The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array
Abstract
:1. Introduction
- the size distribution of star-forming galaxy disks at and how the star formation activity is distributed within them.
- how the distribution of star formation compares to that of the stellar mass and molecular gas at these epochs.
- if the distribution of star formation is clumpy in such systems, as inferred from rest-frame UV observations of high-redshift galaxies, or is if this purely an artifact of spatially varying dust obscuration as currently indicated by observations of cold dust in such systems.
- how centrally concentrated is star formation as a function environment and cosmic time.
- tight constraints on the evolution of the total cold molecular gas content in typical galaxies at high (i.e., ) redshift.
2. The Power of Far-Infrared Surveys
3. Radio Emission from Galaxies
3.1. Continuum Emission Processes at GHz Frequencies
3.1.1. Non-Thermal Synchrotron Emission
3.1.2. Free-Free Emission
3.1.3. Thermal Dust Emission
3.1.4. Anomalous Microwave Emission
3.2. The Role for a Next-Generation Radio/mm Observatory
4. A Next-Generation Very Large Array
Technical Description
5. A New Era of Precision Galaxy Formation and Evolution Studies
5.1. A Tool for Robustly Measuring Star Formation at All Redshifts
5.2. Measuring the Cold Molecular Gas Content of Galaxies over Cosmic Time
5.3. Characterizing Structure in High-Redshift Dusty Galaxies
6. Conclusions and Future Outlooks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennicutt, R.C., Jr. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef] [Green Version]
- Bigiel, F.; Leroy, A.; Walter, F.; Brinks, E.; de Blok, W.J.G.; Madore, B.; Thornley, M.D. The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales. Astron. J. 2008, 136, 2846–2871. [Google Scholar] [CrossRef] [Green Version]
- Leroy, A.K.; Walter, F.; Brinks, E.; Bigiel, F.; de Blok, W.J.G.; Madore, B.; Thornley, M.D. The Star Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars Effectively. Astron. J. 2008, 136, 2782–2845. [Google Scholar] [CrossRef] [Green Version]
- Dressler, A.; Oemler, A., Jr.; Couch, W.J.; Smail, I.; Ellis, R.S.; Barger, A.; Butcher, H.; Poggianti, B.M.; Sharples, R.M. Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies. Astrophys. J. 1997, 490, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Butcher, H.; Oemler, A., Jr. The evolution of galaxies in clusters. I. ISIT photometry of Cl 0024+1654 and 3C 295. Astrophys. J. 1978, 219, 18–30. [Google Scholar] [CrossRef]
- Butcher, H.; Oemler, A.J. The evolution of galaxies in clusters. V. A study of populations since Z 0.5. Astrophys. J. 1984, 285, 426–438. [Google Scholar] [CrossRef]
- Desai, V.; Dalcanton, J.J.; Aragón-Salamanca, A.; Jablonka, P.; Poggianti, B.; Gogarten, S.M.; Simard, L.; Milvang-Jensen, B.; Rudnick, G.; Zaritsky, D.; et al. The Morphological Content of 10 EDisCS Clusters at 0.5 < z < 0.8. Astrophys. J. 2007, 660, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.J.; van Dokkum, P.G.; Momcheva, I.G.; Brammer, G.B.; Wuyts, S.; Franx, M.; Förster Schreiber, N.M.; Whitaker, K.E.; Skelton, R.E. Spatially Resolved Dust Maps from Balmer Decrements in Galaxies at z ∼ 1.4. Astrophys. J. Lett. 2016, 817, L9. [Google Scholar] [CrossRef] [Green Version]
- Ikarashi, S.; Ivison, R.J.; Caputi, K.I.; Aretxaga, I.; Dunlop, J.S.; Hatsukade, B.; Hughes, D.H.; Iono, D.; Izumi, T.; Kawabe, R.; et al. Compact Starbursts in z 3-6 Submillimeter Galaxies Revealed by ALMA. Astrophys. J. 2015, 810, 133. [Google Scholar] [CrossRef]
