MASTER Real-Time Multi-Message Observations of High Energy Phenomena
Abstract
:1. Introduction
- (1)
- The discovery of significant and variable linear polarization during the prompt optical flash of GRB 160625B [27].
- (2)
- The discovery of gamma-ray bursts (GRB) Smooth Optical Self-similar Emission— the new type of calibration for GRB, in which some of their class can be marked and share a common behavior. We named this behavior SOS-similar Emission and identify these subclasses of GRBs with optical light curves described by a universal scaling function [28].
- (3)
- (4)
- (5)
- The detection of a strong evidence for high energy neutrino progenitor of the neutrino event IceCube-170922A [25].
- (6)
- The discovery of GRB 161017A optical counterpart by MASTER and prompt follow-up multi-wavelength observations of this GRB by Lomonosov space observatory of MSU and MASTER Global Robotic Net [8].
- (7)
- The discovery of several dozens of optical counterparts of gamma-ray bursts, including the nearest GRB 180728A, the brightest GRB 190530A, and investigation of several thousands of GRB error-fields, detected by Fermi, Swift, Konus-Wind, Lomonosov, MAXI, Integral, HETE [5,6,7,8,27,28,29,30,31,32,33,34].
- (8)
- (9)
- The discovery, photometry, hydrodynamics, and evolution scenario of luminous red nova MASTER OT J004207.99+405501.1/M31LRN2015 [37].
- (10)
- The discovery of an unusual bright eclipsing binary with the longest known period: MASTER OT J095310.04+335352.8/TYC 2505-672-1 [38].
- (11)
2. FRB Observation
2.1. Methods
2.2. MASTER Instruments for Observations
2.3. FRB 180916.J0158+65 and SGR/FRB 200428.J1935+2154 Different Observation Modes
3. Statistical Substantiation of the Search for Weak Signal by Coincidence Methods for Double Telescopes
- (1)
- Extended object with = k (creates a background in a large area, in every pixel). This case can be considered simply by considering the above formula with modified ; for estimation, we can take a new value according to the normal distribution (for example, for 0.15; , and the number of matches is of the order . The final form of the dependence should be parabolic, but with a greater slope than the empty space. The curve at k ≈ 0.15 is marked on the graph in purple. This k was specially selected for comparison with the resulting curve for the FRB site.
- (2)
- Point object with = k and localization of the order of a couple of arcseconds (the center of the object can shift by distances of the order of the pixel size), similar to that described above, but the derivative undergoes a kink as soon as the coincidence radius is greater than the inaccuracy of determining the center of the object. Then there will be a parabolic growth as from an “empty” place.
4. FRB 180916.J0158+65 MONITORING
5. Results
5.1. The Detection of a Photon Excess on Two Telescopes Simultaneously near FRB 180916.J0158+65 Position
5.2. Prompt Optical Observation of FRB 180916.J0158+65
5.3. Prompt Optical Observation of Soft Gamma Repeater SGR/FRB 200428.J1935+2154
6. Discussion
7. MASTER Gravitational Wave LIGO/Virgo Phenomena Investigations
8. MASTER Investigations of IceCube, ANTARES High Energy Neutrino Phenomena
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S.; Law, C.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. A direct localization of a fast radio burst & its host. Nature 2017, 541, 58–61. [Google Scholar] [PubMed] [Green Version]
- CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 2019, 566, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The CHIME/FRB Collaboration. CHIME/FRB Detection of Eight New Repeating Fast Radio Burst Sources. Astrophys. J. Lett. 2019, 885, L24. [Google Scholar] [CrossRef]
- The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Lipunov, V.; Kornilov, V.; Gorbovskoy, E.; Shatskij, N.; Kuvshinov, D.; Tyurina, N.; Belinski, A.; Krylov, A.; Balanutsa, P.; Chazov, V.; et al. MASTER Robotic Net. Advan. Astron. 2010, 2010, 349171. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Vladimirov, V.V.; Gorbovskoi, E.S.; Kuznetsov, A.S.; Zimnukhov, D.S.; Balanutsa, P.V.; Kornilov, V.G.; Tyurina, N.V.; Gress, O.A.; Vlasenko, D.M.; et al. The Concept of a Multi-Functional Astronomy Complex & Dynamically Integrated Database Applied to Multi-Channel Observations with the MASTER Global Network. Astron. Rep. 2019, 63, 293–309. [Google Scholar]
- Kornilov, V.G.; Lipunov, V.M.; Gorbovskoy, E.S.; Belinski, A.; Kuvshinov, D.A.; Tyurina, N.V.; Shatsky, N.I.; Sankovich, A.V.; Krylov, A.V.; Balanutsa, P.V.; et al. Robotic optical telescopes global network MASTER II. Equipment, structure, algorithms. Exp. Astron. 2012, 33, 173–196. [Google Scholar] [CrossRef]
- Sadovnichy, V.A.; Panasyuk, M.I.; Svertilov, S.I.; Lipunov, V.M.; Bogomolov, V.V.; Gorbovskoy, E.S.; Castro-Tirado, A.J.; Gabovich, A.; Hu, Y.; Iyudin, A.F.; et al. Prompt & Follow-up Multi-wavelength Observations of the GRB 161017A. Astrophys. J. 2018, 861, 48. [Google Scholar]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 & a fast radio burst with Insight-HXMT. Nat. Astron. 2021, 5, 378–384. [Google Scholar]
- Li, C.; Cai, C.; Zhang, S.-N.; Xiong, S.-L.; Li, X.-B.; Ge, M.-Y.; Jia, S.-M.; Nie, J.-Y.; Zhao, H.-S.; Liu, C.-Z.; et al. Updated catalog of X-ray bursts of SGR J1935+2154 from Insight-HXMT observations. GCN Circ. 2020, 28027, 1. [Google Scholar]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.-L.; et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. Lett. 2020, 898, L29. [Google Scholar] [CrossRef]
- Tavani, M.; Casentini, C.; Ursi, A.; Verrecchia, F.; Addis, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Baroncelli, L.; Bernardi, G.; et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nat. Astron. 2021, 5, 401–407. [Google Scholar] [CrossRef]
- Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M.; et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 2021, 5, 372–377. [Google Scholar] [CrossRef]
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-ray Bursts of Cosmic Origin. Astropys. J. 1973, 182, L85–L89. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golenetsky, S.V.; Ilinskiy, V.N. Burst of cosmic gamma-emission from observations on Cosmos 461. PZETF 1974, 19, 126–128. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914. Astrophys. J. Lett. 2016, 826, L13. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar]
- Lipunov, V.M. Astrophysical meaning of the discovery of gravitational waves. Phys.-Uspekhi 2016, 59, 918. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Kornilov, V.; Gorbovskoy, E.; Buckley, D.A.H.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Greiner, J.; Vladimirov, V.; Vlasenko, D.; et al. First gravitational-wave burst GW150914: MASTER optical follow-up observations. Mon. Not. R. Astron. Soc. 2017, 465, 3656–3667. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A. The first gravitational-wave burst GW150914, as predicted by the scenario machine. New Astron. 2017, 51, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Gorbovskoy, E.; Kornilov, V.G.