = 0. (38)

from the system (38) it follows:

α̇3 =
∫

β2a32 + β1a31

l0
du0. (39)

Let us now consider the remaining equations.

(A) β1 6= 0.
>From the system (37) it follows:

a12 =
1
β1

(l0α̇2 − β2a22) a11 =
1

β1
2 (l0(α̇1β1 − α̇2β2) + β2

2a22), (40)

Using these relations, we obtain a consequence from the remaining equations of the
system (37) and (38):

β1 β̇2 − β2(β̇1 + β̇2) = α1α̇2 − (α1 + α2)α̇1. (41)

With Equation (41), the dependent functions αa, βa can be expressed in terms of the
independent functions. Let us write down the solutions.

1. (α1β1 + β2(α1 + α2))β2 6= 0.

β1 = β2(b− ln β2 −
∫

α1α̇2 − (α1 + α2)α̇1

β2
2 du0);
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a22 =
l0(α̇2(α1 + α2)− β1(β̇1 + β̇2))

α1β1 + β2(α1 + α2)
.

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33)

2. α1β1 + β2(α1 + α2) = 0, a22, is an arbitrary function, depending on u0.

α1 = a exp ϕ + b exp ϕ, α2 = (1 + e)α1 β2 = a exp ϕ− b exp ϕ,

β1 = eβ2 (e = const).

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

3. β2 = 0.

α2 = α1(a + ln α1), a12 =
l0α̇2

β1
, a11 =

l0α̇1

β1
, a22 =

l0(α̇2(α1 + α2)− β̇1β1)

α1β1

l0, a13, a23, α1, β1 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

(B) β1 = 0. Maxwell’s equations take the form:

l0 β̇2 = α1a12 − (α1 + α2)a11, l0 β̇2 = −α1a22 + (α1 + α2)a12;

l0α̇1 = β2a12, l0α̇2 = β2a22.

The set of equations has the following

(a) (α1 + α2) 6= 0.

β2 = ξ

√
b + 2

∫ 1
l0
(α̇1(α1 + α2)− α1α̇2)du0. a12 =

l0α̇1

β2
, a22 =

l0α̇2

β2
.

a11 =
l0(α1α̇1 − β2 β̇2)

β2(α1 + α2)

l0, a13, a23, α1, α2 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using relation (33).

(b) α2 = −α1 → α1 = a exp ϕ − b exp ϕ β2 = a exp ϕ + b exp ϕ, a12 = l0α̇1
β2

a22 = l0α̇2
β2

.
l0, a11, a13, a23, ϕ, β1 are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (33).

4.5. Group G3(V)

For the group G3(V) the parameters k, n, ε have the values: k = n = 1, ε = 0. The
components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ] have the form:

A1 = α1 exp u3, A2 = α2 exp u3, A3 = (α1u1 + α2u2) exp u3 − α3;

Ãa = αa.

Maxwell’s Equation (18) reduces to the following system of equations:

l0α̇a = β2aa2 + β1aa1, β3 = 0. (42)
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l0 β̇a = δ1a(a12α2 − α1a22) + δ2a(a12α1 − a11α2), (43)

Hence:

α̇3 =
∫

β2a32 + β1a31

l0
du0,

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (44)

1. α1 6= 0. From the set of equations (43) it follows:

a12 =
1
α1

(l0 β̇2 + α2a11), a22 =
1

α1
2 (l0(β̇2α2 − β̇1α1) + a11α2

2). (45)

Substituting (45) into (44) , we get the corollary:

β1 β̇2 − β2 β̇1 = α1α̇2 − α2α̇1. (46)

a11(α1β1 + α2β2) = l0(α̇1α1 − β̇2β2). (47)

>From (46), it follows:

α2 = α1(b +
∫

β1 β̇2 − β2 β̇1

α1
2 du0),

Let us consider (48).

(a) α1β1 + α2β2 6= 0. Then, we have:

a11 =
l0(α1α̇2 − α2α̇1)

α1β1 + α2β2
;

l0, a13, a23, α1, βa are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (33).

(b) α1β1 + α2β2 = 0 → α1α̇1 − β1 β̇1 = 0, α1α̇2 + β2 β̇1 = 0.
>From this, it follows:

α1 = a exp ϕ + b exp ϕ, β2 = a exp ϕ− b exp ϕ, α2 = −lα1, β1 = lβ2,

where a, b, l = const, ϕ = ϕ(u0).
l0, a11, a13, a23 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

2. α1 = 0. From the system (43), it follows:

a12 =
l0 β̇1

α2
, a11 = − l0 β̇2

α2
, a22 =

l0(α̇2α2 − β̇1β1)

α2β2
, β1 = aβ2,

here a = const, l0, a13, a23, α2, β2 are arbitrary functions of time. The function a33 is
expressed in terms of these functions using the relation (33).

