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Abstract: The (extra)ordinary gauge mediation extension of deflected AMSB scenarios can be interest-
ing because it can accommodate together the deflection in the Kahler potential and the superpotential.
We derive the analytical expressions for soft SUSY breaking parameters in such EOGM extension
of deflected AMSB scenarios with the presence of both types of deflections. The Landau pole and
proton decay constraints are also discussed.
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1. Introduction

Weak-scale supersymmetry (SUSY), which is a leading candidate for physics beyond
the standard model (SM), can solve elegantly the hierarchy problem of the Higgs boson
by introducing various superpartners at the TeV scale. Moreover, the unification of gauge
couplings, which cannot be exact in SM, can be successful in its SUSY extensions. The dark
matter (DM) puzzle as well as the baryon asymmetry of universe, can also be explained
with proper DM candidates and baryogensis mechanisms in SUSY. It is worth to note
that the Higgs scalar, which was discovered by the ATALS [1] and CMS [2] collaborations
of LHC in 2012, lie miraculously in the small ‘115–135’ GeV window predicted by the
low-energy SUSY. (See [3–8] for excellent reviews on SUSY.)

It is well known that the soft SUSY spectrum, including the gaugino and sfermion
masses, are determined by the SUSY breaking mechanism. Depending on the way the
visible sector ’feels’ the SUSY breaking effects in the hidden sector, the SUSY breaking
mechanisms can be classified into gravity mediation [9–11], gauge mediation [12], anomaly
mediation [13,14] scenarios, etc. Gauge-mediated SUSY breaking (GMSB) scenarios, which
will not cause flavor and CP problems that bother gravity mediation models, are calculable,
predictive, and phenomenologically distinctive with a minimal messenger sector. How-
ever, unless additional messenger–matter interactions are introduced, minimal GMSB can
hardly explain the 125 GeV Higgs with TeV scale soft SUSY breaking parameters because
of the vanishing trilinear terms at the messenger scale. An interesting extension is the
(extra)ordinary gauge mediation (EOGM) scenarios [15,16], in which the messenger sector
can include all renormalizable, gauge-invariant couplings between the messengers and
any number of singlet fields. In fact, many examples in the literature of OGM deformed by
mass terms can fall into this category, and their generic properties can be obtained therein.

Gravity can generate the soft SUSY breaking masses by the auxiliary field of the com-
pensator multiplet. Such a ’pure’ gravity mediation scenario with negligible contributions
from direct non-renormalizable contact terms is called the anomaly-mediated SUSY break-
ing (AMSB). Pure anomaly mediation is bothered by the tachyonic slepton problem [17].
Its non-trivial extensions with messenger sectors, namely the deflected AMSB [18–20],
can elegantly solve such tachyonic slepton problems through the deflection of the renor-
malization group equation (RGE) trajectory [21]. There are two types of deflections in
the literature, the deflection in the superpotential [18,20,22–24] and the deflection in the
Kahler potential [25–29], respectively. However, it is difficult to determine consistently the
deflection parameter ‘d’ and soft SUSY parameters if both deflections are present. So, it is
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very interesting theoretically to solve such a difficulty systematically. A special example
of EOGM extension of deflected AMSB had been given in [30]. However, no systematical
treatments and analytical results of the previously mentioned general case are given yet.

We find that the most general deflection scenario in deflected AMSB can be seen as a
special case of the EOGM extension of deflected AMSB. We propose to introduce proper
auxiliary spurion superfields and derive successfully the analytical expressions of the soft
SUSY breaking parameters in the framework of EOGM extension of the deflected AMSB
scenarios with both Kahler and superpotential deflections. Besides, special attentions are
paid to the case with multi-scales messengers, especially the case with a vanishing beta
function at an intermediate scale and the case with det(λij) = det(mij) = 0.

This paper is organized as follows. In Section 2, we discuss the deflected AMSB
scenario with EOGM extension for scenarios with both Kahler and superpotential de-
flections. In Section 3, we discuss the analytical expressions of soft SUSY parameters in
EOGM extended deflected AMSB. In Section 4, constraints from the Landau pole, etc., with
multi-scales messengers are given. Section 5 contains our conclusions.

2. Effective EOGM Form in Deflected AMSB

To fully understand the deflected AMSB scenarios with the presence of both the
superpotential and Kahler potential deflections, we need to obtain the effective deflection
parameter ‘d’ to derive the full expressions of the soft SUSY breaking parameters. We find
that such an effective deflection parameter ‘d’ can be obtained in the framework of EOGM
extension of deflected AMSB.

In the deflected AMSB, the Kahler potential can have the following types of deflection
with holomorphic terms for messengers

K ⊇ κ′ij
φ†

φ
P̃iPj + h.c. , (1)

or the deflection from the couplings in the superpotential

W ⊇ λ′ijX̃Q̃iQj + W(X̃) , (2)

with φ the conformal compensator field that carries the SUSY breaking information in the
SUSY breaking sector

φ = 1 + θ2Fφ . (3)

A proper form of superpotential W(X̃) is assumed for the pseudo-moduli field X̃ to deter-
mine the deflection parameter d̃

FX̃
X̃

= (d̃ + 1)Fφ , (4)

and the messenger threshold scale X̃. We should note that the messengers P̃i, Pi can possibly
be identified to be the Q̃i, Qi superfields.

To accommodate both types of deflections, we need to extract the total GMSB contribu-
tions in addition to the AMSB-type contributions, especially in the case that several SUSY
breaking sources can contribute via the messenger sector. Combining both the Kahler and
superpotential deflections, we have

L ⊇
∫

d4θ

[
κ′ij

φ†

φ
P̃iPj + h.c.

]
+
∫

d2θ
[
λ′ijX̃Q̃iQj + W(X̃)

]
+ h.c. (5)

We propose to rewrite this expression in the form

L ⊇
∫

d2θ(λ′ijX̃ + κ′ijT̃)φ̃iφj + W(X̃) + h.c. , i, j = 1, · · · , N (6)
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with T̃ a new spurion superfield (T̃ can have an R-symmetry charge R(T) = 2 as the
combination P̃iPj has vanishing R-charge) introduced to incorporate the Kahler deflection
effects with its VEV

〈T̃〉 = Fφ − θ2F2
φ (7)

and φi being Pi or Qi. Knowing the spurion VEV, the GMSB contributions could be
determined in the framework of EOGM to include several SUSY breaking sources.

We can rotate the spurion superfields X̃ and T̃ so that only one combination X will
acquire F-term VEVs while T will acquire only the lowest component VEVs

X =
1√

F2
X̃ + F4

φ

[
FX̃X̃− F2

φ T̃
]

,

T =
1√

F2
X̃ + F4

φ

[
F2

φ X̃ + FX̃ T̃
]

. (8)

So, the superpotential can be rewritten as

W ⊇ (λijX + mij)φ̃iφj , (9)

with

λij =
1√

F2
X̃ + F4

φ

(
λ′ijFX̃ − κ′ijF

2
φ

)
,

mij =
T√

F2
X̃ + F4

φ

(
λ′ijF

2
φ + κ′ijFX̃

)
. (10)

So, the coupling of the spurions to the messenger sector takes the form of EOGM.
It is reasonable to assume that the superpotential (9) has a non-trivial R-symmetry{

λij 6= 0 , only if R(φ̃i) + R(φj) = 2− R(X) ,
mij 6= 0 , only if R(φ̃i) + R(φj) = 2 ,

(11)

which can prevent destructive D-term contributions to sfermion masses. As noted in [15],
we can choose R(X) = 2 without loss of generality by the mixing of the R-symmetry with
the trivial U(1)R. After integrating out the messenger fields, the messenger determinant is
proven by [15] to be a monomial in X

det
(

λ′ijX̃ + κ′ijT̃
)
≡ det(λijX + mij) = Xn0 G(λij, mij) , (12)

with

n0 =
1

R(X)

n

∑
i=1

[2− R(φ̃i) + R(φi)]. (13)

Note that the GMSB contribution of the most general deflection scenario in AMSB is quite
similar to that of EOGM in GMSB, except that the VEV of X is given by√

