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Abstract: This manuscript is devoted to analyze hyperbolically symmetric non-static fluid distribution
incorporated with heat flux and electromagnetic field. We have developed a general framework in
order to examine the dynamic regime of the matter configuration which eventually results in the static
spacetime. With the aim of doing this, we constructed the Einstein-Maxwell (EM) field equations
and obtained the conservation equation. Furthermore, the formulation of mass function indicates the
presence of the negative energy density, which leads towards the significant quantum implications.
Taking into account the transport equation, we have observed the thermodynamical attributes of
the fluid. Additionally, quasi- homologous constraint has been utilized to construct several models.
We have deduced the worthwhile applications of the astrophysical objects by evaluating several
analytical solutions in terms of the kinematical variables.
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1. Introduction

Gravitational lensing is proving to be a valuable technique in astronomy, from exo-
planets to cosmology. This single phenomenon results in the diversity of applications that
can be derived from a bending of light by curved spacetime. Due to the fact that it is a
geometrical phenomenon, its concepts are simple to grasp and explain. The large clusters
of galaxies (which are both massive and centrally concentrated) are excellent candidates
for gravitational lens. The field of gravitational lensing has been steadily expanding in
its nearly two decades as an observational area of astronomy. As new understanding of
the phenomenon emerges from time to time, there are several articles on gravitational
lensing [1–3].

All information about the cosmos, with the exception of the solar system, which we
may directly examine, is carried by radiation or particles that reach on Earth after voyages
spanning millions or even billions of years. Even though meteorites and cosmic rays
contribute extremely significant data, the majority of our knowledge is derived from the
radiation emitted by celestial bodies, particularly the portion of this radiation accessible
to the naked eye and referred to as visible light. As a result, astronomical advancement is
dependent on the detection of this radiation and the development of tools to detect it. To
examine an astronomical object, whether it is a planet, a star, a massive structure such as a
big molecular cloud, or a galaxy, we must gather and study the radiation it emits.

Spherical symmetry [4] and hyperbolic symmetry [5] have experimentally meaningful
ramifications in both classical and quantum physics. The phrase “spherical symmetry”
suggests to the fact that an observer at the center of the matter distribution would see the
identical physical picture regardless of direction, making two of the coordinates cyclic. The
term “hyperbola” refers to a particular type of curve. It is defined as a trajectory of the
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moving particle in which the distance between a stationary point and a fixed vertical line is
constant and greater than one. In both the geometries, a straight line acts as a connection
between any two points. A circle may be created using any straight line segment as the
radius and one endpoint as the center. Moreover, right angles are all the same. The
difference between the two geometries is that the spherical one has the sum of right angles
greater than 180 degree. Its greatest possible path while keeping the initial and terminal
points same is a piece of a great circle. In it the parallel lines converge and its curvature
is positive. Contrary to that, in hyperbolic geometry, the sum of right angles are less than
180 degree. Its greatest possible path while keeping the initial and terminal points same is
a piece of a hyperbola. In it the parallel lines diverge and its curvature is negative.

After Einstein’s special theory of relativity (SR) was published in 1905, the immediate
step was to extend his theory to incorporate non-inertial reference frames, i.e., gravity
and acceleration. In 1907, Einstein wrote an article in which he described how he was
attempting to apply his theory of relativity to gravity for the first time. As a result, few
gravitational effects were investigated, including light bending, gravitational redshift (GvR)
and gravitational time dilation (GvT). In the sense that the frequency of light as it rises
out of a gravitational potential becomes redshifted as it undergoes time dilation, Einstein
demonstrated that GvT is the causal mechanism of GvR and bending of light. As a result,
observational and experimental confirmations of GvR are indirect confirmations of GvT.

Eventually, he published the proper version of GR on 25 November 1915 [6]. Over a
hundred years after its publication in 1915, GR has remained unchanged, and it is crucial
to astrophysics and cosmology. This theory has never failed a single test, making it one of
the most thoroughly tested theory in physics.