- Simpson, J.M.; Smail, I.; Swinbank, A.M.; Almaini, O.; Blain, A.W.; Bremer, M.N.; Chapman, S.C.; Chen, C.C.; Conselice, C.; Coppin, K.E.K.; et al. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Rest-frame Far-infrared Emission of Sub-millimeter Galaxies. Astrophys. J. 2015, 799, 81. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Momjian, E.; Condon, J.J.; Chary, R.R.; Dickinson, M.; Inami, H.; Taylor, A.R.; Weiner, B.J. The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources. Astrophys. J. 2017, 839, 35. [Google Scholar] [CrossRef] [Green Version]
- Bondi, M.; Zamorani, G.; Ciliegi, P.; Smolčić, V.; Schinnerer, E.; Delvecchio, I.; Jiménez-Andrade, E.F.; Liu, D.; Lang, P.; Magnelli, B.; et al. Linear radio size evolution of μJy populations. Astron. Astrophys. 2018, 618, L8. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.D.; Condon, J.J.; Kellermann, K.I.; Lacy, M.; Perley, R.A.; Matthews, A.M.; Vernstrom, T.; Scott, D.; Wall, J.V. The Angular Size Distribution of μJy Radio Sources. Astrophys. J. 2018, 856, 67. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s; National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Elbaz, D.; Cesarsky, C.J.; Fadda, D.; Aussel, H.; Désert, F.X.; Franceschini, A.; Flores, H.; Harwit, M.; Puget, J.L.; Starck, J.L.; et al. Source counts from the 15 mu m ISOCAM Deep Surveys. Astron. Astrophys. 1999, 351, L37–L40. [Google Scholar]
- Papovich, C.; Dole, H.; Egami, E.; Le Floc’h, E.; Pérez-González, P.G.; Alonso-Herrero, A.; Bai, L.; Beichman, C.A.; Blaylock, M.; Engelbracht, C.W.; et al. The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys. Astrophys. J. Ser. 2004, 154, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.J.; Wang, L.; Smith, A.J.; Altieri, B.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Babbedge, T.; Blain, A.; et al. HerMES: SPIRE galaxy number counts at 250, 350, and 500 μm. Astron. Astrophys. 2010, 518, L21. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, G.; Habing, H.J.; van Duinen, R.; Aumann, H.H.; Baud, B.; Beichman, C.A.; Beintema, D.A.; Boggess, N.; Clegg, P.E.; de Jong, T.; et al. The Infrared Astronomical Satellite (IRAS) mission. Astrophys. J. Lett. 1984, 278, L1–L6. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.F.; Steinz, J.A.; Anderegg, M.E.; Clavel, J.; Drechsel, G.; Estaria, P.; Faelker, J.; Riedinger, J.R.; Robson, A.; Taylor, B.G.; et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 1996, 500, 493–497. [Google Scholar] [CrossRef]
- Murakami, H.; Baba, H.; Barthel, P.; Clements, D.L.; Cohen, M.; Doi, Y.; Enya, K.; Figueredo, E.; Fujishiro, N.; Fujiwara, H.; et al. The Infrared Astronomical Mission AKARI. Publ. Astron. Soc. Jpn. 2007, 59, S369–S376. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.W.; Roellig, T.L.; Low, F.J.; Rieke, G.H.; Rieke, M.; Hoffmann, W.F.; Young, E.; Houck, J.R.; Brandl, B.; Fazio, G.G.; et al. The Spitzer Space Telescope Mission. Astrophys. J. Ser. 2004, 154, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Murphy, E.J.; Chary, R.R.; Dickinson, M.; Pope, A.; Frayer, D.T.; Lin, L. An Accounting of the Dust-obscured Star Formation and Accretion Histories Over the Last ∼11 Billion Years. Astrophys. J. 2011, 732, 126. [Google Scholar] [CrossRef] [Green Version]