F2
X + F4

φ〈X〉 = Fφ

[
(d̃ + 1)X̃2 − F2

φ

]
+ (F2

X̃ + F4
φ)θ

2, (14)

from (8).
The previous discussions can be generalized to the case with multiple pseudo-moduli

X̃a superfields in the superpotential, which are all very flat in the SUSY limit and can couple
differently to the messengers. Each X̃i will acquire its corresponding F-term VEV to give
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additional GMSB-type contributions to the soft SUSY breaking parameters in addition to
AMSB contributions. We have

L ⊇
∫

d4θ

[
κij

φ†

φ
P̃iPj

]
+
∫

d2θ ∑
a

[
λ

a
ijX̃aQ̃iQj

]
+ W(X̃1, · · · , X̃a) , (15)

which can be rewritten as

L ⊇
∫

d2θ(∑
a

λ
a
ijX̃a + κijT̃)φ̃iφj + W(X̃1, · · · , X̃a) . i, j = 1, · · · , N (16)

After associating each dimensional parameter in the superpotential W(X̃1, · · · , X̃a) with
proper power of compensator field φ and substituting the expression of the compensator
VEV φ = 1 + θ2Fφ, one can obtain the VEV of each X̃a by minimizing the whole scalar
potential. The VEV for each X̃a can be parameterized as

〈X̃a〉 = Ma + θ2Fa . (17)

Similar to (8), one can perform a unitary transformation for X̃a, T̃ superfields so that only
one of the combinations can have an F-term VEV, while the other combinations only have
the lowest component VEVs. So, the resulting superpotential involving the messengers can
again be written in the form

W ⊇ (λijX + mij)φ̃iφj , (18)

with similar discussions from (11) to (13).
We will discuss the soft SUSY breaking parameters in our scenarios. The VEV of X,

which is determined by the dynamics of X and the unitary transformation of Xk, can take
the following form

〈X〉 = X0 + θ2FX . (19)

For multiple messenger species with the general form of the coupling

W ⊇
(
λijX + mij

)
ΨiΨj , (20)

we can in principle diagonalize the non-singular mass matrix Mij ≡ λijX + mij by
U†

ikM
′
diag;klVl j, so the couplings can be recast into the form

W ⊇
n

∑
i=1

Mi(X)Ψ′iΨ
′
i , (21)

with Mi(X) the corresponding eigenvalues and

Ψ′i = U†
ijΨj, Ψ′i = VijΨj. (22)

Simply, we choose Ψi, Ψi to lie in the 5 and 5 representations of SU(5), respectively. Because
of the R-symmetry, the eigenvalue Mi(X) has to be a monomial in X, which can only take
the following form (see the discussions in Section 3.3):

Mi(X) =


aiX ,
bi ,

ciX−m ,

with 0 ≤ m ≤ [(rλ − n0)/2] and rλ ≡ rank(λij). We can associate each dimensional
parameter with a proper power of the compensator field φ to obtain the deflection parameter
related to the messenger Ψ′i and Ψ′i



Universe 2022, 8, 251 5 of 24

di =


FX

XFφ
− 1 ≡ dU , for Mi(X) = aiX ,

0 , for Mi(X) = bi ,
m−m FX

XFφ
= −m · dU , for Mi(X) = ciX−m ,

(23)

after substituting the VEV 〈X〉 and φ. Without loss of generality, one can assume that the
messenger thresholds satisfy

M1(X0) ≡ M1 & M2(X0) ≡ M2 & · · · & Mn(X0) ≡ Mn. (24)

These Mk can be hierarchical or lie at the same order.
So, the soft SUSY breaking parameters can be obtained by the wavefunction renormal-

ization [31] approach.

• The gaugino masses are given as

Mi = g2
i

(
Fφ

2
∂

∂ ln µ
−

n

∑
k=1

dkFφ

2
∂

∂ ln Mk

)
1
g2

i
(µ, M1, · · · , Mn) ,

≡ g2
i

(
Fφ

2
∂

∂ ln µ
−

n

∑
k=1

dU Fφ

2
∂ ln Mk
∂ ln X

∂

∂ ln Mk

)
1
g2

i
(µ, M1, · · · , Mn) . (25)

• The trilinear couplings Aijk
0 ≡ Aijk/yijk are given as

Aijk
0 = ∑

i

(
−

Fφ

2
∂

∂ ln µ
+

n

∑
k=1

dkFφ

2
∂

∂ ln Mk

)
ln[Zi(µ, M1, · · · , Mn)]

∣∣∣∣∣
µ=Mn

.

≡ ∑
i

(
−

Fφ

2
∂

∂ ln µ
+

n

∑
k=1

dU Fφ

2
∂ ln Mk
∂ ln X

∂

∂ ln Mk

)
ln[Zi(µ, M1, · · · , Mn)]

∣∣∣∣∣
µ=Mn

.

• The soft SUSY breaking scalar masses are given as

m2
so f t

= −
∣∣∣∣∣− Fφ

2
∂

∂ ln µ
+

n

∑
k=1

dkFφ

2
∂

∂ ln Mk

∣∣∣∣∣
2

ln[Zi(µ, M1, · · · , Mk)]

∣∣∣∣∣∣
µ=Mn

, (26)

= −
F2

φ

4

 ∂2

∂(ln µ)2 +
n

∑
k,j=1

dkdj
∂2

∂(ln Mj)∂(ln Mk)
−

n

∑
k=1

2dk
∂2

∂ ln Mk∂ ln µ

 ln[Zi(µ, M1, · · · , Mk)].

Details of the expression involving the derivatives with respect to ln Mi, etc., can be
found in [24,32,33].

It is well known that in the d→ ∞ limit, the anomaly mediation contributions in the
deflect AMSB are sub-leading and the gauge mediation contributions are dominant. So, we
will derive the EOGM contributions first and return to deflected AMSB cases subsequently.

3. Analytical Expressions within EOGM

For multiple messengers, we assume that the mass thresholds of the N messengers
can be degenerated and separated into ′p′ groups as

(M1, · · · , M1︸ ︷︷ ︸
n1

, M2, · · · , M2︸ ︷︷ ︸
n2

, · · · , Mp, · · · , Mp︸ ︷︷ ︸
np

) , (27)

with
p
∑

i=1
np = N.
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The gauge couplings at a scale µ below all the messenger thresholds are given as

1
g2

i (µ, Ma)
=

1
g2

i (Λ)
+

b′i
8π2 ln

Λ
M1

+
b′i − n1

8π2 ln
M1

M2
+

b′i −
2
∑

k=1
nk

8π2 ln
M2

M3
+ · · ·+

b′i − N
8π2 ln

Mp

µ
,

=
1

g2
i (Λ)

+
b′i

8π2 ln Λ− 1
8π2 ln detM−

b′i − N
8π2 ln µ . (28)

Here we assume that the eigenvalues of the messenger mass matrix are given by
M1 ≥ M2 ≥ · · · ≥ Mp. So, the gaugino mass can be given as

Mi = g2
i

(
Fφ

2
∂

∂ ln µ
−

p

∑
a=1

daFφ

2
∂

∂ ln Ma

)
1
g2

i
(µ, Ma) ,

= −Fφ
g2

i
16π2 bi + dU Fφ

g2
i

16π2
∂ ln detM

∂ ln X
,

= −Fφ
g2

i
16π2 bi + dU Fφ

g2
i

16π2 n0 . (29)

Here bi = b′i − N, which are given by

(b1, b2, b3) = (33/5, 1, − 3) , (30)

with N = N5 + 3N10 and n0 is given in Equation (12). Besides, the previous expressions
also agree with the result

p

∑
a=1

dana = n0 , (31)

with da the deflection parameter with respect to messenger threshold Ma, whose expression
is given by (23). The previous results can be rewritten in an alternative form by using the
identity

ln det M = Tr ln M

for non-singular matrix M. If we assume that the lowest component VEV of 〈X〉 vanishes
and the SUSY breaking parameter FX is small in comparison to the messenger scale, we have

n0 ≡
∂ ln detM

∂ ln X
=

∂Tr lnM
∂ ln X

=
∂Tr ln

(
λijX + mij

)
∂ ln X

=
∂Tr ln

(
λijX + mij

)
∂ ln X

≈
∂Tr ln

[
mij(1 +

λijX
mij

)
]

∂ ln X
≈∑

i

λii
mii

, (32)

in the basis where mij is real and diagonal.
For the soft sfermion masses and trilinear couplings, we need the dependence of

wavefunction Zi on each messenger threshold Ma. The derivative of ln Zi with respect to
ln Ma can be obtained via

d ln Zl [µ, gi(µ
′), yi(µ

′), Ma]

d ln Ma

= ∑
Mj

∑
gi(µ′)

∂ ln gi(µ
′)

∂ ln Ma

∂ ln Zl [µ, gi(µ
′), yi(µ

′), Ma]

∂ ln gi(µ′)
+
[
gi(µ

′)→ ya(µ
′)
]

+ ∑
Ma

∂ ln Zl [µ, gi(µ
′), yi(µ

′), Ma]

∂ ln Ma
. (33)
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The sum over gi(µ
′), which depends on the messenger thresholds Mi, take the values

gi(M1), gi(M2), · · · , gi(Mp). The third term always vanishes because the anomalous di-
mension is continuous across the messenger thresholds (here we assume no messenger–
matter interactions are present).