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Kuvshinov, D.; Gorbunov, I.; Buckley, D.A.H.; et al. MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817. Astrophys. J. Lett. 2017, 850, L1. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Postnov, K.A.; Prokhorov, M.E. First LIGO events: Binary black holes merging. New Astron. 1997, 2, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Postnov, K.A.; Prokhorov, M.E. Formation and coalescence of relativistic binary stars: The effect of kick velocity. Mon. Not. R. Astron. Soc. 1997, 288, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Postnov, K.A.; Prokhorov, M.E. Black holes and gravitational waves: Possibilities for simultaneous detection using first-generation laser interferometers. Astron. Lett. 1997, 23, 492–497. [Google Scholar]
- Lipunov, V.M.; Kornilov, V.G.; Zhirkov, K.; Gorbovskoy, E.; Budnev, N.M.; Buckley, D.A.H.; Rebolo, R.; Serra-Ricart, M.; Podesta, R.; Tyurina, N.; et al. Optical Observations Reveal Strong Evidence for High-energy Neutrino Progenitor. Astrophys. J. Lett. 2020, 896, L19. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85. [Google Scholar]
- Troja, E.; Lipunov, V.M.; Mundell, C.G.; Butler, N.R.; Watson, A.M.; Kobayashi, S.; Cenko, S.B.; Marshall, F.E.; Ricci, R.; Fruchter, A.; et al. Significant & variable linear polarization during the prompt optical flash of GRB 160625B. Nature 2017, 547, 425–427. [Google Scholar]
- Lipunov, V.; Simakov, S.; Gorbovskoy, E.; Vlasenko, D. Smooth Optical Self-similar Emission of Gamma-ray Bursts. Astrophys. J. 2017, 845, 52. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Balanutsa, P.; Chazov, V.; Gress, O.; Kuvshinov, D.; Vladimirov, V.; et al. MASTER Global Robotic Net: New sites and new results. Rev. Mex. AC 2016, 48, 42L. [Google Scholar]
- Lipunov, V.M.; Gorosabel, J.; Pruzhinskaya, M.V.; Postigo, A.d.; Pelassa, V.; Tsvetkova, A.E.; Sokolov, I.V.; Kann, D.A.; Xu, D.; Gorbovskoy, E.S.; et al. The optical identification of events with poorly defined locations: The case of the Fermi GBM GRB 140801A. Mon. Not. Roy. Astron. Soc. 2016, 45, 712. [Google Scholar] [CrossRef] [Green Version]
- Jordana-Mitjans, N.; Mundell, C.G.; Kobayashi, S.; Smith, R.J.; Guidorzi, C.; Steele, I.A.; Shrestha, M.; Gomboc, A.; Marongiu, M.; Martone, R.; et al. Lowly Polarized Light from a Highly Magnetized Jet of GRB 190114C. Astrophys. J. 2020, 892, 97. [Google Scholar] [CrossRef] [Green Version]
- Gorbovskoy, E.S.; Lipunov, V.M.; Buckley, D.A.H.; Kornilov, V.G.; Balanutsa, P.V.; Tyurina, N.V.; Kuznetsov, A.S.; Kuvshinov, D.A.; Gorbunov, I.A.; Vlasenko, D.; et al. Early polarization observations of the optical emission of gamma-ray bursts: GRB 150301B and GRB 150413A. Mon. Not. R. Astron. Soc. 2016, 455, 3312–3318. [Google Scholar] [CrossRef] [Green Version]
- Laskar, T.; van Eerten, H.; Schady, P.; Mundell, C.G.; Alexander, K.D.; Duran, R.B.; Berger, E.; Bolmer, J.; Chornock, R.; Coppejans, D.L.; et al. A Reverse Shock in GRB 181201A. Astrophys. J. 2019, 884, 121. [Google Scholar] [CrossRef] [Green Version]
- Ershova, O.; Lipunov, V.M.; Gorbovskoy, E.S.; Tyurina, N.V.; Kornilov, V.G.; Zimnukhov, D.S.; Gabovich, A.; Gress, O.A.; Budnev, N.M.; Yurkov, V.V.; et al. Early Optical Observations of Gamma-ray Bursts Compared with Their Gamma- & X-ray Characteristics Using a MASTER Global Network of Robotic Telescopes from Lomonosov Moscow State University. Astron. Rep. 2020, 64, 126–158. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astron. Astrophys. 2017, 607, A115. [Google Scholar]