- Magnelli, B.; Popesso, P.; Berta, S.; Pozzi, F.; Elbaz, D.; Lutz, D.; Dickinson, M.; Altieri, B.; Andreani, P.; Aussel, H.; et al. The deepest Herschel-PACS far-infrared survey: Number counts and infrared luminosity functions from combined PEP/GOODS-H observations. Astron. Astrophys. 2013, 553, A132. [Google Scholar] [CrossRef] [Green Version]
- Caputi, K.I.; Lagache, G.; Yan, L.; Dole, H.; Bavouzet, N.; Le Floc’h, E.; Choi, P.I.; Helou, G.; Reddy, N. The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ∼ 2 in the GOODS Fields. Astrophys. J. 2007, 660, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, D.; Dickinson, M.; Hwang, H.S.; Díaz-Santos, T.; Magdis, G.; Magnelli, B.; Le Borgne, D.; Galliano, F.; Pannella, M.; Chanial, P.; et al. GOODS-Herschel: An infrared main sequence for star-forming galaxies. Astron. Astrophys. 2011, 533, A119. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Lutz, D.; Sturm, E.; Egami, E.; Kunze, D.; Moorwood, A.F.M.; Rigopoulou, D.; Spoon, H.W.W.; Sternberg, A.; Tacconi-Garman, L.E.; et al. What Powers Ultraluminous IRAS Galaxies? Astrophys. J. 1998, 498, 579. [Google Scholar] [CrossRef] [Green Version]
- Armus, L.; Charmandaris, V.; Bernard-Salas, J.; Spoon, H.W.W.; Marshall, J.A.; Higdon, S.J.U.; Desai, V.; Teplitz, H.I.; Hao, L.; Devost, D.; et al. Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample. Astrophys. J. 2007, 656, 148–167. [Google Scholar] [CrossRef] [Green Version]
- Glenn, J.; Bradford, C.M.; Rosolowsky, E.; Amini, R.; Alatalo, K.; Armus, L.; Benson, A.J.; Chang, T.C.; Darling, J.; Day, P.K.; et al. Galaxy Evolution Probe. J. Astron. Telesc. Instruments Syst. 2021, 7, 034004. [Google Scholar] [CrossRef]
- Meixner, M.; Cooray, A.; Leisawitz, D.T.; Staguhn, J.G.; Armus, L.; Battersby, C.; Bauer, J.; Benford, D.; Bergin, E.; Bradford, C.M.; et al. Origins Space Telescope science drivers to design traceability. J. Astron. Telesc. Instruments Syst. 2021, 7, 011012. [Google Scholar] [CrossRef]
- Pope, A.; Armus, L.; Murphy, E.; Aalto, S.; Alexander, D.; Appleton, P.; Barger, A.; Bradford, M.; Capak, P.; Casey, C.; et al. Simultaneous Measurements of Star Formation and Supermassive Black Hole Growth in Galaxies. Bull. Am. Astron. Soc. 2019, 51, 330. [Google Scholar]
- Nagao, T.; Maiolino, R.; Marconi, A.; Matsuhara, H. Metallicity diagnostics with infrared fine-structure lines. Astron. Astrophys. 2011, 526, A149. [Google Scholar] [CrossRef]
- Smith, J.D.; Armus, L.; Davé, R.; Ferkinhoff, C.; Groves, B.; Kewley, L.; Murphy, E.; Pope, A.; Shivaei, I.; Skillman, E. The Chemical Enrichment History of the Universe. Bull. Am. Astron. Soc. 2019, 51, 400. [Google Scholar]
- Leroy, A.K.; Evans, A.S.; Momjian, E.; Murphy, E.; Ott, J.; Armus, L.; Condon, J.; Haan, S.; Mazzarella, J.M.; Meier, D.S.; et al. Complex Radio Spectral Energy Distributions in Luminous and Ultraluminous Infrared Galaxies. Astrophys. J. Lett. 2011, 739, L25. [Google Scholar] [CrossRef]
- Clemens, M.S.; Vega, O.; Bressan, A.; Granato, G.L.; Silva, L.; Panuzzo, P. Modeling the spectral energy distribution of ULIRGs. I. The radio spectra. Astron. Astrophys. 2008, 477, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Clemens, M.S.; Scaife, A.; Vega, O.; Bressan, A. Starburst evolution: Free-free absorption in the radio spectra of luminous IRAS galaxies. Mon. Not. R. Astron. Soc. 2010, 405, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Stierwalt, S.; Armus, L.; Condon, J.J.; Evans, A.S. Radio and Mid-infrared Properties of Compact Starbursts: Distancing Themselves from the Main Sequence. Astrophys. J. 2013, 768, 2. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Dong, D.; Leroy, A.K.; Momjian, E.; Condon, J.J.; Helou, G.; Meier, D.S.; Ott, J.; Schinnerer, E.; Turner, J.L. Microwave Continuum Emission and Dense Gas Tracers in NGC 3627: Combining Jansky VLA and ALMA Observations. Astrophys. J. 2015, 813, 118. [Google Scholar] [CrossRef] [Green Version]