To obtain the expressions for wavefunction Zi, we need the following classifications:

• In the case b′i −
k
∑

r=1
nr 6= 0 for all 0 ≤ k ≤ p, the expression will fall into class A.

• In the case b′i −
k
∑

r=1
nr = 0 for some 0 ≤ k ≤ p, the expression will fall into class B.

3.1. Class A: Partition without Vanishing Gauge Beta Functions

To obtain Zi, we can construct an invariant by surveying the anomalous dimension
of Zi

d ln Zi
dt

= − 1
8π2

[
dk

ijy
2
ijk − 2C(r)g2

i

]
, (34)

and solve the differential equation in the basis of (y2
t , y2

b, y2
τ , g2

3, g2
2, g2

1) with

d
dt

ln Zi = ∑
l=g3,g2,g1

2Ãl
d ln gl

dt
+ ∑

l=yt ,yb ,yτ

2Bl
d ln yl

dt
, (35)

at the scale Λ. The expressions of the wavefunction can be solved (for example, see
Appendix A in Refs. [34,35] for details) as

Zl(µ, Ma) = Zl(Λ)

(
y2

t (µ)

y2
t (Λ)

)Bt
(

y2
b(µ)

y2
b(Λ)

)Bb( y2
τ(µ)

y2
τ(Λ)

)Bτ

(36)

3

∏
i=1

( g2
i (M1)

g2
i (Λ)

) Ai
b′i
(

g2
i (M2)

g2
i (M1)

) Ai
b′i−n1

(
g2

i (M3)

g2
i (M2)

) Ai

b′i−
2
∑

i=1
bi · · ·

(
g2

i (µ)

g2
i (Mp)

) Ai
b′i−N

,

with the corresponding coefficients Ãi given as Ãi ≡ Ai/b′i , Ai/(b′i − n1), · · · at the energy
interval [Mi, Mi+1] (M0 ≡ Λ), respectively.

If all the Yukawa terms within the wavefunction Zi are neglected, the Ai will take the
value 4C(r)i with C(r)i, the quadratic Casimir invariant for the superfield Φi.

So, we have

ln Zl(µ, Ma) = ln Zl(Λ) + ∑
i

{
−Ai

b′i
ln g2

i (Λ) +

(
Ai
b′i
− Ai

b′i − n1

)
ln g2

i (M1)

+

 Ai
b′i − n1

− Ai

b′i −
2
∑

k=1
nk

 ln g2
i (M2) + · · ·+

Ai
b′i − N

ln g2
i (µ)

+ · · · . (37)

From Equation (37), we obtain

(
∂ ln Zl(µ, Ma)

∂ ln gi(µ′)

)
= 2

Ai
b′i
− Ai

b′i − n1
,

Ai
b′i − n1

− Ai

b′i −
2
∑

k=1
nk

, · · · ,
Ai

b′i −
p−1
∑

k=1
nk

− Ai
b′i − N

,
Ai

b′i − N

, (38)

with the column indices gi(M1), gi(M2), · · · , gi(Mp), gi(µ).
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From the expressions of gauge coupling at scale µ within each threshold interval, we
can obtain an (p + 1)× p matrix

ln M1 ln M2 · · · ln Mp

(
∂ ln gi(µ

′)
∂ ln Mj

)
µ′ ,j

=
1

16π2



b′i g
2
i (M1) 0 · · · 0

n1g2
i (M2) (b′i − n1)g2

i (M2) · · · 0
n1g2

i (M3) n2g2
i (M3) · · · 0

· · · · · · · · · · · ·

n1g2
i (Mp) n2g2

i (Mp) · · · (b′i −
p−1
∑

i=1
ni)g2

i (Mp)

n1g2
i (µ) n2g2

i (µ) · · · npg2
i (µ)



gi(M1)
gi(M2)
gi(M3)

· · ·
gi(Mp)
gi(µ)

(39)

So, we have

Ub ≡
(

∂ ln Zl(µ, Ma)

∂ ln Mb

)T
≡ − ∑

i=1,2,3

Ai
8π2 Ub;i , (40)

Ub;i =


n1(Pi[1] + Qi[1])
n2(Pi[2] + Qi[2])
n3(Pi[3] + Qi[3])

· · ·
np(Pi[p] + Qi[p])

 ≡



[
n1g2

i (M1)

b′i−n1
− n1g2

i (µ)

b′i−N

]
+

p
∑

a=2

n1nag2
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk) n2g2

i (M2)

b′i−
2
∑

k=1
nk

− n2g2
i (µ)

b′i−N

+
p
∑

a=3

n2nag2
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk) n3g2

i (M3)

b′i−
3
∑

k=1
nk

− n3g2
i (µ)

b′i−N

+
p
∑

a=4

n3nag2
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk)

· · · · · ·[
npg2

i (Mp)

b′i−N − npg2
i (µ)

b′i−N

]



,

with the column indices corresponding to M1, M2, · · · , Mp, etc. Here we rewrite our
expressions neatly by defining

Pi[a] =
g2

i (Ma)

b′i −
a
∑

k=1
nk

−
g2

i (µ)

b′i − N
,

Qi[a] =
p

∑
c=a+1

ncg2
i (Mc)

(b′i −
c−1
∑

k=1
nk)(b′i −

c
∑

k=1
nk)

, (41)

within which bi ≡ b′i − N is just the beta function coefficient below all the messenger
thresholds. From the previous expressions, we can check that each row will vanish if we
neglect the scale dependence of g2

i . This observation agrees with the ordinary conclusion
that the trilinear couplings of GMSB vanish if no Yukawa deflections are present.

From the expressions in Equation (40), we can obtain the symmetric matrix (for indices
j and k) (

∂2 ln Zl(µ, Ma)

∂ ln Mb∂ ln Ma

)T

≡ − ∑
i=1,2,3

4Ai
(16π2)2 Kab;i , (42)
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with the contributions Kab;i, i = 1, 2, 3 for each gauge field

n2
1Xi[1], n1n2Yi[2], n1n3Yi[3], n1n4Yi[4], n1n5Yi[5], · · · , n1npYi[p]

n1n2Yi[2], n2
2Xi[2], n2n3Yi[3], n2n4Yi[4], n2n5Yi[5], · · · , n2npYi[p]

n1n3Yi[3], n2n3Yi[3], n2
3Xi[3], n3n4Yi[4], n3n5Yi[5], · · · n3npYi[p]

n1n4Yi[4], n2n4Yi[4], n3n4Yi[4], n2
4Xi[4], n4n5Yi[5], · · · n4npYi[p]

n1n5Yi[5], n2n5Yi[5], n3n5Yi[5], n4n5Xi[5], n2
5Xi[5], · · · n5npYi[p]

· · · · · · · · · · · · · · ·
n1npYi[p], n2npYi[p], n3npYi[p], n4npYi[p], n5npYi[p], · · · , n2

pXi[p],


. (43)

The functions within Kab;i are defined as

Xi[a] = GE
i [a] + KE

i [a] , Yi[a] = FE
i [a] + KE

i [a] , (44)

within which

FE
i [a] =

g4
i (Ma)

b′i −
a
∑

i=1
ni

−
g4

i (µ)

b′i − N
,

GE
i [a] =

(b′i −
a−1
∑

i=1
ni)g4

i (Ma)

na(b′i −
a
∑

i=1
ni)

−
g4

i (µ)

b′i − N
, (45)

KE
i [a] =

p

∑
c=a+1

ncg4
i (Mc)

(b′i −
c−1
∑

i=1
ni)(b′i −

c
∑

i=1
ni)

.