- Gress, O.A.; Lipunov, V.M.; Dornic, D.; Gorbovskoy, E.; Kornilov, V.G.; Tyurina, N.V.; Balanutsa, P.V.; Kuznetsov, A.S.; Vladimirov, V.V.; Kuvshinov, D.A. MASTER Investigation of ANTARES and IceCube Alerts. Rev. Mex. Astron. Astrofísica Ser. Conf. 2019, 51, 89–95. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; et al. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: Discovery, light curve, hydrodynamics and evolution. Mon. Not. R. Astron. Soc. 2017, 470, 2339. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.; Gorbovskoy, E.; Afanasiev, V.; Tatarnikova, A.; Denisenko, D.; Makarov, D.; Tiurina, N.; Krushinsky, V.; Vinokurov, A.; Balanutsa, P.; et al. Discovery of an unusual bright eclipsing binary with the longest known period: TYC 2505-672-1/MASTER OT J095310.04+335352.8. Astron. Astrophys. 2016, 588, A90. [Google Scholar] [CrossRef] [Green Version]
- Zimnukhov, D.S.; Lipunov, V.M.; Gorbovskoy, E.S.; Kornilov, V.G.; Tyurina, N.V.; Chazov, V.V.; Gabovich, A.V.; Balanutsa, P.V.; Vladimirov, V.V.; Gress, O.A.; et al. The MASTER Global Robotic Telescope Network: Observations of Asteroid NEA 2015 TB145. Astron. Rep. 2019, 63, 1056–1068. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Gorbovskoy, E.S.; Kornilov, V.G.; Chazov, V.V.; Panasyuk, M.I.; Svertilov, S.I.; Yashin, I.V.; Petrov, V.L.; Kallegaev, V.V.; Amelushkin, A.A.; et al. Observations of Near-Earth Optical Transients with the Lomonosov Space Observatory. Astron. Rep. 2017, 62, 426. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Gorbovskoy, E.S.; Kornilov, V.G.; Panasyuk, M.I.; Amelushkin, A.M.; Petrov, V.L.; Yashin, I.V.; Svertilov, S.I.; Vedenkin, N.N. SHOK—The First Russian Wide-Field Optical Camera in Space. Space Sci. Rev. 2018, 214, 6. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys. Rev. 2019, 27, 4–79. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Panchenko, E. Pulsars revived by gravitational waves. Astron. Astrophys. 1996, 312, 937–940. [Google Scholar]
- Lipunov, V.M.; Pruzhinskaya, M.V. Scenario Machine: Fast radio bursts, short gamma-ray burst, dark energy & Laser Interferometer Gravitational-wave Observatory silence. Mon. Not. R. Astron. Soc. 2014, 440, 1193–1199. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Popov, S.B.; Postnov, K.A. Millisecond extragalactic radio bursts as magnetar flares. arXiv 2013, arXiv:1307.4924. [Google Scholar]
- Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 2014, 442, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. A Flaring Magnetar in FRB 121102. Astrophys. J. Lett. 2017, 843, L26. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Margalit, B.; Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 2019, 485, 4091–4106. [Google Scholar] [CrossRef] [Green Version]
- Andreoni, I.; Lu, W.B.; Smith, R.M.; Masci, F.J.; Bellm, E.C.; Graham, M.J.; Kaplan, D.L.; Kasliwal, M.M.; Kaye, S.; Kupfer, T.; et al. Zwicky Transient Facility constraints on the optical emission from the nearby repeating FRB 180916.J0158+65. Astrophys. J. Lett. 2020, 896, L2. [Google Scholar] [CrossRef]
- Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Tendulkar, S.P.; Bassa, C.G.; Paragi, Z.; Keimpema, A.; Bhardwaj, M.; Karuppusamy, R.; Kaspi, V.M.; et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 2020, 577, 190. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F.; Cubranic, D.; et al. Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar]
