
����������
�������

Citation: Koren, S. A Note on Proton

Stability in the Standard Model.

Universe 2022, 8, 308. https://

doi.org/10.3390/universe8060308

Academic Editors: Sunny Vagnozzi,

Eleonora Di Valentino, Alessandro

Melchiorri, Olga Mena, Luca Visinelli

Received: 2 May 2022

Accepted: 28 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Communication

A Note on Proton Stability in the Standard Model
Seth Koren

Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA; sethk@uchicago.edu

Abstract: In this short note, we describe the symmetry responsible for absolute, nonperturbative
proton stability in the Standard Model. The SM with Nc colors and Ng generations has an exact,
anomaly-free, generation-independent, global symmetry group U(1)B−Nc L ×ZL

Ng
, which contains

a subgroup of baryon plus lepton number of order 2Nc Ng. This disallows proton decay for Ng > 1.
Many well-studied models beyond the SM explicitly break this global symmetry, and the alternative
deserves further attention.
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Everything not forbidden is compulsory. Therefore, which symmetry forbids proton
decay in the Standard Model? It is the lightest baryon, but baryon number is anomalous
and not a symmetry of the quantum SM. The difference between baryon and lepton number
is anomaly-free, but allows, e.g., p+ → e+π0. In fact, there is a discrete subgroup of baryon
plus lepton number, which is anomaly-free by virtue of the SM having more than one
generation. This symmetry imposes the selection rule ∆B = NcNg, ∆L = Ng on the SM
with Nc colors and Ng generations. In the following, we briefly review the topic of mixed
anomalies in the SM selectively aimed toward evincing the anomaly-free discrete global
symmetries. The field theoretic calculations we have omitted can be found in standard QFT
textbooks or in Bertlmann’s monograph [1].

The Standard Model of particle physics is defined as the gauge theory of the non-
Abelian symmetry group SU(3)C × SU(2)L ×U(1)Y with three ‘generations’ (or ‘families’)
of left-handed Weyl fermions in the representations shown in Table 1. There is additionally
a scalar electroweak Higgs doublet which has Yukawa couplings providing masses to the
electrically-charged fermions in the broken phase.

Table 1. Representations of the SM Weyl fermions under the classical symmetries of the SM. We
normalize each U(1) so the least-charged particle has unit charge B ≡ 3Busual, Y ≡ 6Yusual, and
L ≡ Lusual.

Q ū d̄ L ē

SU(3)C 3 3̄ 3̄ – –

SU(2)L 2 – – 2 –

U(1)Y +1 −4 +2 −3 +6

U(1)B +1 −1 −1 – –

U(1)L – – – +1 −1

The SM so-defined contains additional ‘accidental’ generation-independent exact
classical global symmetries corresponding to baryon and lepton number, whose charges
are also listed in Table 1. These are accidental in that the most general renormalizable
Lagrangian one may write down automatically preserves them. However, the Lagrangian
is a classical object, and a good classical global symmetry U(1)X may be broken by the path
integral measure upon quantization if the fermions charged under U(1)X are in a chiral
representation of a gauge group G [2].
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One may check whether the classical global symmetry survives quantization by exam-
ining the ‘anomaly conditions’, which in four dimensions consist essentially of evaluating
the three-point correlator of the symmetry currents at one loop and checking if the Ward–
Takahashi identity is satisfied. Our case of interest will have one global symmetry current
and two gauge symmetry currents, such that the condition for global current conservation
in the quantum theory is

∂µ〈Jµ
X Jν

G Jρ
G〉 = 0. (1)

If this condition is satisfied, then the symmetry U(1)X is ‘anomaly-free’ and the
classical current conservation ∂µ Jµ

X = 0 may be upgraded to a Ward identity in the full
quantum theory. If this condition is violated, then nonperturbative G gauge theory effects
inevitably lead to U(1)X symmetry violation, and furthermore, U(1)X cannot itself be
consistently gauged.