Since a long time, black holes and its alternative have been a very prominent topic
as end-states of stellar collapse [7–15]. In the late 1960s and early 1970s, new formal
breakthroughs in the area of GR, such as global approaches and Hawking and Penrose’s
singularity theorems, sparked renewed interest in black hole research. Quantum mechanics
and field theoretical approaches were also applied to black holes, resulting in ground-
breaking concepts such as Hawking Radiation and black hole entropy calculation. Black
holes have been intensively explored in both higher dimensions theories and lower dimen-
sional gravity. The event horizon, a null hypersurface, the interior and exterior of the black
hole, are the most essential characteristic of a black hole spacetime.

Karl Schwarzschild developed a precise solution to Einstein’s field equations (EFE) in
1915, which was published in 1916 [16]. Unless otherwise noted, the Schwarzschild solution
is utilized in most GR experiments. He also calculated the “Schwarzschild radius” (Rs),
which is the radius of a sufficiently massive object at which all particles, including photons,
will descend into the central region of massive object. Reissner-Nordström (RN) [17,18]
for charged static black holes, Kerr for rotating black holes [19], and Kerr-Newman [20]
for charged rotating black holes were later proposed as black hole solutions to the EFE.
Harrison [21] was the first one to derive alternative solution to Einstein equations of the
sort characterized by hyperbolic symmetry, it has since become the subject of investigation
in several disciplines [22–35].

Gravitational collapse is known as highly dissipative phenomena [36–38]. Gaudin et al. [39]
extensively analyzed the substantial parameters of specific case of hyperbolically dis-
tributed matter. Furthermore, they investigated the several solutions of static Einstein
equation in the presence of a massless scalar field and established their relationship to
Kantowski-Sachs cosmological solutions via duality transformations. Herrera et al. [40]
conducted a thorough investigation on the hyperbollically symmetric matter configuration
by taking into account the non-static regime. They evaluated several solutions using quasi-
homologous, vanishing of complexity factor condition and the supplementary constraints
for the dissipative as well as non-dissipative systems. Moreover, they [41] also did the afore-
mentioned work by using the approach of Lemaître-Tolman-Bondi spacetime endorsed
with hyperbolic symmetry. Oikonomou and his collaborators [42–46] analyzed various
issue of stellar and cosmic evolution, in particularly the role of cosmological attractors on
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a slowly rotating celestial bodies. The articles [47–50] addressed the significant issues of
cosmology and inflation in the context of teleparallel and tetrad theory of gravity.

Yousaf et al. [51–54] examined the anisotropic static fluid distributed hyperbolically
in the framework of different modified theories. They carried out this analysis both in
the presence as well as in the absence of charge. Along with this, they have evaluated
structure scalars and several analytical solutions. Malik et al. [55] gave a few numerical
solutions after solving the associated differential equations to represent the distribution of
hyperbolically symmetric matter throughout the cylindrical geometry. Cao and Wu [56]
analyzed the occurrence of strong hyperbolicity under certain gauge restrictions by taking
into consideration metric f (R) gravity.

This manuscript presents the consequence of electromagnetic force on the Herrera et al. [40]
work. With the aim of doing this, we assess the impact of charge on the dynamics of hy-
perbolically symmetric matter distribution. Section 2 describes the general formalism for
computing the EM field equations. Section 3 specifies the field equations together with
the conservation equations for the dynamical system. The evaluation of the kinematical
variables, mass function and the collapsing velocity are included in Section 4. Section 5
deals with Conformal tensor and complexity factor. Sections 6 and 7 are devoted for the
calculation of transport equation and quasi-homologous condition, respectively. In section
8, the possible non-static solutions for the anisotropic charged hyperbolically symmetric
fluid distribution have been offered by evaluating various conditions for both the dissipa-
tive and non-dissipative systems. Section 9 is occupied for the discussion and final remarks
of the manuscript.