- Lien, A.Y.; Barthelmy, S.D.; Baumgartner, W.H.; Cummings, J.R.; Gehrels, N.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Sakamoto, T.; Stamatikos, M.; et al. GRB 140705A: Swift-BAT refined analysis of a possible newly discovered SGR 1935+2154. GCN Circ. 2014, 16522, 1. [Google Scholar]
- Sun, X.H.; Reich, M.; Han, J.L.; Wielebinski, R.; Wang, W.; Müller, P. A Sino-German λ6 cm polarization survey of the Galactic plane. Astron. Astrophys. 2020, 536, A83. [Google Scholar] [CrossRef] [Green Version]
- Kozlova, A.V.; Israel, G.L.; Svinkin, D.S.; Frederiks, D.D.; Pal’shin, V.D.; Tsvetkova, A.E.; Hurley, K.; Goldsten, J.; Golovin, D.V.; Mitrofanov, I.G.; et al. The first observation of an intermediate flare from SGR 1935+2154. Mon. Not. R. Astron. Soc. 2016, 460, 2008–2014. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Zhou, X.; Chen, Y.; Wang, J.-S.; Vink, J.; Wang, Y. Revisiting the distance, environment and supernova properties of SNR G57.2+0.8 that hosts SGR 1935+2154. Astrophys. J. 2020, 905, 99. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Dai, Z.G.; Zhang, H.M.; Deng, C.M. On the Distance of SGR 1935+2154 Associated with FRB 200428 and Hosted in SNR G57.2+0.8. Astrophys. J. 2020, 898, L5. [Google Scholar] [CrossRef]
- Lin, L.; Göğüş, E.; Roberts, O.J.; Kouveliotou, C.; Kaneko, Y.; van der Horst, A.J.; Younes, G. Burst Properties of the Most Recurring Transient Magnetar SGR J1935+2154. Astrophys. J. 2020, 893, 156. [Google Scholar] [CrossRef]
- Israel, G.L.; Esposito, P.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Campana, S.; Mereghetti, S.; Rodriguez Castillo, G.A.; Götz, D.; Burgay, M.; et al. The discovery, monitoring and environment of SGR J1935+2154. Mon. Not. R. Astron. Soc. 2016, 457, 3448–3456. [Google Scholar] [CrossRef] [Green Version]
- Barthelmy, S.; Bernardini, M.G.; D’Avanzo, P.; Gropp, J.D.; Kennea, J.A.; Lien, A.Y.; Melandri, A.; Palmer, D.M.; Sbarrato, T.; Siegel, M.H. Swift detection of multiple bursts from SGR 1935+2154. GCN Circ. 2020, 27657, 1. [Google Scholar]
- Palmer, D.M. A Forest of Bursts from SGR 1935+2154. GCN Circ. 2020, 27665, 1. [Google Scholar]
- Younes, G.; Guver, T.; Enoto, T.; Arzoumanian, A.; Gendreau, K.; Hu, C.P.; Ray, P.S.; Kouveliotou, C.; Guillot, S.; Ho, W.C.G.; et al. Burst forest from SGR 1935+2154 as detected with NICER. Astron. Telegr. 2020, 13678, 1. [Google Scholar]
- Gorbovskoy, E.S.; Lipunov, V.M.; Kornilov, V.G.; Belinski, A.A.; Kuvshinov, D.A.; Tyurina, N.V.; Sankovich, A.V.; Krylov, A.V.; Shatskiy, N.I.; Balanutsa, P.V.; et al. The MASTER-II network of robotic optical telescopes: First results. Astron. Rep. 2013, 57, 233. [Google Scholar] [CrossRef] [Green Version]
- Tyurina, N.; Lipunov, V.; Kornilov, V.; Gorbovskoy, E.; Shatskij, N.; Kuvshinov, D.; Balanutsa, P.; Belinski, A.; Krushinsky, V.; Zalozhnyh, I.; et al. MASTER Prompt and Follow-Up GRB Observations. Adv. Astron. 2010, 2010, 763629. [Google Scholar] [CrossRef]
- Lipunov, V.; Balakin, F.; Gorbovskoy, E.; Kornilov, V.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Balakin, F.; Vladimirov, V.; Vlasenko, D.; et al. FRB 190806: MASTER optical observation. GCN Circ. 2019, 25314, 1. [Google Scholar]
- Lipunov, V.; Tiurina, N.; Gorbovskoy, E.; Kornilov, V.; Kuznetsov, A.; Chazov, V.; Gorbunov, I.; Zimnukhov, D.; Kuvshinov, D.; Balanutsa, P.; et al. FRB 180725A: MASTER optical observations of the Fast Radio Burst error box. GCN Circ. 2018, 23070, 1. [Google Scholar]
- Lipunov, V.; Gorbovskoy, E.; Rebolo, R.; Serra-Ricart, M.; Balanutsa, P.; Tiurina, N.; Kornilov, V.; Vlasenko, D.; Gress, O.; Budnev, N.; et al. MASTER Net: FRB 180725A observations. Astron. Telegr. 2018, 11902, 1. [Google Scholar]