This type of anomaly is sometimes referred to as a ‘mixed anomaly’ between U(1)X
and G or an ‘ABJ anomaly’ after its discovery by Adler–Bell–Jackiw [3,4] as the micro-
physical explanation for the decay of the neutral pion π0 → γγ. In that application, one
relates the failure of the Ward identity in the three-point correlator to a three-point am-
plitude using the LSZ formula. The pion, as a pseudo-Goldstone of the axial symmetry
U(1)A, has nonzero overlap with its global symmetry current Jµ

A, and the photons have
nonzero overlap with the U(1)Q gauge symmetry current Jµ

Q, so this amplitude provides
for pion decay.

When such an anomaly is present, a global rotation of the charged fermions does not
leave the action invariant but rather changes the effective θ-term for the G gauge field. If
we perform a rotation of the fermions charged under the global U(1)X by an angle α, the
action is shifted as

ψi → ψieiqiα ⇒ δS = αA
∫ FF̃

16π2 , (2)

where ψi are left-handed Weyl fermions with charge qi under U(1)X , F is the field strength
of the gauge group G and F̃ is its Hodge dual. If this transformation changes the partition
function of the quantum theory, then it is no longer a symmetry.

The integrand may be recognized as the Chern–Pontryagin density of the gauge
field configuration, and its integral is an integer topological invariant which measures the
winding of the gauge field around the sphere at Euclidean spacetime infinity. A is also an
integer which is the sum of the ‘anomaly coefficients’ of all left-handed Weyl fermions

A δab = ∑
i

Tr
[
qiTa

Ri
Tb

Ri

]
, (3)

where Ta
Ri

are the generators of the representation Ri of G and for a non-Abelian group the

normalization is such that in the fundamental representation F, Tr
[

Ta
FTb

F

]
= δab. That is, a

G fundamental with unit X charge contributes A = 1. For an Abelian G, there is only one
generator and δab 7→ 1. The integral nature of the anomaly derives from the number of
zero modes of fermions in the background spacetime—these are counted by the index of
the Dirac operator, which is directly related to the anomaly by a theorem of Atiyah and
Singer [5,6].

If G is non-Abelian and the only nontrivial representations of G are fundamentals, as
for example with SU(2)L in the SM, then we have simply

AXSU(2)2
L
= ∑

Fund i
qi, (4)

while if G is Abelian, as for example with U(1)Y in the SM, we have simply a trilinear
in charges

AXU(1)2
Y
= ∑

i
qiY2

i . (5)
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If the fermions charged under U(1)X are in a vector-like representation of G, as all
the SM fermions are with SU(3)C (or electromagnetism), then for each left-handed Weyl
fermion ψi there is another right-handed Weyl fermion ψ†

ī with the same quantum numbers,
such that they pair up into a Dirac spinor. Then, ψi and ψī are in complex conjugate
representations of the gauge group, and their contributions to the anomaly coefficient are
related by three negative signs and cancel out.

In Table 2 we give the ABJ anomalies of baryon and lepton number with the chiral
factors of the SM gauge group. A 6= 0 indicates the presence of an anomaly, and the classical
U(1)X symmetry is broken, since the action is no longer invariant under the transformation
as in Equation (2). As is familiar, while both baryon and lepton number have anomalies,
we may form the anomaly-free current B− NcL of baryon minus lepton number. This is
the only anomaly-free, generation-independent continuous global symmetry of the SM.
On the other hand, baryon plus lepton number is violated in nonperturbative processes
involving the gauge fields given by the new term in the action Equation 2, which effects
(see e.g., [7] for lucid discussion)

〈
∂µ Jµ

B+Nc L

〉
= 2NcNg

∫ WW̃
16π2 , (6)

where the expectation value is taken in a given background gauge field, W is the SU(2)L
field strength in that configuration, and we have left off the similar U(1)Y term as it has
no effects in d = 4 flat space for reasons of topology. This nonperturbative effect is central
to electroweak baryogenesis [8,9] wherein the thermal configurations giving dynamical
symmetry violation are called ‘sphalerons’ [10,11].

Table 2. Mixed anomalies of the classical accidental symmetries with the chiral gauge symmetries of
the SM. Nc is the number of colors, and Ng is the number of generations.

U(1)B U(1)L

SU(2)2
L Nc Ng Ng

U(1)2
Y −18Nc Ng −18Ng

While we have exhausted the anomaly-free continuous global symmetries, let us now
relax our symmetry of interest from the full U(1)X of rotations by arbitrary angles to the
subgroup of transformations by α = 2πk/N for some N ∈ N, k = 0, . . . , N− 1. If we choose
N = A, then under any rotation the action changes by a multiple of 2πi in Equation (2)
and the partition function is invariant. This ZN subgroup of U(1)X then remains a good
symmetry of the quantum theory.