Here we define the summation to vanish if its index lies out of its definition range.

For example,
0
∑

i=1
(· · · ) ≡

p
∑

i=p+1
(· · · ) = 0. From the previous expressions, we can check

that each non-diagonal element of Kab will vanish if we neglect the scale dependence of g2
i .

Only the diagonal elements of Kab can give non-vanishing values of order

Kaa ∼ n2
a

g4
i

na
= nag4

i . (46)

The inclusion of top-Yukawa coupling is straightforward in the analytical expressions.
The scale dependence of top-Yukawa in the simplest case, in which only the leading top
Yukawa αt ≡ y2

t /4π and αs ≡ g2
3/4π are kept in the anomalous dimension, takes the form

d
dt

ln αt =
1
π

(
3αt −

8
3

αs

)
,

d
dt

ln αs =
1

2π
b3αs . (47)

Define A = ln
(

αtα
16

3b3
s

)
, the equation can be written as

d
[
e−A

]
= − 3

π
α
− 16

3b3
s dt = − 6

b3
α
− 16

3b3
−2

s dαs . (48)

So, we can exactly solve the differential equation to obtain[
αt(µ)

αt(Λ)

(
αs(µ)

αs(Λ)

) 16
3b3

]−1

= 1− 6αt(Λ)
16
3 + b3

[
αs(Λ)−1 −

(
αs(µ)

αs(Λ)

)− 16
3b3

α−1
s (µ)

]
.
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Expanding the expressions and neglecting high-order terms, we finally have

[ln αt(µ)− ln αt(Λ)] ≈
[
− 8

3π
αs(µ) +

3
π

αt(µ)

]
ln
(

Λ
µ

)
. (49)

It can be observed that, in the leading order approximation, the expression within the
square bracket is just the beta function of top Yukawa coupling. As there are no Yukawa
deflection contributions related to the introduction of messengers, the Yukawa coupling
contributions will not enter the expression within the GMSB part of the generalized dAMSB.

3.2. Class B: Partition with Vanishing Gauge Beta Functions

In previous discussions, apparent poles Ai/(b′i −
j

∑
a=1

na) may arise if we have van-

ishing gauge beta function coefficient b′i −
j

∑
a=1

na = 0 between certain messenger scales.

(Although such poles will not appear if higher loop order beta functions contributions are
included, we still want to check the status of the contribution with tiny beta functions.)
For example, with N > 3 non-degenerate messengers in 5 ⊕ 5̄ representation, the beta
function for α3, which is given by b′3 = −3 + N, will vanish after decoupling N − 3 family
of vector-like messengers at one-loop level. (The beta function for i = 1, 2 gauge fields will
not encounter such difficulties.) Such an artificial pole can be resolved by revisiting the
deduction procedure of wavefunctions.

Assume that all the i-th gauge coupling beta function coefficients b′i −
k−1
∑

a=1
na are non-

vanishing for k < j. After integrating out the nj family of vector-like messengers at the Mj

scale, the beta function coefficient is assumed to vanish (so that b′i −
j

∑
a=1

na = 0).

The wavefunction at the Mj scale takes value

Zl(Mj, Ma) = Zl(Λ)
3

∏
i=1


(

g2
i (M1)

g2
i (Λ)

)Ai/b′i
(

g2
i (M2)

g2
i (M1)

)Ai/(b′i−n1)

· · ·
(

g2
i (Mj)

g2
i (Mj−1)

)Ai/(b′i−
j−1
∑

a=1
na)

 ,

(
y2

t (Mj)

y2
t (Λ)

)Bt
(

y2
b(Mj)

y2
b(Λ)

)Bb
(

y2
τ(Mj)

y2
τ(Λ)

)Bτ

. (50)

As the i-th beta function vanishes at one-loop level

dgi
dt

= 0 , Mj+1 < µ < Mj (51)

it can be seen as a constant between Mj+1 < µ < Mj. Within this range, the RGE invariant
became

d
dt

ln

[
Z(µ) ∏

l=yt ,yb ,yτ

[yl(µ)]
−2Bl ∏

k 6=i
[gk(µ)]

−2Ãk

]
= Dig2

i (µ) = Dig2
i (Mj) , (52)

and we can deduce that

Z(µ) ∏
l=yt ,yb ,yτ

[yl(µ)]
−2Bl ∏

k 6=i
[gk(µ)]

−2Ãk

=

(
µ

Mj

)Di g2
i (Mj)

[
Z(Mj) ∏

l=yt ,yb ,yτ

[
yl(Mj)

]−2Bl ∏
k 6=i

[
gk(Mj)

]−2Ãk

]
. (53)



Universe 2022, 8, 251 11 of 24

The value Di ≡ Ai/8π2 with the value Ai given in Appendix A. We will keep using ′D′i in
this paper to indicate clearly the consequence of vanishing one-loop beta functions.

So, for Mj+1 < µ < Mj,

Z(µ) = Z(Mj)

(
µ

Mj

)Di g2
i (Mj)

∏
l=yt ,yb ,yτ

[
yl(Mj)

yl(µ)

]−2Bl

∏
k 6=i

[
gk(Mj)

gk(µ)

]−2Ãk

= Z(Λ) ∏
l=yt ,yb ,yτ

[
yl(Λ)

yl(µ)

]−2Bl

∏
k 6=i

( g2
k(M1)

g2
k(Λ)

) Ak
b′k
(

g2
k(M2)

g2
k(M1)

) Ak
b′k−n1

· · ·
(

g2
k(µ)

g2
k(Mj)

) Ak

b′k−
j

∑
a=1

na

,

( g2
i (M1)

g2
i (Λ)

) Ai
b′i
(

g2
i (M2)

g2
i (M1)

) Ai
b′i−n1

· · ·
(

g2
i (Mj)

g2
i (Mj−1)

) Ai

b′i−
j−1
∑

a=1
na

( µ

Mj

)Di g2
i (Mj)

,

and for µ < Mp,

Z(µ) = Z(Λ) ∏
l=yt ,yb ,yτ

[
yl(Λ)

yl(µ)

]−2Bl

∏
k 6=i

( g2
k(M1)

g2
k(Λ)

) Ak
b′k
(

g2
k(M2)

g2
k(M1)

) Ak
b′k−n1

· · ·
(

g2
k(Mj)

g2
k(Mj−1)

) Ak

b′k−
j

∑
a=1

na · · ·
(

g2
k(µ)

g2
k(Mp)

) Ak
bk

,

( g2
i (M1)

g2
i (Λ)

) Ai
b′i
(

g2
i (M2)

g2
i (M1)

) Ai
b′i−n1

· · ·
(

g2
i (Mj)

g2
i (Mj−1)

) Ai

b′i−
j−1
∑

a=1
na

(Mj+1

Mj

)Di g2
i (Mj)

(
g2

i (Mj+2)

g2
i (Mj+1)

) Ai

b′i−
j+1
∑

a=1
na · · ·

(
g2

i (µ)

g2
i (Mp)

) Ai
bi

. (54)

Therefore, we have for µ < Mp

d ln Z
[
µ, gi(µ

′), Mj, Mj+1
]

d ln Ma
=

 ∑
gi(µ′)

∂gi(µ
′)

∂ ln Ma

∂

∂gi(µ′)
+

∂

∂ ln Ma

 ln Z
[
µ, gi(µ

′), Mj, Mj+1
]

,

with the last term giving non-vanishing contributions only for a = j, j + 1

∂

∂ ln Ma
ln Z

[
µ, gi(µ

′), Mj, Mj+1
]
=
[
δa,j+1 − δa;j

]
Dig2

i (Mj) . (55)

