Polymer Dynamics of Isotropic Universe in Ashtekar and in Volume Variables
Abstract
:1. Introduction
2. Polymer Quantum Mechanics
3. Polymer Semiclassical Dynamics of the FLRW Universe
3.1. Dynamics in the Two Representations
3.2. Phenomenology with Particle Creation
4. Polymer Quantum Dynamics of the FLRW Universe
4.1. Quantum Analysis in the Ashtekar Variables
4.2. Quantum Analysis in the Volume Variable
5. Discussion of the Results
5.1. Linking the Two Pictures
5.2. Implications for LQC
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rovelli, C.; Smolin, L. Loop space representation of quantum General Relativity. Nucl. Phys. B 1990, 331, 80–152. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593–619. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry. I. Area operators. Class. Quantum Gravity 1997, 14, A55–A81. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry. II. Volume operators. Adv. Theor. Math. Phys. 1998, 1, 388–429. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pullin, J. Loop Quantum Gravity: The First 30 Years; World Scientific Publishing Co., Pte Ltd.: Singapore, 2017. [Google Scholar]
- Ashtekar, A.; Bianchi, E. A short review of Loop Quantum Gravity. Rep. Prog. Phys. 2021, 84, 042001. [Google Scholar] [CrossRef]
- Bojowald, M. Loop Quantum Cosmology. Living Rev. Relativ. 2005, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang. Phys. Rev. Lett. 2006, 96, 141301. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: An analytical and numerical investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A status report. Class. Quantum Gravity 2011, 28, 213001. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type I models. Phys. Rev. D 2009, 79, 083535. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type II models. Phys. Rev. D 2009, 80, 123532. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type IX models. Phys. Rev. D 2010, 82, 043508. [Google Scholar] [CrossRef] [Green Version]
- Martín-Benito, M.; Garay, L.J.; Mena Marugán, G.A.; Wilson-Ewing, E. Loop Quantum Cosmology of the Bianchi I model: Complete quantization. J. Phys. Conf. Ser. 2012, 360, 012031. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Ewing, E. Anisotropic Loop Quantum Cosmology with self-dual variables. Phys. Rev. D 2016, 93, 083502. [Google Scholar] [CrossRef] [Green Version]
- Gamow, G. The Origin of Elements and the Separation of Galaxies. Phys. Rev. 1948, 74, 505–506. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Avalon Publishing: New York, NY, USA, 1990; Volume 69. [Google Scholar]
- Montani, G.; Battisti, M.V.; Benini, R.; Imponente, G. Primordial Cosmology; World Scientific: Singapore, 2009. [Google Scholar]
- Cianfrani, F.; Montani, G. A Critical Analysis of the Cosmological Implementation of Loop Quantum Gravity. Mod. Phys. Lett. A 2012, 27, 1250032. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Consistent Loop Quantum Cosmology. Class. Quantum Gravity 2009, 26, 075020. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. A new perspective on cosmology in Loop Quantum Gravity. EPL Europhys. Lett. 2013, 104, 10001. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Cianfrani, F. Loop Quantum Cosmology from Loop Quantum Gravity. arXiv 2014, arXiv:1410.4788. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology. Int. J. Mod. Phys. D 2016, 25, 1642005. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G. Phenomenology of Quantum Reduced Loop Gravity in the isotropic cosmological sector. Phys. Rev. D 2018, 98, 106022. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Critical Evaluation of Common Claims in Loop Quantum Cosmology. Universe 2020, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Polymer quantum mechanics and its continuum limit. Phys. Rev. D 2007, 76, 044016. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Hamiltonian and physical Hilbert space in polymer quantum mechanics. Class. Quantum Gravity 2007, 24, 1495–1511. [Google Scholar] [CrossRef] [Green Version]
- Barbero , G.J.F.; Pawłowski, T.; Villaseñor, E.J.S. Separable Hilbert space for loop quantization. Phys. Rev. D 2014, 90, 067505. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Corichi, A.; Singh, P. Robustness of key features of Loop Quantum Cosmology. Phys. Rev. D 2008, 77, 024046. [Google Scholar] [CrossRef] [Green Version]