- Barcos-Mu noz, L.; Leroy, A.K.; Evans, A.S.; Privon, G.C.; Armus, L.; Condon, J.; Mazzarella, J.M.; Meier, D.S.; Momjian, E.; Murphy, E.J.; et al. High-resolution Radio Continuum Measurements of the Nuclear Disks of Arp 220. Astrophys. J. 2015, 799, 10. [Google Scholar] [CrossRef]
- Tabatabaei, F.S.; Minguez, P.; Prieto, M.A.; Fernández-Ontiveros, J.A. Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. Nat. Astron. 2018, 2, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Niklas, S.; Klein, U.; Wielebinski, R. A radio continuum survey of Shapley-Ames galaxies at λ 2.8cm. II. Separation of thermal and non-thermal radio emission. Astron. Astrophys. 1997, 322, 19–28. [Google Scholar]
- Heiles, C.; Reach, W.T.; Koo, B.C. Molecules, Grains, and Shocks: A Comparison of CO, H i, and IRAS Data. Astrophys. J. 1988, 332, 313. [Google Scholar] [CrossRef] [Green Version]
- Dame, T.M.; Hartmann, D.; Thaddeus, P. The Milky Way in Molecular Clouds: A New Complete CO Survey. Astrophys. J. 2001, 547, 792–813. [Google Scholar] [CrossRef]
- Scoville, N.; Sheth, K.; Aussel, H.; Vanden Bout, P.; Capak, P.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; Álvarez-Márquez, J.; et al. ISM Masses and the Star formation Law at Z = 1 to 6: ALMA Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey Field. Astrophys. J. 2016, 820, 83. [Google Scholar] [CrossRef] [Green Version]
- Kogut, A.; Banday, A.J.; Bennett, C.L.; Gorski, K.M.; Hinshaw, G.; Reach, W.T. High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps. Astrophys. J. 1996, 460, 1. [Google Scholar] [CrossRef]
- Leitch, E.M.; Readhead, A.C.S.; Pearson, T.J.; Myers, S.T. An Anomalous Component of Galactic Emission. Astrophys. J. Lett. 1997, 486, L23. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, C.; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E.S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B.T.; Génova-Santos, R.; et al. The State-of-Play of Anomalous Microwave Emission (AME) research. New Astron. Rev. 2018, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- BICEP2/Keck Collaboration; Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; et al. Joint Analysis of BICEP2/Keck Array and Planck Data. Phys. Rev. Lett. 2015, 114, 101301. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Adam, R.; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes. Astron. Astrophys. 2016, 586, A133. [Google Scholar] [CrossRef] [Green Version]
- Erickson, W.C. A Mechanism of Non-Thermal Radio-Noise Origin. Astrophys. J. 1957, 126, 480. [Google Scholar] [CrossRef]
- Draine, B.T.; Lazarian, A. Diffuse Galactic Emission from Spinning Dust Grains. Astrophys. J. Lett. 1998, 494, L19. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; Barreiro, R.B.; et al. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains. Astron. Astrophys. 2011, 536, A20. [Google Scholar] [CrossRef] [Green Version]
- Hensley, B.S.; Draine, B.T. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required. Astrophys. J. 2017, 836, 179. [Google Scholar] [CrossRef]