4.6. Group G3(VI)

For the group G3(VI), the parameters k, n, ε have the following values: k = 1
n = 2, ε = 0. The components of the vector electromagnetic potential in the frames [ξα

a ] and
[eα

a ] have the form:

A1 = α1 exp u3, A2 = α2 exp 2u3, A3 = α1u1 exp u3 + 2α2u2 exp 2u3 − α3;

Ãa = αa.
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Maxwell’s Equation (18) has the form:

l0α̇a = β2aa2 + β1aa1. (48)

l0 β̇a = δ1a(a12α2 − 2α1a22) + δ2a(a12α1 − 2a11α2), β3 = 0, (49)

and from the system (48), it follows:

α̇3 =
∫

β2a32 + β1a31

l0
du0.

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (50)

I β1 6= 0, from system (48), it follows:

a12 =
1
β1

(l0α̇2 − β2a22), a11 =
1

β1
2 (l0(α̇1β1 − α̇2β2) + a22β2

2). (51)

Substituting (51) into (48), we get:

a22(α1β1 + 2α2β2) = l0(α2α̇2 − β̇1β1), (52)

(2α1β1 + α2β2)(2α2α̇1 + β̇2β1) = (β̇1β2 + 2α̇2α1)(α1β1 + 2α2β2) = 0 (53)

Using this relation, we get the following solutions:

(1) α1β1 + 2α2β2 6= 0. From (52) it follows:

a22 =
l0(α̇2α2 − β̇1β1)

(α1β1 + 2α2β2)
.

Denote:

αq = aq exp ϕ. βq = bq exp ϕ (q = 1, 2),

where aq, bq, ϕ are functions of u0. From Equation (53), we get:

ϕ̇ =
(ḃ1b2 + 2ȧ2a1)(a1b1 + 2a2b2)− (2a1b1 + a2b2)(2a2 ȧ1 + ḃ2b1)

(2a1a2 + b1b2)(a1b1 − a2b2)
;

a12 =
l0(ϕ̇a2 + a2)− b2a22

b1
; a11 =

l0((a1b1 − a2b2)ϕ̇ + ȧ1b1 − ȧ2b2) + b2
2a22

b1
2 ;

a22 =
l0((a2

2 − b2
1)ϕ̇ + ȧ2a2 − ḃ1b1)

2a1b1 + a2b2
.

l0, a13, a23, aq, bq are arbitrary functions dependent on time. The function a33
is expressed by these functions using the relation (33)

(2) α̇2α2 − β̇1β1 = 0 → α1β1 + 2α2β2 = 0. a22—is an arbitrary function
from u0;

α2 = a exp ϕ− b exp(−ϕ), β1 = a exp ϕ + b exp(−ϕ).

>From this, it follows:

(a)

α1 = − β2

2
(

a exp ϕ− b exp(−ϕ)

a exp ϕ + b exp(−ϕ)
);

a12 = l0 ϕ̇− β2a22

β1
, a11 =

l0(α̇1β1 − α̇2β2) + β2
2a22

β2
1
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(b) ϕ̇ = 0

β1 = 1, α2 = −2b, α1 = −bβ2, a12 = −β2a22, a11 = −bl0 β̇2 + β2
2a22.

where l0, a.b = consta22, a13, a23, β2, ϕ are arbitrary functions depen-
dent on time.

II β1 = 0.
>From (48) and (49) it follows:

a12 =
2l0α̇2α2

β2
, a22 =

l0α̇2

β2
, a11 =

l0(2b2α̇2α2
3 − β2 β̇2)

2α2β2
, α1 = bα2

2. (54)

l0, a22, a13, a23, α2β2 depends arbitrarily on time functions. The function a33 is ex-
pressed in terms of these functions using the relation (33).

5. Conclusions

The performed classification of admissible electromagnetic fields will be used in the
search for electrovacuum solutions of the Einstein–Maxwell equations. As is already known,
the components of the Ricci tensor of a homogeneous space in the frame (2) depend only
on time. In order for Einstein’s equations with matter to be proven as an integrable system
of ordinary differential equations, the equations of motion of matter must be subordinated
to the conditions of space symmetry. These conditions were fulfilled first by the potentials
of the electromagnetic fields determined in this work.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available within
the article.