- Balanutsa, P.; Lipunov, V. MASTER follow up inspection of the FRB 180714 error box. Astron. Telegr. 2018, 11880, 1. [Google Scholar]
- Balakin, F.; Lipunov, V.; Gorbovskoy, E.; Kornilov, V.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Balakin, F.; Vladimirov, V.; Vlasenko, D.; et al. MASTER follow-up of FRB 190806. Astron. Telegr 2019, 13017, 1. [Google Scholar]
- Lipunov, V.; Minkina, E.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Zhirkov, K.; Gress, O.; Balanutsa, P.; Gorbunov, I.; Kuznetsov, A.; et al. MASTER optical observations of UTMOST FRB 200607. Astron. Telegr. 2020, 13793, 1. [Google Scholar]
- Balakin, F.; Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Vlasenko, D.; Vladimirov, V.; Zimnukhov, D.; Kuznetsov, A.; Balanutsa, P.; et al. FRB190322: MASTER optical observations. Astron. Telegr. 2019, 12612, 1. [Google Scholar]
- Gorbovskoy, E.; Balakin, F.; Lipunov, V.; Kornilov, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Vladimirov, V.; Zimnukhov, D.; et al. MASTER PSN Discovery During FRB181228 Error Line Inspection. Astron. Telegr. 2018, 12338, 1. [Google Scholar]
- Gorbovskoy, E.; Lipunov, V.; Tiurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Balakin, F.; Podesta, R.; Lopez, C.; et al. FRB 181228: Global MASTER Net optical inspection. GCN Circ. 2018, 23587, 1. [Google Scholar]
- Lipunov, V.; Gorbovskoy, E.; Tiurina, N.; Kornilov, V.; Kuznetsov, A.; Chazov, V.; Gorbunov, I.; Zimnukhov, D.; Kuvshinov, D.; Balanutsa, P.; et al. FRB 181016: MASTER optical inspection of the Fast Radio Burst error box. GCN Circ. 2018, 23348, 1. [Google Scholar]
- Tiurina, N.; Lipunov, V.; Gorbovskoy, E.; Kornilov, V.; Kuznetsov, A.; Chazov, V.; Gorbunov, I.; Zimnukhov, D.; Kuvshinov, D.; Balanutsa, P.; et al. FRB 180714: MASTER optical inspection of the Fast Radio Burst Transient. GCN Circ. 2018, 23010, 1. [Google Scholar]
- Aggarwal, K.; Law, C.J.; Burke-Spolaor, S.; Bower, G.; Butler, B.J.; Demorest, P.; Linford, J.; Lazio, T.J.W. VLA/realfast detection of burst from FRB180916.J0158+65. Astron. Telegr. 2020, 13664, 1. [Google Scholar]
- Barthelmy, S.D. Observing strategies using GCN. AIP Conf. Proc. 1998, 428, 129. [Google Scholar]
- Barthelmy, S.D.; Cline, T.L.; Butterworth, P. The GRB coordinates network (GCN): A status report. AIP Conf. Proc. 1998, 428, 99. [Google Scholar] [CrossRef]
- Bogovalov, S. Perseus in Sicily: From Black Hole to Cluster Outskirts. In Proceedings of the International Astronomical Union, Noto, Italy, 14–18 May 2018; Volume 342, p. 205. [Google Scholar]
- Howell, S.B. Handbook of CCD Astronomy, 2nd ed.; Cambridge Observing Handbooks for Research Astronomers, 5; Cambridge University Press: Cambridge, UK, 2006; ISBN 0521852153. [Google Scholar]
- Scholz, P.; Cook, A.; Cruces, M.; Hessels, J.W.T.; Kaspi, V.M.; Majid, W.A.; Naidu, A.; Pearlman, A.B.; Spitler, L.G.; Bandura, K.M.; et al. Simultaneous X-ray & Radio Observations of the Repeating Fast Radio Burst FRB 180916.J0158+65. Astrophys. J. 2020, 901, 165. [Google Scholar]
- Scholz, P.; Bogdanov, S.; Hessels, J.W.T.; Lynch, R.S.; Spitler, L.G.; Bassa, C.G.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.J.; Chatterjee, S.; et al. Simultaneous X-ray, Gamma-ray, & Radio Observations of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. 2017, 846, 80–90. [Google Scholar]
- Schlegel, D.J.; Finkbeiner, D.P.; Davis, M. Maps of Dust Infrared Emission for Use in Estimation of Reddening & Cosmic Microwave Background Radiation Foregrounds. Astrophys. J. 1998, 500, 525. [Google Scholar]