From the general expressions, we can see that the j-th and (j + 1)-th components will be
changed into

(
∂ ln Z[µ; gi(µ

′), Ma]

∂ ln gi(µ′)

)
j,j+1

= 2

 Ai

b′i −
j−1
∑

a=1
na

+ Dig2
i (Mj) ln

Mj+1

Mj
,− Ai

b′i −
j+1
∑

a=1
na

,

while other columns are unchanged as Equation (38) if bi(µ) = 0 for Mj+1 < µ < Mj. The
matrix ∂ ln gi(µ

′)/∂Mj, which is given by Equation (39), is unchanged. Then the contribu-
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tions from the i-th gauge field, which has vanishing beta functions between [Mj+1, Mj], are
given as

Ub;i ≡
d ln Z[gi(µ

′), Mn]

d ln Mb

∣∣∣∣
i

(56)

=

[
∂gi(µ

′)

∂ ln Mb

∂

∂gi(µ′)
+

∂

∂ ln Mb

]
ln Z

[
gi(µ

′), Mj, Mj+1
]

= − Ai
8π2



n1

(
PS

i [1] + QS
i [1]−

Di
Ai

g4
i (Mj) ln

Mj+1
Mj

)
,

n2

(
PS

i [2] + QS
i [2]−

Di
Ai

g4
i (Mj) ln

Mj+1
Mj

)
,

· · ·
nj

(
PS

i [j] + QS
i [j]−

Di
Ai

g4
i (Mj) ln

Mj+1
Mj

)
+ 8π2

Ai
Dig2

i (Mj) ,

nj+1
(

PS
i [j + 1] + QS

i [j + 1]
)
− 8π2

Ai
Dig2

i (Mj) ,
nj+2

(
PS

i [j + 2] + QS
i [j + 2]

)
,

· · ·
np
(

PS
i [p] + QS

i [p]
)

.


.

Within the deduction, we use the fact that gi(Mj) = gi(Mj+1) and b′i −
j

∑
k=1

nk = 0.

Furthermore, we also define

QS
i [c] =



p
∑

a=c+1;a 6=j,j+1

nag2
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk)

+
(nj+nj+1)g2

i (Mj)

(b′i−
j−1
∑

k=1
nk)(b′i−

j+1
∑

k=1
nk)

, 1 ≤ c ≤ j

p
∑

a=c+1

nag2
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk)

, j + 1 ≤ c ≤ p

PS
i [c] =


g2

i (Mc)

b′i−
c
∑

k=1
nk

− g2
i (µ)

b′i−N , c 6= j, j + 1

− g2
i (µ)

b′i−N . c = j, j + 1
(57)

within the expression

(nj + nj+1)g2
i (Mj)

(b′i −
j−1
∑

k=1
nk)(b′i −

j+1
∑

k=1
nk)

= −
nj + nj+1

njnj+1
g2

i (Mj) . (58)

We note that when c takes value j− 1 or j in the summation of QS
i [c], the sum skip j, j + 1

and begins at a = j + 2.
From the previous expressions, we can see that each row will vanish if we neglect the

scale dependence of g2
i and higher-order g6

i terms. In fact, with such an approximation, the
j-th and j + 1-th row is given by

Ub;j ∼ −
g2

nj
nj + g2 ∼ 0 ,

Ub;j+1 ∼
g2

nj+1
nj+1 − g2 ∼ 0 . (59)

In the summation

∂ ln Zl [µ, gi(µ
′), Mn]

∂ ln Mb
=

3

∑
i=1

∂ ln Zl [µ, gi(µ
′), Mn]

∂ ln Mb

∣∣∣∣
i

, (60)
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the expressions for i = 1, 2 gauge fields (which have no vanishing beta functions) are still
given by

(
∂ ln Zl [µ, gi(µ

′)]

∂ ln Mb

)∣∣∣∣
i=1,2

≡ − Ai
8π2


n1(Pi[1] + Qi[1])
n2(Pi[2] + Qi[2])
n3(Pi[3] + Qi[3])

· · ·
np(Pi[p] + Qi[p])

 , (61)

from Equation (40).
With previous results, we can derive the expression of ∂2

∂ ln Ma ln Mb
ln Z[µ; gi(µ

′), Mn]

from i-th ( here i = 3) gauge fields

∂

∂ ln Ma

(
∂ ln Z[gi(µ

′), Mn]

∂ ln Mb

∣∣∣∣
i

)
≡ − Ai

8π2

[
∂ ln gj(µ

′)

∂ ln Ma

∂

∂ ln gj(µ′)
+ δa;j,j+1

∂

∂Mj,j+1

]
Vb;i

= − 4Ai
(16π2)2 Kab;i , (62)

with Kab;i a symmetric matrix given as



n2
1 J[1] n1n2H[2] · · · n1nj H[j] n1nj+1H[j + 1] n1nj+2H[j + 2] · · · n1np H[p]

n1n2H[2] n2
2 J[2] · · · n2nj H[j] n2nj+1H[j + 1] n2nj+2H[j + 2] · · · n2np H[p]

n1n3H[3] n3n2H[3] · · · n3nj H[j] n3nj+1H[j + 1] n3nj+2H[j + 2] · · · n3np H[p]
· · · · · · · · · · · · · · · · · · · · · · · ·

n1nj H[j] n2nj H[j] · · · n2
j J[j] njnj+1H[j + 1] njnj+2H[j + 2] · · · njnp H[p]

n1nj+1H[j + 1] n2nj+1H[j + 1] · · · njnj+1H[j + 1] n2
j+1 J[j + 1] nj+1nj+2H[j + 2] · · · nj+1np H[p]

n1nj+2H[j + 2] n2nj+2H[j + 2] · · · njnj+2H[j + 2] nj+1nj+2H[j + 2] n2
j+2 J[j + 2] · · · nj+2np H[p]

· · · · · · · · · · · · · · · · · · · · · · · ·
n1np H[p] n2np H[p] · · · njnp H[p] nj+1np H[p] nj+2np H[p] · · · n2

p J[p]


. (63)

The functions within Kab;i are defined as

J[m] =


GS

i [m] + KS
i [m]− 2 Di

Ai
g6

i (Mj) ln
Mj+1

Mj
, 1 ≤ m ≤ j− 1

GS
i [j] + KS

i [j] + 16π2 Di
nj Ai

g4
i (Mj)− 2 Di

Ai
g6

i (Mj) ln
Mj+1

Mj
, m = j

GS
i [m] + KS

i [m] , j + 1 ≤ m ≤ p

H[m] =


FS

i [m] + KS
i [m]− 2 Di

Ai
g6

i (Mj) ln
Mj+1

Mj
, 1 ≤ m ≤ j− 1

FS
i [j] + KS

i [j + 1] + 8π2 Di
nj Ai

g4
i (Mj)− 2 Di

Ai
g6

i (Mj) ln
Mj+1

Mj
, m = j

FS
i [j + 1] + KS

i [j + 1]− 8π2 Di
nj+1 Ai

g4
i (Mj) , m = j + 1

FS
i [m] + KS

i [m] , j + 2 ≤ m ≤ p
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with

KS
i [c] =



p
∑

a=c+1;a 6=j,j+1

nag4
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk)

+
(nj+nj+1)g4

i (Mj)

(b′i−
j−1
∑

k=1
nk)(b′i−

j+1
∑

k=1
nk)

, 1 ≤ c ≤ j

p
∑

a=c+1

nag4
i (Ma)

(b′i−
a−1
∑

k=1
nk)(b′i−

a
∑

k=1
nk)

, j + 1 ≤ c ≤ p

FS
i [c] =



g4
i (Mc)

b′i−
c
∑

k=1
nk

− g4
i (µ)

b′i−N , c 6= j, j + 1

nj+nj+1

b′i−
j−1
∑

k=1
nk

g4
i (Mc)

b′i−
j+1
∑

k=1
nk

− g4
i (µ)

b′i−N , c = j

− g4
i (µ)

b′i−N , c = j + 1

(64)

GS
i [c] =


(b′i−

c−1
∑

k=1
nk)g4

i (Ma)

nc(b′i−
c
∑

k=1
nk)

− g4
i (µ)

b′i−N , c 6= j, j + 1

− g4
i (µ)

b′i−N . c = j, j + 1

(65)

From the previous expressions, we can check that each non-diagonal element of
Kab(a, b 6= j, j + 1) will vanish if we neglect the scale dependence of g2

i and higher-order g6
i

terms. The diagonal elements of Kab(a, b 6= j, j + 1) can give non-vanishing values of order

Kaa ≡ n2
a J[a] ∼ n2

a
g4

i
na

= nag4
i . (66)

The J[j] and H[j] term will be given as

J[j] ∼ −
g4

i
nj

+
2
nj

g4
i =

g4
i

nj
, J[j + 1] ∼

g4
i

nj+1
,

H[j] ∼ −
g4

i
nj

+
g4

i
nj
∼ 0 , H[j + 1] ∼

g4
i

nj+1
−

g4
i

nj+1
∼ 0 , (67)

if we neglect the scale dependence of g2
i and higher-order g6

i terms.
The contributions from i = 1, 2 gauge fields are still given by Equation (43). The total

contributions are given by the sum of i = 1, 2, 3 gauge fields.