Acknowledgments: The work is partially supported by the Ministry of Education of the Russian
Federation, Project No. FEWF-2020-003.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49,

145–147. [CrossRef]
2. Stackel, P. Ueber Die Bewegung Eines Punktes In Einer N-Fachen Mannigfaltigkeit. Math. Ann. 1893, 42, 537–563. [CrossRef]
3. Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963,

27, 173–219.
4. Eisenhart, L.P. Separable systems of stackel. Math. Ann. 1934, 35, 284–305. [CrossRef]
5. Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397.

[CrossRef]
6. Shapovalov, V.N. Symmetry of motion equations of free particle in riemannian space. Russ. Phys. J. 1975, 18, 1650–1654. [CrossRef]
7. Shapovalov, V.N.; Eckle, G.G. Separation of Variables in the Dirac Equation. Russ. Phys. J. 1973, 16, 818–823. [CrossRef]
8. Shapovalov, V.N. Symmetry and separation of variables in a linear second-order differential equation. I, II. Russ. Phys. J. 1978, 21,

645–695.
9. Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations I. Russ.

Phys. J. 1973, 16, 1533–1538. [CrossRef]
10. Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations II. Russ.

Phys. J. 1973, 16, 1659–1665. [CrossRef]
11. Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations III. Russ.

Phys. J. 1974, 17, 812–815. [CrossRef]
12. Shapovalov, V.N. Stäckel spaces. Sib. Math. J. 1979, 20, 1117–1130. [CrossRef]

http://doi.org/10.1007/BF01445366
http://dx.doi.org/10.1007/BF01447379
http://dx.doi.org/10.2307/1968433
http://dx.doi.org/10.1007/BF01445149
http://dx.doi.org/10.1007/BF00892779
http://dx.doi.org/10.1007/BF00895697
http://dx.doi.org/10.1007/BF00889957
http://dx.doi.org/10.1007/BF00893656
http://dx.doi.org/10.1007/BF00890216
http://dx.doi.org/10.1007/BF00971844


Universe 2022, 8, 245 14 of 15

13. Miller, W. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p.
14. Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 12891291.

[CrossRef]
15. Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Methods Mod.

Phys. 2020, 17, 2050186. [CrossRef]
16. Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the

stackel spaces of type (1.1). Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150036. [CrossRef]
17. Carter, B. New family of Einstein spaces. Phys. Lett. 1968, 25, 399–400. [CrossRef]
18. Carter, B. Separability of the Killing-Maxwell system underlying the generalized angular momentum constant in the Kerr-

Newman black hole metrics. J. Math. Phys. 1987, 28, 1535. [CrossRef]
19. Bagrov, V.G.; Obukhov, V.V. Classes of exact solutions of the Einstein-Maxwell equations. Ann. Der Phys. 1983, 40, 181–188.

[CrossRef]
20. Mitsopoulos, A.; Mitsopoulos, A.; Tsamparlis, M.; Leon, G.; Paliathanasis, A.; Paliathanasis, A. New conservation laws and exact

cosmological solutions in Brans-Dicke cosmology with an extra scalar field. Symmetry 2021, 13, 1364. [CrossRef]
21. Rajaratnam, K.; Mclenaghan, R.G. Classification of Hamilton-Jacobi separation In orthogonal coordinates with diagonal curvature.

J. Math. Phys.2014, 55, 083521. [CrossRef]
22. Chong, Z.W.; Gibbons, G.W.; Pope, C.N. Separability and Killing tensors in Kerr-Taub-Nut-De Sitter metrics in higher dimensions.

Phys. Lett. 2005, 609, 124–132. [CrossRef]
23. Vasudevan, M.; Stevens, K.A.; Page, D.N. Separability of The Hamilton-Jacobi And Klein-Gordon Equations In Kerr-De Sitter

Metrics. Class. Quantum Gravity 2005, 22, 339–352. [CrossRef]
24. Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution.

Phys. Rep. 2017, 692, 1–104. [CrossRef]
25. Bamba, K.S.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical

models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [CrossRef]
26. Capozziello, S.; De Laurentis, M.; Odintsov, S.D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology.

Uropean Phys. J. 2012, 72, 2068. [CrossRef]
27. McLenaghan, R.G.; Rastelli, G.; Valero, C. Complete separability of the Hamilton-Jacobi equation for the charged particle orbits in

a Lienard-Wiehert field. J. Math. Phys. 2020, 61, 122903. [CrossRef]
28. Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. Functional algebras

and dimensional reduction. Theor. Math. Phys. 1996, 106, 3–15. [CrossRef]
29. Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Stationary homogeneous models of Stackel spaces of type (2.1). Russ. Phys. J. 2020, 63,

57–65. [CrossRef]
30. Osetrin, E.; Osetrin, K.; Filippov, A. Spatially Homogeneous Conformally Stackel Spaces of Type (3.1). Russ. Phys. J. 2020, 63,

403–409. [CrossRef]
31. Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stackel Spaces.