2. Basic Formalism

In the framework of GR, the consequence of charge on the 4-dimensional gravitational
action is expressed as

AG(R) =
1

2κ

∫
d4x
√
−g[R + Le + Lm], (1)

where κ, g, Le and Lm depict the coupling constant, the metric tensor’s magnitude, elec-
tromagnetic field and matter distribution, respectively. Due to the fact we use normalized
units in our scenario (G = c = 1), the coupling constant is reduced to 8π. The Ricci scalar,
symbolized as R, is the portion of spacetime curvature that defines the amount of change
in surface area caused by matter. The tensor characterizing the electromagnetic field can be
defined as

Tem
ζξ =

1
4π

(Fα
ζ Fξα −

1
4

Fαη Fαη gζξ). (2)

The electromagnetic field tensor Fξζ is expressed as Fξζ = φζ,ξ − φξ,ζ . The four-
potential is formulated as φζ = φ(t, r)δ0

ζ via the scalar potential φ(t, r). We chose the
aforementioned form of potential as we consider that the charge is at rest and as a result,
the magnetic field vanishes. Next, we consider a suitable interior metric to study the
evolving fluid distributed hyperbolically, given below

ds2 = −J2(t, r)dt2 + K2(t, r)dr2 + H2(t, r)dθ2 + H2(t, r)sinh2 θdφ2, (3)

where K2(t, r), J2(t, r) and H2(t, r) are assumed positive. As, metric coefficients are non-
static they depend on t and r. In order to evaluate the electromagnetic stress tensor’s
non-vanishing components, we utilize Equations (2) and (3) and get

Tem
00 =

s2 J2

8πH2 ; Tem
11 = − s2 J2

8πH2 ; Tem
22 =

s2

8πH2 ; Tem
33 = Tem

22 sinh2 θ,
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where s and θ illustrate the charge and angle, respectively. The relationship between the
geometry and the matter of the spacetime is accomplished as

Gζξ = 8πTζξ = 8π

(
Tm

ζξ + Tem
ζξ

)
, (4)

where Gζξ denotes the Einstein tensor and Tm
ζξ is expressed as

Tm
ζξ =(µ + P)VζVξ − Pgζξ + Πζξ + q(Vζ χξ + Vξχζ), (5)

where Tm
ζξ portrays the stress-energy tensor for the locally anisotropic hyperbolically sym-

metric evolving fluid configuration. Moreover, µ, Vζ , P and Πζξ are the energy density, four
velocity, anisotropic pressure, and anisotropic tensor of the evolving matter, respectively.
They are characterized as

P =
2P⊥ + Pr

3
, Πζξ = Π

(
Kζ Kξ −

hζξ

3

)
,

hζξ = gζξ + VξVζ , Π = Pr − P⊥,

where Kζ , P⊥ and Pr represent the four vector, tangential and radial components of pressure,
respectively. In the case of comoving observers, we take Vζ = J−1δ

ζ
0 , qζ = qK−1δ

ζ
1 , and

χζ = K−1δ
ζ
1 . It is notable that the reformulation of tangential and the radial pressures can

involve the bulk viscosity. Since, we are examining the influence of the electromagnetic
force, it will be worthy to derive the Maxwell’s equations, which are formulated as

Fζξ
;ξ = µ0 ζ , F[ζξ;α] = 0. (6)

where ζ = ρ(t, r)Vζ is the four-current and ρ(t, r) shows charge density. The differential
equations evaluated from the tensorial forms of Maxwell’s equations are

φ′′ +

(
J′

J
+

K′

K
− 2

H′

H

)
φ′ = 4πρJK2, (7)

φ̇′ −
(

J̇
J
+

K̇
K
− 2

Ḣ
H

)
φ′ = 0 (8)

where primes and dots indicate the derivative with respect to radial and temporal coordi-
nates. Equation (7) on integration produces

φ′ =
JKs
H2 , (9)

where the electric charge (s), interior to the radius is expressed as

s = 4π
∫ r

0
ρKH2dr. (10)

In the rotation of plasma resulted by an external force, the concept of global charge is
indubitably important. The stars could be made of highly ionized matter, they are expected
to have a charge on it.
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3. Einstein-Maxwell and Conservation Equation

In this section, we will evaluate the field equations as well as the conservation equations
to further proceed our work. The field equations are determined using Equations (3) and (4)
and the non-zero Einstein and electromagnetic field tensors, as follows