- Socrates, A.; Davis, S.W.; Ramirez-Ruiz, E. The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. Astrophys. J. 2008, 687, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Condon, J.J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 1992, 30, 575–611. [Google Scholar] [CrossRef]
- Murphy, E.J.; Bremseth, J.; Mason, B.S.; Condon, J.J.; Schinnerer, E.; Aniano, G.; Armus, L.; Helou, G.; Turner, J.L.; Jarrett, T.H. The Star Formation in Radio Survey: GBT 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions. Astrophys. J. 2012, 761, 97. [Google Scholar] [CrossRef]
- Peel, M.W.; Dickinson, C.; Davies, R.D.; Clements, D.L.; Beswick, R.J. Radio to infrared spectra of late-type galaxies with Planck and Wilkinson Microwave Anisotropy Probe data. Mon. Not. R. Astron. Soc. 2011, 416, L99–L103. [Google Scholar] [CrossRef] [Green Version]
- Carilli, C.L. Radio Observations of High Redshift Star Forming Galaxies. In Starburst Galaxies: Near and Far; Tacconi, L., Lutz, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; p. 309. [Google Scholar]
- Murphy, E.J. The Far-Infrared-Radio Correlation at High Redshifts: Physical Considerations and Prospects for the Square Kilometer Array. Astrophys. J. 2009, 706, 482–496. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Helou, G.; Condon, J.J.; Schinnerer, E.; Turner, J.L.; Beck, R.; Mason, B.S.; Chary, R.; Armus, L. The Detection of Anomalous Dust Emission in the Nearby Galaxy NGC 6946. Astrophys. J. Lett. 2010, 709, L108–L113. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Chary, R.R. Excess in the High-frequency Radio Background: Insights from Planck. Astrophys. J. 2018, 861, 27. [Google Scholar] [CrossRef] [Green Version]
- Draine, B.T.; Lazarian, A. Electric Dipole Radiation from Spinning Dust Grains. Astrophys. J. 1998, 508, 157–179. [Google Scholar] [CrossRef]
- Murphy, E.; Ali-Haïmoud, Y.; Cleary, K.A.; Dickinson, C.; Draine, B.T.; Helou, G.; Hensley, B.; Hoang, T.; Lazarian, A.; Linden, S.; et al. Unsolved Problems in Modern Astrophysics: Anomalous Microwave Emission. Bull. Am. Astron. Soc. 2019, 51, 430. [Google Scholar]
- Lamarche, C.; Smith, J.D.; Kreckel, K.; Linden, S.T.; Rogers, N.S.J.; Skillman, E.; Berg, D.; Murphy, E.; Pogge, R.; Donnelly, G.P.; et al. Direct Far-infrared Metal Abundances (FIRA). I. M101. Astrophys. J. 2022, 925, 194. [Google Scholar] [CrossRef]
- Yan, L.; Sajina, A.; Loiacono, F.; Lagache, G.; Béthermin, M.; Faisst, A.; Ginolfi, M.; Fèvre, O.L.; Gruppioni, C.; Capak, P.L.; et al. The ALPINE-ALMA [C II] Survey: [C II] 158 μm Emission Line Luminosity Functions at z ∼ 4–6. Astrophys. J. 2020, 905, 147. [Google Scholar] [CrossRef]
- Walter, F.; Decarli, R.; Sargent, M.; Carilli, C.; Dickinson, M.; Riechers, D.; Ellis, R.; Stark, D.; Weiner, B.; Aravena, M.; et al. A Molecular Line Scan in the Hubble Deep Field North: Constraints on the CO Luminosity Function and the Cosmic H2 Density. Astrophys. J. 2014, 782, 79. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Elbaz, D.; Riechers, D.; Smail, I.; et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies. Astrophys. J. 2016, 833, 70. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Aravena, M.; Boogaard, L.; Carilli, C.; González-López, J.; Walter, F.; Cortes, P.C.; Cox, P.; da Cunha, E.; Daddi, E.; et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Multiband Constraints on Line-luminosity Functions and the Cosmic Density of Molecular Gas. Astrophys. J. 2020, 902, 110. [Google Scholar] [CrossRef]