3.3. Dependence of ln Ma on ln X

As noted before, with non-trivial U(1)R symmetry, the messenger determinant is
proven by [15] to be a monomial in X

det
(
λijX + mij

)
= Xn0 G(λ, m) . (68)

Knowing the value of the determinant, it is still non-trivial to express the eigenvalues of
M in terms of 〈X〉. (Here and after, 〈X〉 is used to denote the scalar component VEV of
the superfield X.) Fortunately, the asymptotic behavior will display a simple form. In large
〈X〉 region, rλ ≡ rank(λij) messengers acquire masses O(〈X〉) while the remaining N − rλ

messengers acquire masses of order

Mi ∼
mni+1

〈X〉ni
,

N−rλ

∑
i=1

ni = rλ − n0 , (69)
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with ni ≥ 0. At small 〈X〉 region, rm ≡ rank(mij) messengers acquire masses O(m) while
the remaining N − rm messengers acquire masses of order

Mi ∼
〈X〉ñi+1

mñi
,

N−rm

∑
i=1

(ñi + 1) = n0 , (70)

with ñi ≥ 0.
Depending on the singularity properties of the messenger mass matrix, we have the

following discussions.

• Type I: det m 6= 0.

In the basis in which m is diagonal, it can prove [15] that Equation (68) takes the form

n0 = 0 , det(λ〈X〉+ m) = det m , (71)

which necessarily implies det λ = 0. As the matrix is upper triangular, the eigenvalues
are mii that do not depend on 〈X〉.
So, in this case, we have dk ≡ 0 or

d ln Mi
d ln X

≡ 0. (72)

So, we can see that the gauginos, the trilinear couplings, and the sfermions will not
receive any gauge mediation contributions.

• Type II: det λ 6= 0.

Similarly, we can obtain an upper triangular matrix with eigenvalues equal to the
diagonal elements of diagonalized matrix λ′ii. The determinant is

n0 = N , det(λ〈X〉+ m) = 〈X〉N det λ . (73)

So, the eigenvalues will be λ′ii〈X〉 and depend linearly on 〈X〉. We will arrange λ′ii to
obtain the eigenvalues M̃1(〈X〉), M̃2(〈X〉), · · · , M̃N(〈X〉).
Suppose the Ti ≡ λ′ii are ordered so as that T1 ≥ T2 ≥ T3 · · · ≥ TN , we define

Vi ≡
d ln Mi
d ln X

≡ (1 , 1 , 1 , · · · , 1). (74)

For degenerate eigenvalues

M̃1 = M̃2 = · · · = M̃n1 ≡ M1 = λ′n1n1
〈X〉,

M̃n1+1 = · · · = M̃n2 ≡ M2 = λ′n2n2
〈X〉,

M̃n2+1 = M̃n2+2 = · · · = M̃n3 ≡ M3 = λ′n3n3
〈X〉, · · ·

M̃np−1+1 = M̃np−1+2 = · · · = M̃np ≡ Mp = λ′npnp〈X〉, (75)

with M1 ≥ M2 ≥ · · · ≥ Mp, the matrix Vi reduces to a 1× p matrix

Vi ≡
d ln Mi
d ln X

≡ (1 , 1 , · · · , 1). (76)

So, the soft SUSY breaking parameters for GMSB can be given as

– The gaugino mass:

Mi =
FX
X0

g2
i

16π2 N . (77)
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– GMSB contributions to trilinear terms:

Ai =
Aijk

yijk
= ∑

i,j,k

FX
2X0

∂ ln Zl(µ, Ma(X))

∂ ln |X| =
FX

2X0
∑
i,j,k

N

∑
v=1

UbVb. (78)

As anticipated, the trilinear term will vanish if we neglect the scale dependence
of g2

i and higher-order g6
i terms.

– Pure GMSB contributions to soft sfermion masses:

m2
i = −

F2
X

4X2
0

∂2

∂ ln |X|2 ln Zi(µ, Ma(X))

=
F2

X
4X2

0
∑

i=1,2,3

4Ai
(16π2)2 ∑

a,b
VaKab;iVb . (79)

This expression can be simplified into

m2
i =

F2
X

4X2
0

∑
i=1,2,3

4Ai
(16π2)2 g4

i N , (80)

if we neglect the scale dependence of g2
i and higher-order g6

i terms.

Such GMSB expressions can easily be extended to gauge mediation contributions in
deflected AMSB.

• Type III: det m = det λ = 0.

As the matrix λX + m is non-singular, its eigenvalues can be written as x1, · · · , xn,
which should satisfy

∏
i

xi = det(λX + m) = Xn0 G(λ, m) , (81)

and

∑
i

xi = −Tr(λX + m) = cX + d . (82)

In the large X region in which mij can be neglected, we can use linear transformation
to put λij into 

a1
a2
· · ·

arλ

0
. . .


. (83)

There are rλ messengers with mass of order X. As the trace depends linearly on X,
such rλ messengers had to have a linear dependence on X. The remaining messengers
can only be proportional to an inverse power of X or be a constant. From the trace,
which contains only the constant and the linear X term, the term with negative power
of X should appear in pairs or vanish. It is also obvious that terms with negative power
of X have to appear if rλ 6= n0. As the eigenvalues, which contain non-vanishing
negative ni powers, are suppressed by an additional (m/X0)

ni factor, they need to be
the lighter eigenvalues.



Universe 2022, 8, 251 17 of 24

As rλ messengers depend linearly on X, we can approximately use

∂ ln Ma

∂ ln X
≡ Va ≈ (1, 1, · · · , 1︸ ︷︷ ︸

rλ

, 0, 0, · · · ,−ni1 ,−ni1 , · · · ,−nik ,−nik︸ ︷︷ ︸
N−rλ

) , (84)

with

∑
k

2nik = rλ − n0 . (85)

For degenerate eigenvalues,

M̃1 = M̃2 = · · · = M̃n1 ≡ M1 = an1〈X〉 , · · ·
M̃nk−1+1 = M̃nk−1+2 = · · · = M̃nk ≡ Mk = ank 〈X〉,
M̃nk+1 = M̃nk+2 = · · · = M̃nk+1 ≡ Mk+1 = ck, · · ·

M̃nx+1 = M̃nx+2 = · · · = M̃nx+1 ≡ Mx+1 = cx,

M̃nx+1+1 = M̃nx+1+2 = · · · = M̃nx+2 ≡ Mx+2 = bnx+2〈X〉−λx+2 , · · ·
M̃np−1+1 = M̃np−1+2 = · · · = M̃np ≡ Mp = bnp〈X〉−λp , (86)

with ck, · · · , cx, some constants eigenvalues of λ〈X〉+ m are independent of X. As-
suming M1 ≥ M2 ≥ · · · ≥ Mp, the matrix Vi reduces to a 1× p matrix

∂ ln Ma

∂ ln X
≡ Va ≈ (1, · · · , 1︸ ︷︷ ︸

k

, 0, · · · , 0︸ ︷︷ ︸
x−k+1

,−λx+2, · · · ,−λp︸ ︷︷ ︸), (87)

with

k

∑
i=1

ni = rλ ,
p−x

∑
k=2

(nx+k − nx+k−1)λx+k = rλ − n0 . (88)