8π

(
µ +

s2

8πH4

)
= − 1

H2 −
1

K2

[(
H′

H

)2

− 2K′

K
H′

H
+

2H′′

H

]
+

1
J2

(
2K̇Ḣ
HK

+
Ḣ2

H2

)
, (11)

4πq = − 1
JK

(
H′

H
K̇
K
+

J′

J
Ḣ
H
− Ḣ′

H

)
, (12)

8π

(
Pr −

s2

8πH4

)
=

1
H2 +

1
K2

[
2H′ J′

JH
+

(
H′

H

)2]
+

1
J2

(
2Ḣ J̇
JH
− Ḣ2

H2 −
2Ḧ
H

)
, (13)

8π

(
P⊥ +

s2

8πH4

)
=

1
K2

(
J′H′

JH
− J′K′

JK
− H′K′

HK
+

J′′

J
+

H′′

H

)
+

1
J2

(
J
J

K̇
K
+

J̇
J

Ḣ
H
− K̇

K
Ḣ
H
− K̈

K
− Ḧ

H

)
. (14)

Next, we evaluate the dynamical equations in the presence of charge. There exists
only two independent components of the conservation laws (Tξ(m)

ζ + Tξ(em)
ζ );ξ = 0, which

are as follows

µ̇ + 2
(

P⊥ + µ

)
Ḣ
H

+

(
µ + Pr

)
K̇
K
+ q′

J
K
+ 2q

J
K

(
J′

J
+

H′

H

)
= 0 (15)

P′r −
ss′

4πH4 +

(
µ + Pr

)
J′

J
+ 2Π

H′

H
+ q̇

K
J
+ 2q

K
J

(
K̇
K
+

Ḣ
H

)
= 0. (16)

In Equation (15) the effects of charge has been cancelled during mathematical work.
Besides, one can observe the presence of charge in Equation (16). In latter equation the
first term, i.e., P′r is the gradient of the pressure which acts as the opposite to gravity. The
anisotropy factor is indicated by Π which measures the influence of anisotropy in the
system.

4. Kinematical Variables, Mass Function and Collapsing Velocity

Kinematics is used to describe the motion of an object that is under consideration,
neglecting the forces that cause that motion. These variables are those significant variables
that are used to describe the motion of the fluid while the mass of the object has not been
taken into account. The first variable is the four acceleration which gives the information
about the inertial forces and is defined as

aγ = Vγ;ξVξ . (17)

Utilizing the definition of four velocity and the line element, we can obtain the non-
zero components of four acceleration as follows

a1 =
J′

J
, a =

√
aξ aξ =

J′

JK
, (18)

where a depicts the scalar of four acceleration. The second essential variable to illustrate
the fluid motion is expansion tensor. The general formula for the expansion tensor that
appears in the non static fluid distribution is

Θγξ = V(β;ν)h
β
γhν

ξ (19)
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The trace of the tensor is named as expansion scalar. The expansion scalar describes us
about the amount by which the volume of the fluid element increases with respect to time.
It can be written as Θ = Vξ

;ξ . Utilizing the line element and the four velocity, we obtain

Θ =

(
2

Ḣ
H

+
K̇
K

)
1
J

. (20)

The third variable is the stress tensor which calculates the distortion in timelike curves
without changing the volume. It depicts the prospect of a geodesic sphere becoming warped
into an ellipsoidal shape. The non-zero components of shear tensors are evaluated as

σ11 =
2
3

K2σ, σ22 =
σ33

sinh2 θ
= −1

3
H2σ. (21)

The trace of the shear tensor is formulated and delineated as

σγξσγξ =
2
3

σ2, σ =

(
K̇
K
− Ḣ

H

)
1
J

. (22)

The consequences of charge on the mass of the object defined by Misner-Sharp [57] is
evaluated as

m = −H
2

R3
232 =

[
1 +

(
H′

K

)2

−
(

Ḣ
J

)2

+
s2

H2

]
H
2

. (23)

Now, we look at the dynamics of the celestial objects by taking into account the proper
radial derivative (DH = 1

H′
∂
∂t ) and the proper time derivative (DT = 1

J
∂
∂t ), respectively.