- Riechers, D.A.; Pavesi, R.; Sharon, C.E.; Hodge, J.A.; Decarli, R.; Walter, F.; Carilli, C.L.; Aravena, M.; da Cunha, E.; Daddi, E.; et al. COLDz: Shape of the CO Luminosity Function at High Redshift and the Cold Gas History of the Universe. Astrophys. J. 2019, 872, 7. [Google Scholar] [CrossRef] [Green Version]
- Sargent, M.T.; Daddi, E.; Béthermin, M.; Aussel, H.; Magdis, G.; Hwang, H.S.; Juneau, S.; Elbaz, D.; da Cunha, E. Regularity Underlying Complexity: A Redshift-independent Description of the Continuous Variation of Galaxy-scale Molecular Gas Properties in the Mass-star Formation Rate Plane. Astrophys. J. 2014, 793, 19. [Google Scholar] [CrossRef]
- Saintonge, A.; Wilson, C.D.; Xiao, T.; Lin, L.; Hwang, H.S.; Tosaki, T.; Bureau, M.; Cigan, P.J.; Clark, C.J.R.; Clements, D.L.; et al. JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies—I. Survey overview and first results. Mon. Not. R. Astron. Soc. 2018, 481, 3497–3519. [Google Scholar] [CrossRef]
- Scoville, N.; Lee, N.; Vanden Bout, P.; Diaz-Santos, T.; Sanders, D.; Darvish, B.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; et al. Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift. Astrophys. J. 2017, 837, 150. [Google Scholar] [CrossRef]
- Walter, F.; Carilli, C.; Decarli, R.; Riechers, D.; Aravena, M.; Bauer, F.E.; Bertoldi, F.; Bolatto, A.; Boogaard, L.; Bouwens, R.; et al. The evolution of the cosmic molecular gas density. Bull. Am. Astron. Soc. 2019, 51, 442. [Google Scholar]
- da Cunha, E.; Groves, B.; Walter, F.; Decarli, R.; Weiss, A.; Bertoldi, F.; Carilli, C.; Daddi, E.; Elbaz, D.; Ivison, R.; et al. On the Effect of the Cosmic Microwave Background in High-redshift (Sub-)millimeter Observations. Astrophys. J. 2013, 766, 13. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.; Quataert, E.; Thompson, T.A. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. Astrophys. J. 2005, 618, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Condon, J.J.; Huang, Z.P.; Yin, Q.F.; Thuan, T.X. Compact starbursts in ultraluminous infrared galaxies. Astrophys. J. 1991, 378, 65–76. [Google Scholar] [CrossRef]
- Murphy, E.; Carilli, C.; Armus, L.; Barger, A.J.; Bolatto, A.; Burgarella, D.; Capak, P.; Casey, C.; Chary, R.R.; Cooray, A.; et al. Robustly Mapping the Distribution of Star Formation in High-z Galaxies. Bull. Am. Astron. Soc. 2019, 51, 471. [Google Scholar]
- Carilli, C.; Casey, C.; Narayanan, D.; Bolatto, A.; Hung, C.; Champagne, J.; Walter, F.; Riechers, D.; Murphy, E.; Decarli, R. Imaging molecular gas in high redshift galaxies at < = 1 kpc resolution. Bull. Am. Astron. Soc. 2019, 51, 41. [Google Scholar]
Band# | (GHz) | (GHz) | (GHz) |
---|---|---|---|
1 | 2.4 | 1.2 | 3.5 |
2 | 8 | 3.5 | 12.3 |
3 | 16 | 12.3 | 20.5 |
4 | 27 | 20.5 | 34.0 |
5 | 41 | 30.5 | 50.5 |
6 | 93 | 70 | 116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, E.J. The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array. Universe 2022, 8, 329. https://doi.org/10.3390/universe8060329
Murphy EJ. The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array. Universe. 2022; 8(6):329. https://doi.org/10.3390/universe8060329
Chicago/Turabian StyleMurphy, Eric Joseph. 2022. "The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array" Universe 8, no. 6: 329. https://doi.org/10.3390/universe8060329
APA StyleMurphy, E. J. (2022). The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array. Universe, 8(6), 329. https://doi.org/10.3390/universe8060329