The partition of N can be obtained numerically by diagonalizing λ〈X〉+ m to obtain
its eigenvalues as functions of 〈X〉.
So, we can obtain the GMSB contributions

Ai =
Aijk

yijk
= ∑

i,j,k

FX
2M

∂ ln Zl(µ, Ma(X))

∂ ln X
=

FX
2M ∑

i,j,k

p

∑
v=1

UbVb ,

m2
i = −

F2
X

4M2
∂2

∂ ln |X|2 ln Zi(µ, Ma(X))

=
F2

X
4M2 ∑

i=1,2,3

4Ai
(16π2)2 ∑

a,b
VaKab;iVb , (89)

with the Va taking the value in Equation (87). Again, the trilinear term will vanish if
we neglect the scale dependence of g2

i and higher-order g6
i terms. m2

i will reduce to

m2
i ∼

F2
X

4M2 ∑
i=1,2,3

4Ai
(16π2)2 g4

i n0 (90)

if the scale dependence of g2
i and higher-order g6

i terms are neglected.
If the first j-th eigenvalues are proportional to X while the remaining N− j eigenvalues
are proportional to m, the summation of the elements in the scalar matrix Kij will be
truncated so that only the upper j× j terms will be taken into account. So, the sfermion
soft masses will in general be lighter than that of Type II. It is phenomenologically
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attractive to have light slepton masses. The well-known muon gµ − 2 discrepancy can
be solved with large contributions from slepton-electroweakino loops [36].

The inclusion of EOGM in deflected AMSB is straightforward. The AMSB type
contributions can be given as

∂

∂ ln µ
ln[Zi(µ, Ma)] = − 1

8π2 G−i [gl(µ), yl(µ)],

∂2

∂(ln µ)2 ln[Zi(µ, Ma)] = − 1
8π2

[
∂gl(µ)

∂ ln µ

∂

∂gl(µ)
+

∂yl(µ)

∂ ln µ

∂

∂yl(µ)

]
G−i [gl(µ), yl(µ)]

= − 2
(16π2)2

[
βgl

∂

∂gl(µ)
+ βyl

∂

∂yl(µ)

]
G−i [gl(µ), yl(µ)], (91)

∂2

∂ ln X∂ ln µ
ln[Zi(µ, Ma)] = − 1

8π2

(
∂ ln Ma

∂ ln X

)(
∂2

∂ ln Ma∂ ln µ
ln[Zi(µ, Ma)]

)
,

∂2

∂ ln Ma∂ ln µ
ln[Zi(µ, Ma)] = − 1

8π2

[
∂gl(µ)

∂ ln Ma

∂

∂gl(µ)
+

∂yl(µ)

∂ ln Ma

∂

∂yl(µ)

]
G−i [gl(µ), yl(µ)]

with

∂λl(µ, Ma)

∂ ln Ma
= ∆β[λl(µ, Ma)] , with λl = gl , yl , (92)

the discontinuity of beta functions across the threshold Ma.
In [15], the ‘effective messenger number’ is defined as

Ne f f ≡
Λ2

G
Λ2

S
, (93)

with

Mi =
g2

i
16π2 ΛG , m2

f̃ = 2
g4

i
(16π2)2 ∑

i
C f̃ (r)Λ

2
S . (94)

So, the approximate value of Ne f f can be given as

Ne f f =
n2

0g4
i

∑
a,b

VaKab;iVb
, (95)

by neglecting the scale dependence of gi and higher-order terms in the expressions of
soft SUSY parameters. With previous approximation, the value of Ne f f in Type II can be
calculated to be Ne f f = N after simplification, while in Type III EOGM, it can be calculated
to be Ne f f = n0. Such a result holds for both Class A and Class B. Taking into account the
scale dependence of gi, Ne f f can be different to n0 and N.

The framework of EOGM extension of AMSB can accommodate deflections both
in the Kahler potential and in the superpotential. So, it can easily solve the notorious
negative square mass problem of sleptons. As the Kahler deflection [29] and superpotential
deflection [22,23] in AMSB can easily accommodate the 125 GeV Higgs and be regarded
as special cases of our EOGM extensions framework, this general case can also possibly
accommodate the 125 GeV Higgs. With our previous setting in [29], it can be seen in
Figure 1 that our EOGM extension of AMSB can easily lead to a realistic spectrum in various
constrained limits. A detailed numerical scan will be studied in our subsequent works.
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Figure 1. The Kahler deflection and superpotential deflections in AMSB, which can be seen as
constrained limits of our EOGM extension of AMSB with multi-scale messengers, can both easily
accommodate the 125 GeV Higgs. The upper pannels, with the same setting as our previous work [29],
show the predicted Higgs mass range.

EOGM extension of deflected AMSB scenarios can easily adopt light sleptons. In addi-
tion, the EOGM extension of deflected AMSB scenarios can alter the gaugino relations into
M1 : M2 : M3 ≈ (33/5− dUn) : 2(1− dUn) : −6(−3− dUn) at the EW scale, with n an
integer satisfying 0 ≤ n ≤ N and dU the deflection parameter. So, with proper choices for
dU and n, light electroweakinos can easily be obtained, given the stringent LHC constraints
on gluino mass.

Light sleptons and eletroweakinos are welcome to explain the recent muon g − 2
anomaly [37] and new CDF II W-boson mass data [38] in the SUSY framework [39]. Such
light smuons and electroweakinos can be tested at the LHC. However, some compressed
regions can still survive the updated constraints. Detailed simulations on the signals and
collider exclusion bounds will be given in our subsequent studies.

Large gaugino ratios, especially between M3 and M1, M2, can be possible in this EOGM
extension of deflected AMSB scenarios. With a large hierarchy, the gluino mass should
be heavy due to the stringent lower mass bounds on chargino masses. Consequently, the
squarks will always be pushed to be heavy by gluino loops. The heavy first two generation
squarks are welcome to evade the LHC constrains. However, heavy stops, which can
be welcome to accommodate the 125 GeV Higgs, may increase the involved electroweak
fine-tuning (EWFT). Fortunately, EOGM extension of deflected AMSB scenarios can always
predict large At term, which can lead to small EWFT even for TeV scale stops [40,41]. So,
EOGM extension of deflected AMSB scenarios are also interesting phenomenologically.

Wino DM is always predicted in such scenarios. For light wino smaller than approxi-
mately 3 TeV, additional DM species are necessarily present to give correct relic abundances.
Relevant phenomenology for such wino DM will be given in our subsequent studies.

4. Messengers on GUT and Landau Pole

We must ensure that no Landau pole will be reached below the GUT scale. It is obvious
that the gauge coupling unification will be preserved because the messengers are fitted into
complete SU(5) representations. The presence of (complete GUT representation) messenger
fields at an intermediate scale does not modify the value of MGUT . However, proton decay
could possibly set constraints on the gauge couplings at the GUT scale.

