Shell Model Description of Spin-Dependent Elastic and Inelastic WIMP Scattering off 119Sn and 121Sb
Abstract
:1. Introduction
2. Cross Section and Spin Structure
3. Shell Model Calculations
4. WIMP Scattering Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zwicky, F. Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 1933, 6, 110. [Google Scholar]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Einasto, J.; Kaasik, A.; Saar, E. Dynamic evidence of massive coronas of galaxies. Nature 1974, 250, 309. [Google Scholar] [CrossRef]
- Roberts, M.S.; Whitehurst, R.N. The rotation curve and geometry of M31 at large galactocentric distances. Astrophys. J. 1975, 201, 327. [Google Scholar] [CrossRef]
- Blumenthal, G.R.; Faber, S.M.; Primack, J.R.; Rees, M.J. Formation of galaxies and large-scale structure with cold dark matter. Nature 1984, 311, 517. [Google Scholar] [CrossRef]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 2004, 70, 083509. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Arbey, A. Dark Fluid: A complex scalar field to unify dark energy and dark matter. Phys. Rev. D 2006, 74, 043516. [Google Scholar] [CrossRef] [Green Version]
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef] [Green Version]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter. Astrophys. J. 2004, 604, 596. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F. Weak lensing probes of modified gravity. Phys. Rev. D 2008, 78, 043002. [Google Scholar] [CrossRef] [Green Version]
- Boran, S.; Desai, S.; Kahya, E.O.; Woodard, R.P. GW170817 Falsifies Dark Matter Emulators. Phys. Rev. D 2018, 97, 041501. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-C.; Feng, J.L.; Matchev, K.T. Kaluza-Klein Dark Matter. Phys. Rev. Lett. 2002, 89, 211301. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.K.; Vergados, J.D.; Moustakidis, C.C. Direct detection of dark matter rates for various wimps. Nucl. Phys. B 2007, 773, 19. [Google Scholar] [CrossRef] [Green Version]
- Nussinov, S. Technocosmology—Could a technibaryon excess provide a “natural” missing mass candidate? Phys. Lett. B 1985, 165, 55. [Google Scholar] [CrossRef]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark matter from new technicolor theories. Phys. Rev. D 2006, 74, 095008. [Google Scholar] [CrossRef] [Green Version]
- Hubisz, J.; Meade, P. Phenomenology of the littlest Higgs model with T-parity. Phys. Rev. D 2005, 71, 035016. [Google Scholar] [CrossRef] [Green Version]
- Birkedal, A.; Noble, A.; Perelstein, M.; Spray, A. Little Higgs dark matter. Phys. Rev. D 2006, 74, 035002. [Google Scholar] [CrossRef] [Green Version]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195. [Google Scholar] [CrossRef] [Green Version]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rep. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M.; Kosmas, T.; Suhonen, J.; Toivanen, J. Event rates for CDM detectors from large-scale shell-model calculations. Phys. Lett. B 2006, 632, 226. [Google Scholar] [CrossRef]
- Toivanen, P.; Kortelainen, M.; Suhonen, J.; Toivanen, J. Large-scale shell-model calculations of elastic and inelastic scattering rates of lightest supersymmetric particles (LSP) on I-127, Xe-129, Xe-131, and Cs-133 nuclei. Phys. Rev. C 2009, 79, 044302. [Google Scholar] [CrossRef]
- Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A. Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents. Phys. Rev. D 2013, 88, 083516. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Kessler, G.; Klos, P.; Lang, R.F.; Menéndez, J.S.; Schwenk, R.A. Signatures of dark matter scattering inelastically off nuclei. Phys. Rev. D 2013, 88, 115014. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Avignone, F.T., III; Pirinen, P.; Srivastava, P.C.; Kortelainen, M.; Suhonen, J. Theoretical direct WIMP detection rates for transitions to the first excited state in Kr-83. Phys. Rev. D 2015, 92, 015015. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Avignone, F.T., III; Kortelainen, M.; Pirinen, P.; Srivastava, P.C.; Suhonen, J.; Thomas, A.W.J. Inelastic WIMP-nucleus scattering to the first excited state in Te-125. Phys. G: Nucl. Part. Phys. 2016, 43, 115002. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, P.; Srivastava, P.C.; Suhonen, J.; Kortelainen, M. Shell-model study on event rates of lightest supersymmetric particles scattering off Kr-83 and Te-125. Phys. Rev. D 2016, 93, 095012. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, P.; Kotila, J.; Suhonen, J. Spin-dependent WIMP-nucleus scattering off Te-125, Xe-129, and Xe-131 in the microscopic interacting boson-fermion model. Nucl. Phys. A 2019, 992, 121624. [Google Scholar] [CrossRef]