In the case of the SM, this means that there is an additional discrete, anomaly-free ZNg

worth of symmetries for the SM with Ng generations of fermions. Of course, there is some
freedom to describe the additional generator, since any addition of Y or B− NcL would
work just as well. However, we may non-redundantly identify this as the ZL

Ng
subgroup

of lepton number U(1)L, which is manifestly independent of both, whereas there is a ZNc

subgroup of B− NcL in which the leptons transform trivially and the transformation is
equivalent to one of U(1)B.

Consequently, the anomaly-free, generation-independent, global symmetry group
of the SM is U(1)B−Nc L × ZL

Ng
. A few more remarks are in order on the structure of this

symmetry group. Firstly, we note that baryon plus lepton number U(1)B+Nc L intersects this
group in a Z2Nc Ng subgroup generated by (1, 1) ∈ ZB−Nc L

2Nc Ng
×ZL

Ng
.

This Z2Nc Ng is the maximal anomaly-free subgroup of baryon plus lepton number in
the SM. We see that the appearance of the anomaly coefficient in Equation (6) expressing
current nonconservation dynamically enforces the ∆L = Ng, ∆B = NcNg selection rule
imposed by the existence of this exact discrete symmetry. Indeed, SM sphaleron processes
all respect this selection rule.
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Further within this, we note that there is a Z2Nc subgroup in which U(1)B+Nc L inter-
sects U(1)B−Nc L directly, since leptons and antileptons have the same charge mod 2Nc.
Inside of this, fermion number can be realized as the order two subgroup of B ± NcL
rotations by eiπF, since the only fields charged under B or L in the SM have odd B or L
charges and are fermions, and Nc is also odd. Summarizing these relationships, we have

U(1)B−Nc L ×ZL
Ng
⊃ ZB+Nc L

2Nc Ng
⊃ ZB±Nc L

2Nc
⊃ (−1)F,

among anomaly-free global symmetries of the SM.
We note also that the U(1)B symmetry we have defined in the SM at high energies may

more accurately be named ‘quark number’. It is in the confined phase that Busual ≡ B/Nc
really counts baryons, which must be constructed with the SU(Nc) invariant tensor εi1i2 ...iNc
to be colorless. If we strictly work in an effective theory below nuclear energy scales, then
there are no B− NcL unit charges, and it is sensible to work with baryon minus lepton
number as usually defined B/Nc − L. The above subgroup series is then modified to

U(1)B/Nc−L ×ZL
Ng
⊃ ZB/Nc+L

2Ng
⊃ (−1)F.

The proton, with B/Nc = 1 and as the lightest baryon in the broken phase, then cannot
decay while satisfying both ∆(B/Nc − L) = 0 and ∆(B/Nc + L) = 0 (mod 2Ng).

While many theories beyond the SM explicitly break these global symmetries, in the
face of increasingly stringent constraints on the lifetime of the proton it may be worth
reconsidering the prospects that it is absolutely stable. I, for one, would welcome the
possibility of there being one fewer looming existential threat.

Earlier Work

Work on anomalies of discrete symmetries began with [12,13]. A variety of authors
have considered exotic gauged Z3 symmetries to stabilize the proton in the context of the
Minimal Supersymmetric Standard Model (MSSM) and extensions thereof (e.g., [14–22]),
where baryon and lepton number are no longer classical global symmetries. Other inter-
esting related work includes [23–33]. I note especially that, while conducting extensive
literature review, I found that [34] on the global structure of the SM gauge group noted the
existence of a ZNg anomaly-free subgroup of B/Nc + L, and [35] on discrete symmetries in
the MSSM mentioned in their Footnote 7 that a ZNg subgroup of B/Nc protects the proton
in the SM. Soon after this work appeared, Ref. [36] explored the incompatibility of the
B/Nc + L symmetry with a variety of grand unification schemes. I beg the pardon of any
experts who know the facts explained in this manuscript already, and I hope the preceding
dedicated discussion remains of use to the community.
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