We can define the quantity

δ = −
p

∑
r=1

nr

2π
ln

MGUT
Mr

, (96)
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which contributes to the inverse gauge coupling strength. The gauge couplings at the GUT
scale are given at one-loop level by

4π

g2
i (GUT)

=
4π

g2
i (MZ)

− bi
2π

ln
(

MGUT
MZ

)
−∑

nr

nr

2π
ln
(

MGUT
Mnr

)
. (97)

The first two terms give the gauge couplings at the GUT scale with α−1(MGUT) = 24.3
with MGUT = 2.0× 1016 GeV and the SUSY scale MSUSY = 2 TeV. So, the perturbativity of
gauge couplings at the GUT scale set a bound on the quantity δ to be

|δ| . 24.3 . (98)

Proton decay experiments will also constrain the value of δ. As the proton decay
induced from the triplet Higgs depends on the scale of the triplets, we just take constraints
from proton decay induced by heavy gauge bosons. The decay channel p → π0e+ has
the lifetime

τ(p→ π0e+) =
4 f 2

π M4
X

πmpα2
GUT(1 + D + F)2α2

N [A
2
R;1 + (1 + |Vud|2)2 A2

R;2]

[
1 + 2

m2
π

m2
p

]
. (99)

With updated experimental bounds from Super-Kamiokande [42,43] τ > 1.67× 1034 years,
we can constrain the inputs

αGUT . (5.27)−1 , (100)

by taking fπ = 131 MeV, chiral Lagrangian factor 1 + D + F = 2.27 with D = 0.80,
F = 0.47 [44], the hadronic matrix element αN = 0.0112 GeV3 (at renormalization scale
µ = 2 GeV) and AR;1 = AR;2 ≈ 5, respectively. This value constrained δ to be

|δ| . 19 . (101)

It is known that a measure of gauge unification by experiments

B ≡
α−1

2 (MZ)− α−1
3 (MZ)

α−1
1 (MZ)− α−1

2 (MZ)
(102)

agrees with the one-loop MSSM prediction B = 5/7 up to 5% accuracy. In our scenario
with multi-scale messengers, the parameter is given by

B =

(b2 − b3) ln
(

MGUT
MZ

)
−∑

nr
nr ln

(
MGUT
Mnr

)
(b1 − b2) ln

(
MGUT

MZ

)
−∑

nr
nr ln

(
MGUT
Mnr

) ,

=

(b2 − b3) ln
(

MGUT
MZ

)
− ln

(
MN

GUT
detM

)
(b1 − b2) ln

(
MN

GUT
MZ

)
− ln

(
MN

GUT
detM

) , (103)

with N = ∑
nr

nr the total species of messenger. So, in order for the deviation of B to not

exceed 5%, the parameters should satisfy

N ln
(

MGUT
N
√

detM

)
. 7/8. (104)
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We should note that AR;1, AR;2, which represent the renormalization effects resulting
from the anomalous dimensions of the operators, will also be amended by presence of
vector-like messengers [45]. They are defined as

AR;1 = AL AS;1 , AR;2 = AL AS;2 , (105)

with AL, AS;i the long and short distance factors, respectively. Here the long-distance
contribution AL is taken to be 1.25. The short distance factors will be changed into

AS;i =

∏
j

αj(MSUSY)

αj(MZ)


γSM

j;i
bSM

j

∏
j

αj(Mmess)

αj(MSUSY)


γMSSM

j;i
bMSSM

j

∏
j

αj(MGUT)

αj(Mmess)


γMSSM

j;i
b′j

,

=

∏
j

αj(MSUSY)

αj(MZ)


γSM

j;i
bSM

j

∏
j

αj(MGUT)

αj(MSUSY)


γMSSM

j;i
bMSSM

j

∏
j

αj(MGUT)

αj(Mmess)


γMSSM

j;i
b′j
−

γMSSM
j;i

bMSSM
j

,

≡ A0
S;i

∏
j

αj(MGUT)

αj(Mmess)


γMSSM

j;i
b′j
−

γMSSM
j;i

bMSSM
j

. (106)

in the case that one vector-like family of messengers at scale Mmess is present. Results with
multiple messenger thresholds can be trivially extended. The relevant coefficients within
the expressions are given [46] as

γSM
j;1 = ( 2, 9/4, 11/20) , γSM

j;2 = ( 2, 9/4, 23/20) ,

γMSSM
j;1 = ( 4/3, 3/2, 11/30) , γSM

j;2 = ( 4/3, 3/2, 23/30) , (107)

with bj the relevant gauge beta functions upon each threshold. The multiple factor for A0
S;i

in the presence of messengers is given approximately by

F1 =

(
∏

j

αj(MGUT)

αj(Mmess)

) γMSSM
j;i

b′j
−

γMSSM
j;i

bMSSM
j

≈
[

1 +
b′j
2π

αj(MGUT) ln
MGUT
Mmess

] γMSSM
j;i

b′j
−

γMSSM
j;i

bMSSM
j

,

≈ 1−
γMSSM

j;i

2π

∆bm
j

bMSSM
j

αj(MGUT) ln
MGUT
Mmess

, (108)

in which we define ∆bm
j = b′j − bMSSM

j = n1. This multiple factor can be easily extended to
include multiple messengers. For example, with additional messenger thresholds at M2,
the new multiple factor is given by

F2 ≈ 1−
γMSSM

j;i

2π

n2

bMSSM
j + n1

αj(MGUT) ln
MGUT

M2
, (109)

with the total multiple factor

F = ∏
k

Fk ≈ 1−
γMSSM

j;i

2π
αj(MGUT)

p

∑
k=1

nk

bMSSM
j +

k−1
∑

l=1
nl

ln
MGUT

Mk
. (110)
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As the coefficients AR;1, AR;2 depend on the messenger scales, the proton decay constraints
will feed back into the constraints on δ. Detailed discussions on constraints for δ will be
given in our subsequent studies.

5. Conclusions

The EOGM extension of deflected AMSB scenarios can accommodate the deflected
AMSB scenarios with the presence of both Kahler and superpotential deflections. We re-
visit the EOGM scenario and derive the analytical expressions for soft SUSY breaking
parameters with wavefunction renormalization approach in EOGM extension of deflected
AMSB scenarios. As EOGM extension scenarios always introduce additional messenger
species, we therefore also consider the Landau pole and proton decay constraints on the
messenger sector.

Minimal AMSB is always bothered by the tachyonic slepton problem. As deflections
by the messengers can introduce additional positive contributions to the slepton squared
masses, the slepton squared masses can be tuned to be positive small numbers. Conse-
quently, EOGM extension of deflected AMSB scenarios can easily predict light sleptons. In
addition, the EOGM extension of deflected AMSB scenarios can alter the gaugino relations
at the EW scale. The gluino masses are constrained by LHC to be heavier than 2.2 TeV. So,
the gaugino ratios M1:M2:M3 ≈ 1:2:6 in ordinary GMSB and mSUGRA always constrain the
electroweakino masses to be light. However, recent muon g− 2 anomaly [37] and new CDF
II W-boson mass data [38] always prefer light electroweakinos [39]. So, spoiled gaugino rela-
tions are always welcome. In EOGM extension of deflected AMSB scenarios, the gaugino ra-
tios change approximately into M1 : M2 : M3 ≈ (33/5− dUn) : 2(1− dUn) : −6(−3− dUn)
at the EW scale, with n an integer satisfying 0 ≤ n ≤ N and dU the deflection parameter.
So, with proper choices for dU and n, light electrweakinos can be obtained, given the
LHC constraints on gluino mass. With light sleptons and eletroweakinos (especially light
wino), the muon g − 2 anomaly and new CDF II W-boson mass data can be explained
in the SUSY framework. Such light smuons and electroweakinos will be tested at the
LHC and set new constraints on the EOGM extension AMSB type models, although some
compressed regions can still survive. Wino DM is always predicted in such scenarios. For
light wino, additional DM species are necessary to give correct relic abundances. Relevant
phenomenology for such EOGM extension of deflected AMSB scenarios will be discussed
in our subsequent studies.
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Appendix A. Coefficients in the Wavefunction of MSSM Superfields

From the anomalous dimension

d
dt

ln Z f = ∑
l=g3,g2,g1

2Ãl
d ln gl

dt
+ ∑

l=yt ,yb ,yτ

2Bl
d ln yl

dt
,

in the basis of (y2
t , y2

b, y2
τ , g2

3, g2
2, g2

1), the coefficients Ãl , Bl can be solved. Expressions of the
coefficients had already been obtained in our previous paper [34]. The coefficients Ai are
listed in Table A1.



Universe 2022, 8, 251 23 of 24

Table A1. The gauge field coefficients Ai(i = 1, 2, 3) within the wavefunction for MSSM superfields.

A3(g3) A2(g2) A1(g1)

Q3
128
61

87
61 − 11

61

U3
144
61 − 108

61
144
305

D3
112
61 − 84

61
112
305

L3
80
61

123
61 − 103

305

E3
160
61 − 120

61
61
32

Hu − 272
61

21
61 − 89

305

Hd − 240
61 − 3

61 − 57
305

Q2
16
3 3 1

15

U2
16
3 0 16

15

D2
16
3 0 4

15

L2 0 3 3
5

E2 0 0 12
5
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