Russ. Phys. J. 2019, 64, 292–301. [CrossRef]
32. Mozhey, N.P. Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. I. Russ. Math. J. 2013, 57, 44–62.

[CrossRef]
33. Garcia, A.; Hehl, F.W.; Heinicke, C.; Macias, A. The Cotton tensor in Riemannian spacetimes. Class. Quantum Gravity 2004, 21,

1099–1118. [CrossRef]
34. Marchesiello, A.; Snobl, L.; Winternitz, P. Three-dimensional superintegrable systems in a static electromagnetic field. J. Phys.

Math. Gen. 2015, 48, 395206. [CrossRef]
35. Breev, A.I.; Shapovalov, A.V. Noncommutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12,

1867. [CrossRef]
36. Breev, A.I.; Shapovalov, A.V. Vacuum quantum effects on Lie groups with bi-invariant metrics. Int. J. Geom. Methods Mod. Phys.

2019, 16, 1950122. [CrossRef]
37. Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969.
38. Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [CrossRef]
39. Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act

transitively on null subsurfaces of spacetime. Symmetry 2022, 14, 346. [CrossRef]
40. Obukhov, V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with a

four-parameter groups of motions in the presence of an external electromagnetic field. J. Math. Phys. 2022, 63, 023505. [CrossRef]
41. Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys.

2012, 173, 1654–1667. [CrossRef]
42. Magazev, A.A. Constructing a complete integral of the Hamilton-Jacobi equation on pseudo-riemannian spaces with simply

transitive groups of motions. Math. Physics, Anal. Geom. 2021, 24, 11.

http://dx.doi.org/10.3390/sym12081289
http://dx.doi.org/10.1142/S0219887820501868
http://dx.doi.org/10.1142/S0219887821500365
http://dx.doi.org/10.1016/0375-9601(68)90240-5
http://dx.doi.org/10.1063/1.527509
http://dx.doi.org/10.1002/andp.19834950402
http://dx.doi.org/10.3390/sym13081364
http://dx.doi.org/10.1063/1.4893335
http://dx.doi.org/10.1016/j.physletb.2004.07.066
http://dx.doi.org/10.1088/0264-9381/22/2/007
http://dx.doi.org/10.1016/j.physrep.2017.06.001
http://dx.doi.org/10.1007/s10509-012-1181-8
http://dx.doi.org/10.1140/epjc/s10052-012-2068-0
http://dx.doi.org/10.1063/5.0030305
http://dx.doi.org/10.4213/tmf1093
http://dx.doi.org/10.1007/s11182-020-02051-1
http://dx.doi.org/10.1007/s11182-020-02050-2
http://dx.doi.org/10.1007/s11182-019-01711-1.
http://dx.doi.org/10.3103/S1066369X13120050
http://dx.doi.org/10.1088/0264-9381/21/4/024
http://dx.doi.org/10.1088/1751-8113/48/39/395206
http://dx.doi.org/10.3390/sym12111867
http://dx.doi.org/10.1142/S0219887819501226
http://dx.doi.org/10.3390/sym13040727
http://dx.doi.org/10.3390/sym14020346
http://dx.doi.org/10.1063/5.0080703
http://dx.doi.org/10.1007/s11232-012-0139-x


Universe 2022, 8, 245 15 of 15

[CrossRef]
43. Magazev, A.A.; Shirokov, I.V.; Yurevich, Y.A. Integrable magnetic geodesic flows on Lie groups. Theor. Math. Phys. 2008, 156,

1127–1140. [CrossRef]
44. Landau, L.D.; Lifshits, E.M. Theoretical Physics. Field Theory, 7th ed.; Butterworth-Heinemann: Oxford, UK, 1988; Volume II, 512p,

ISBN 5-02-014420-7.

http://dx.doi.org/10.1007/s11040-021-09385-3
http://dx.doi.org/10.1007/s11232-008-0083-y

	Introduction
	Homogeneous Spaces
	Maxwell's Equations for an Admissible Electromagnetic Field in Homogeneous Spacetime
	Maxwell's Equations for Spaces Type I–VI According to Bianchi Classification
	Group G3(I)
	Group G3(II)
	Group G3(III)
	Group G3(IV)
	Group G3(V)
	Group G3(VI)

	Conclusions
	References