- Ade, P.A.R.; Planck Collaboration. Planck 2015 results. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Beloborodov, A. Blast Waves from Magnetar Flares & Fast Radio Bursts. Astrophys. J. 2020, 896, 142. [Google Scholar]
- Lipunov, V.; Zhirkov, K.; Kornilov, V.; Gorbovskoy, E.; Gress, O.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Balakin, F.; Vladimirov, V.; et al. SGR 1935+2154: MASTER optical observations. GCN Circ. 2020, 27670, 1. [Google Scholar]
- Lipunov, V.; Gorbovskoy, E.; Kornilov, V.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Balakin, F.; Vladimirov, V.; Vlasenko, D.; Gorbunov, I.; et al. Integral GRB200428.61: Global MASTER-Net observations report. GCN Circ. 2020, 27666, 1. [Google Scholar]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef]
- Zhang, C.F.; Jiang, J.C.; Men, Y.P.; Wang, B.J.; Xu, H.; Xu, J.W.; Niu, C.H.; Zhou, D.J.; Guan, X.; Han, J.L.; et al. A highly polarised radio burst detected from SGR 1935+2154 by FAST. Astron. Telegr. 2020, 13699, 1. [Google Scholar]
- Younes, G.; Kouveliotou, C.; Jaodand, A.; Baring, M.G.; van der Horst, A.J.; Harding, A.K.; Hessels, J.W.T.; Gehrels, N.; Gill, R.; Huppenkothen, D.; et al. X-ray and Radio Observations of the Magnetar SGR J1935+2154 during its 2014, 2015, and 2016 Outbursts. Astrophys. J. 2017, 847, 85. [Google Scholar] [CrossRef]
- De, K.; Ashley, M.C.B.; Andreoni, I.; Kasliwal, M.M.; Soria, R.; Srinivasaragavan, G.P.; Cai, C.; Delacroix, A.; Greffe, T.; Hale, D.; et al. Constraining the X-ray-Infrared Spectral Index of Second-timescale Flares from SGR 1935+2154 with Palomar Gattini-IR. Astrophys. J. Lett. 2020, 901, L7. [Google Scholar] [CrossRef]
- Chen, G.; Ravi, V.; Lu, W. The multiwavelength counterparts of fast radio bursts. Astrophys. J. 2020, 897, 146. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Fast radio bursts from reconnection in magnetar magnetosphere. Astrophys.J. 2020, 897, 1. [Google Scholar] [CrossRef]
- Cordes, J.M.; Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 2016, 457, 232. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lu, W.; Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 2017, 468, 2726. [Google Scholar] [CrossRef] [Green Version]
- Stefanescu, A.; Kanbach, G.; Słowikowska, A.; Greiner, J.; McBreen, S.; Sala, G. Very fast optical flaring from a possible new Galactic magnetar. Nature 2008, 455, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, V.; Marsh, V.S.; Littlefair, S.P.; Copperwheat, C.M.; Hickman, R.D.G.; Kerry, P.; Levan, A.J.; Rea, N.; Savoury, C.D.J.; Tanvir, N.R.; et al. The first observation of optical pulsations from a soft gamma repeater: SGR 0501+4516. Mon. Not. R. Astron. Soc. 2011, 416, 1. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L.K.; Dhillon, V.S.; Spitler, L.G.; Littlefair, S.P.; Ashley, R.P.; De Cia, A.; Green, M.J.; Jaroenjittichai, P.J.; Keane, E.F.; Kerry, P.; et al. A search for optical bursts from the repeating fast radio burst FRB 121102. Mon. Not. R. Astron. Soc. 2017, 472, 2800–2807. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, C.F.; Wang, P.; Gao, H.; Guan, X.; Han, J.L.; Jiang, J.C.; Jiang, P.; Lee, K.J.; Li, D.; et al. No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature 2020, 587, 3–65. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; de Almeida, U.B.; et al. Constraining very-high-energy & optical emission from FRB 121102 with the MAGIC telescopes. Mon. Not. R. Astron. Soc. 2018, 481, 2479–2486. [Google Scholar]