- Menéndez, J.; Gazit, D.; Schwenk, A. Spin-dependent WIMP scattering off nuclei. Phys. Rev. D 2012, 86, 103511. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, P.; Kotila, J.; Suhonen, J. First microscopic evaluation of spin-dependent WIMP-nucleus scattering off W-183. Phys. Lett. B 2021, 816, 136275. [Google Scholar] [CrossRef]
- Hoferichter, M.; Menéndez, J.; Schwenk, A. Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses. Phys. Rev. D 2020, 102, 074018. [Google Scholar] [CrossRef]
- Engel, J.; Pittel, S.; Vogel, P. Nuclear physics of dark matter detection. Int. J. Mod. Phys. E 1992, 1, 1. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Meissner, U.-G. Aspects of chiral pion-nucleon physics. Nucl. Phys. A 1997, 615, 483. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 2001, 63, 024001. [Google Scholar] [CrossRef] [Green Version]
- Hjorth-Jensen, M.; Kuo, T.T.S.; Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 1995, 261, 125. [Google Scholar] [CrossRef]
- Procter, M.G.; Cullen, D.M.; Scholey, C.; Ruotsalainen, P.; Angus, L.; Bäck, T.; Cederwall, B.; Dewald, A.; Fransen, C.; Grahn, T.; et al. Anomalous transition strength in the proton-unbound nucleus I-109. Phys. Lett. B 2011, 704, 118. [Google Scholar] [CrossRef]
- Bäck, T.; Qi, C.; Moradi, F.G.; Cederwall, B.; Johnson, A.; Liotta, R.; Wyss, R.; Al-Azri, H.; Bloor, D.; Brock, T.; et al. Lifetime measurement of the first excited 2+ state in Te-108. Phys. Rev. C 2011, 84, 041306. [Google Scholar] [CrossRef]
- Brown, B.A.; Rae, W.D.M. The Shell-Model Code NuShellX@MSU. Nuc. Data Sheets 2014, 120, 115. [Google Scholar] [CrossRef]
- Shimizu, N.; Mizusaki, T.; Utsuno, Y.; Tsunoda, Y. Thick-restart block Lanczos method for large-scale shell-model calculations. Comput. Phys. Commun. 2019, 244, 372. [Google Scholar] [CrossRef] [Green Version]
- Symochko, D.M.; Browne, E.; Tuli, J.K. Nuclear Data Sheets for A = 119. Nucl. Data Sheets 2009, 110, 2945. [Google Scholar] [CrossRef]
- Ohya, S. Nuclear Data Sheets for A = 121. Nucl. Data Sheets 2010, 111, 1619. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: New York, NY, USA, 1980. [Google Scholar]
- Vietze, L.; Klos, P.; Menéndez, J.; Haxton, W.C.; Schwenk, A. Nuclear structure aspects of spin-independent WIMP scattering off xenon. Phys. Rev. D 2015, 91, 043520. [Google Scholar] [CrossRef] [Green Version]
Param. | Values |
---|---|
Nucleus | Configuration | |
---|---|---|
Sn | (17.5%) | |
(14.4%) | ||
(10.9%) | ||
(5.5%) | ||
(12.8%) | ||
(11.8%) | ||
(10.9%) | ||
(6.6%) | ||
(5.4%) | ||
Sb | ⊗ (8.6%) | |
⊗ (6.9%) | ||
⊗ (4.6%) | ||
⊗ (9.6%) | ||
⊗ (4.7%) | ||
⊗ (4.4%) |
State | exp. | NSM | exp. | NSM |
---|---|---|---|---|
Sn | −1.0459(5) | −1.213 | - | - |
Sn | +0.633(3) | +0.749 | −0.132(1) | −0.107 |
Sb | +3.3580(16) | +3.681 | −0.543(11) | −0.439 |
Sb | +2.518(7) | +1.185 | −0.727(16) | −0.559 |
Nuc. | Transition | B (W.u.) exp. | B (W.u.) NSM | (keV) exp. | (keV) NSM |
---|---|---|---|---|---|
Sn | E2: | 123 | |||
E2: | 815 | ||||
E2: | 693 | ||||
M1: | 123 | ||||
Sb | M1: | 191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasurinen, J.; Suhonen, J.; Srivastava, P.C.; Pirinen, P. Shell Model Description of Spin-Dependent Elastic and Inelastic WIMP Scattering off 119Sn and 121Sb. Universe 2022, 8, 309. https://doi.org/10.3390/universe8060309
Kasurinen J, Suhonen J, Srivastava PC, Pirinen P. Shell Model Description of Spin-Dependent Elastic and Inelastic WIMP Scattering off 119Sn and 121Sb. Universe. 2022; 8(6):309. https://doi.org/10.3390/universe8060309
Chicago/Turabian StyleKasurinen, Joona, Jouni Suhonen, Praveen C. Srivastava, and Pekka Pirinen. 2022. "Shell Model Description of Spin-Dependent Elastic and Inelastic WIMP Scattering off 119Sn and 121Sb" Universe 8, no. 6: 309. https://doi.org/10.3390/universe8060309
APA StyleKasurinen, J., Suhonen, J., Srivastava, P. C., & Pirinen, P. (2022). Shell Model Description of Spin-Dependent Elastic and Inelastic WIMP Scattering off 119Sn and 121Sb. Universe, 8(6), 309. https://doi.org/10.3390/universe8060309