- Montani, G.; Mantero, C.; Bombacigno, F.; Cianfrani, F.; Barca, G. Semiclassical and quantum analysis of the isotropic Universe in the polymer paradigm. Phys. Rev. D 2019, 99, 063534. [Google Scholar] [CrossRef] [Green Version]
- Immirzi, G. Real and complex connections for canonical gravity. Class. Quantum Gravity 1997, 14, L177–L181. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Thiemann, T. Immirzi parameter in quantum general relativity. Phys. Rev. D 1998, 57, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Blyth, W.F.; Isham, C.J. Quantization of a Friedmann universe filled with a scalar field. Phys. Rev. D 1975, 11, 768–778. [Google Scholar] [CrossRef]
- Giesel, K.; Thiemann, T. Scalar material reference systems and loop quantum gravity. Class. Quantum Gravity 2015, 32, 135015. [Google Scholar] [CrossRef] [Green Version]
- Montani, G. Influence of particle creation on flat and negative curved FLRW universes. Class. Quantum Gravity 2000, 18, 193–203. [Google Scholar] [CrossRef]
- Calvão, M.; Lima, J.; Waga, I. On the thermodynamics of matter creation in cosmology. Phys. Lett. A 1992, 162, 223–226. [Google Scholar] [CrossRef]
- Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics and Cosmology. Gen. Relativ. Gravit. 1989, 21, 767–776. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Basilakos, S.; Costa, F.E.M. New cosmic accelerating scenario without dark energy. Phys. Rev. D 2012, 86, 103534. [Google Scholar] [CrossRef] [Green Version]
- Balfagon, A.C. Accelerated expansion of the universe based on particle creation–destruction processes and dark energy in FLRW universes. Gen. Relativ. Gravit. 2015, 47, 111. [Google Scholar] [CrossRef] [Green Version]
- Matschull, H.J. Dirac’s Canonical Quantization Programme. arXiv 1996, arXiv:quant-ph/9606031. [Google Scholar]
- Bojowald, M.; Brizuela, D.; Hernández, H.H.; Koop, M.J.; Morales-Técotl, H.A. High-order quantum back-reaction and quantum cosmology with a positive cosmological constant. Phys. Rev. D 2011, 84, 043514. [Google Scholar] [CrossRef] [Green Version]
- Antonini, S.; Montani, G. Singularity-free and non-chaotic inhomogeneous Mixmaster in polymer representation for the volume of the universe. Phys. Lett. B 2019, 790, 475–483. [Google Scholar] [CrossRef]
- Crinò, C.; Montani, G.; Pintaudi, G. Semiclassical and quantum behavior of the Mixmaster model in the polymer approach for the isotropic Misner variable. Eur. Phys. J. C 2018, 78, 886. [Google Scholar] [CrossRef]
- Giovannetti, E.; Montani, G. Polymer representation of the Bianchi IX cosmology in the Misner variables. Phys. Rev. D 2019, 100, 104058. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Paily, G.M. Deformed general relativity and effective actions from loop quantum gravity. Phys. Rev. D 2012, 86, 104018. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Mielczarek, J. Some implications of signature-change in cosmological models of loop quantum gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 052. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S. Covariance in models of loop quantum gravity: Gowdy systems. Phys. Rev. D 2015, 92, 065002. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannetti, E.; Barca, G.; Mandini, F.; Montani, G. Polymer Dynamics of Isotropic Universe in Ashtekar and in Volume Variables. Universe 2022, 8, 302. https://doi.org/10.3390/universe8060302
Giovannetti E, Barca G, Mandini F, Montani G. Polymer Dynamics of Isotropic Universe in Ashtekar and in Volume Variables. Universe. 2022; 8(6):302. https://doi.org/10.3390/universe8060302
Chicago/Turabian StyleGiovannetti, Eleonora, Gabriele Barca, Federico Mandini, and Giovanni Montani. 2022. "Polymer Dynamics of Isotropic Universe in Ashtekar and in Volume Variables" Universe 8, no. 6: 302. https://doi.org/10.3390/universe8060302
APA StyleGiovannetti, E., Barca, G., Mandini, F., & Montani, G. (2022). Polymer Dynamics of Isotropic Universe in Ashtekar and in Volume Variables. Universe, 8(6), 302. https://doi.org/10.3390/universe8060302