- Pilia, M.; Burgay, M.; Possenti, A.; Ridolfi, A.; Gajjar, V.; Corongiu, A.; Perrodin, D.; Bernardi, G.; Naldi, G.; Pupillo, G.; et al. The Lowest-frequency Fast Radio Bursts: Sardinia Radion Telescope Detection of the Periodic FRB 180916 at 328 MHz. Astrophys. J. Lett. 2020, 896, L40. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Burchett, J.N.; Jones, D.O.; Margalit, B.; McMillan, R.; Fong, W.F.; Heintz, K.E.; Tejos, N.; Escorial, A.R. Deep Optical Observations Contemporaneous with Emission from the Periodic FRB 180916.J0158+65. Astrophys. J. 2021, 907, 1. [Google Scholar] [CrossRef]
- Tendulkar, S.; de Paz, A.G.; Kirichenko, A.Y.; Hessels, J.W.T.; Bhardwaj, M.; Ávila, F.; Bassa, C.; Chawla, P.; Fonseca, E.; Kaspi, V.M.; et al. The 60-pc Environment of FRB 20180916B. Astrophys. J. 2020, 908, L12. [Google Scholar] [CrossRef]
- Giacomazzo, B.; Perna, R. Formation of Stable Magnetars from Binary Neutron Star Mergers. Astrophys. J. 2013, 771, L26. [Google Scholar] [CrossRef] [Green Version]
- Piro, L.; Kollmeier, J. Ultrahigh-energy Cosmic Rays from the “En Caul” Birth of Magnetars. Astrophys.J. 2016, 826, 97. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Kumar, P. Population Modeling of Fast Radio Bursts from Source Properties. Astrophys. J. 2020, 899, 124. [Google Scholar] [CrossRef]
- Vieyro, F.; Romero, G.E.; Bosch-Ramon, V.; Marcote, B.; del Valle, M.V. A model for the repeating FRB 121102 in the AGN scenario. Astron. Astrophys. 2020, 602, A64. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.J.; Li, B.; Huang, Y.F. Repeating fast radio bursts from collapses of the crust of a strange star. Innovation 2021, 2, 100152. [Google Scholar] [CrossRef]
- Bhandari, S.; Sadler, E.M.; Xavier Prochaska, J.; Simha, S.; Ryder, S.D.; Marnoch, L.; Bannister, K.W.; Macquart, J.-P.; Flynn, C.; Marnoch, L.; et al. The host galaxies and progenitors of Fast Radio Bursts localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. Lett. 2020, 895, L37. [Google Scholar] [CrossRef]
- Voevodin, V.V.; Antonov, A.S.; Nikitenko, D.A.; Shvets, P.A.; Sobolev, S.I.; Sidorov, I.Y.; Stefanov, K.S.; Voevodin, V.V.; Zhumatiy, S.A. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 2019, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipunov, V.M.; Kornilov, V.G.; Zhirkov, K.; Kuznetsov, A.; Gorbovskoy, E.; Budnev, N.M.; Buckley, D.A.H.; Lopez, R.R.; Serra-Ricart, M.; Francile, C.; et al. MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe 2022, 8, 271. https://doi.org/10.3390/universe8050271
Lipunov VM, Kornilov VG, Zhirkov K, Kuznetsov A, Gorbovskoy E, Budnev NM, Buckley DAH, Lopez RR, Serra-Ricart M, Francile C, et al. MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe. 2022; 8(5):271. https://doi.org/10.3390/universe8050271
Chicago/Turabian StyleLipunov, Vladimir M., Viktor G. Kornilov, Kirill Zhirkov, Artem Kuznetsov, Evgenii Gorbovskoy, Nikolai M. Budnev, David A. H. Buckley, Rafael Rebolo Lopez, Miquel Serra-Ricart, Carlos Francile, and et al. 2022. "MASTER Real-Time Multi-Message Observations of High Energy Phenomena" Universe 8, no. 5: 271. https://doi.org/10.3390/universe8050271
APA StyleLipunov, V. M., Kornilov, V. G., Zhirkov, K., Kuznetsov, A., Gorbovskoy, E., Budnev, N. M., Buckley, D. A. H., Lopez, R. R., Serra-Ricart, M., Francile, C., Tyurina, N., Gress, O., Balanutsa, P., Antipov, G., Vlasenko, D., Topolev, V., Chasovnikov, A., Svertilov, S. I., Podesta, R., ... Kuvshinov, D. (2022). MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe, 8(5), 271. https://doi.org/10.3390/universe8050271