The proper derivative operator can be used to calculate the relativistic velocity of the
interior of the collapsing star. Collapsing fluid velocity (U) is defined as a change in areal
radius with proper time, i.e., U = DT H. This collapsing velocity of the fluid should be
taken as negative. The connection between collapsing velocity and mass of the object under
the influence of charge, can also be observed with the help of following equation

E2 ≡
(

H′

K

)2

=

(
2m
H
− 1 + U2 − s2

H2

)
. (24)

The mass function varies with respect to the proper derivative operators as

DT(m) = 4π

(
Pr −

s2

8πH4

)
UH2 − s2

JH2 −
s2Ḣ

2JH2 + 4πqEH2, (25)

DHm +
s2

H2 = −4π

[
µ +

s2

8πH4 + q
U
E

]
H2 +

ss′

HH′
. (26)

Equation (26) upon integration yields

m− s2

2H
= −4πµH3

3
+ 4π

∫ r

0

H3

3
∂µ

∂r
dr− 4π

∫ r

0

qUH2H′

E
dr−

∫ r

0

ss′

H
dr. (27)

Integration of Equation (27) produces

3m
H3 = −4πµ +

4π

H3

∫ r

0
H3
[

DHµ− 3DHs2

2H
− 3qUH2

E

]
H′dr +

3s2

H4 . (28)

Equation (27) satisfies the regular condition m(t, 0) = 0. Due to the fact that any causal
transport equation is formed on the notion that the fluid is close to thermal equilibrium, i.e.,
q << |µ|. Hence, Equation (27) indicates that µ is inevitably negative with the restriction
that H′ > 0 along with s2

2H −
∫ r

0
ss′
H dr > 0 while keeping in mind that E is a regular function
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and the mass of the fluid distribution cannot be negative. The use of Equations (12) and (13)
give

DTU =
m
H2 − 4πHPr + aE, (29)

DH

(
U
H

)
=

4πq
E

+
σ

H′
, (30)

which transform Equations (15) and (16) as

DTµ +
1
3

(
3µ + Pr + 2P⊥

)
Θ +

2
3

(
Pr − P⊥

)
σ + EDHq

+ 2q
(

a +
E
H

)
= 0 (31)

EDH Pr −
ss′

4πKH4 +

(
µ + Pr

)
a + 2

(
Pr − P⊥

)
E
H

+ DTq +
2
3

q(2Θ + σ) = 0. (32)

The combination of Equations (29) and (32) yield

(Pr + µ)DTU = −E2
[

DH Pr +
2
H

Π
]
+

ss′

4πKH4 −
(

µ + Pr

)(
4πPr H3 −m

)
1

H2

− E
[

DTq +
2
3

q(2Θ + σ)

]
, (33)

where (µ + Pr) and (4πPr H3 −m) depict the passive gravitational mass and active gravita-
tional mass, respectively.

5. Conformal Tensor and Complexity Factor

In this section, the conformal scalar will be evaluated by means of Conformal tensor.
The Conformal tensor is the conformally invariant part of the Curvature tensor [58]. While
moving along a geodesic a body feels a tidal force which can be expressed with the help
of Conformal tensor. Moreover, we will discuss about the structure scalar YTF which is
chosen to be the complexity factor of the fluid configuration. Eventually, the complexity
factor will be stated in the context of metric coefficients and their derivatives, which would
aid to construct different stellar models. The first step is to evaluate the conformal scalar
with the help of Conformal tensor which is designated as

W(e)
ζξ = ε

(
χζχξ −

hξζ

3

)
(34)

where W(e)
ζξ is the electric part of the Conformal tensor as the magnetic part vanishes in our

scenario. Here, the conformal scalar is denoted by ε and is computed in terms of our line
element as

ε =
1

2K2

[
− J′

J
H′

H
+

K′

K

(
H′

H
− J′

J

)
+

(
H′

H

)2

+
J′′

J
− H′′

H

]
+

1
2J2

[
J̇
J

K̇
K
− J̇

J
Ḣ
H

+
Ḣ
H

K̇
K
−
(

Ḣ
H

)2

− K̈
K
+

Ḧ
H

]
+

1
2H2 . (35)

In GR, when the Ricci tensor is zero, the Conformal tensor imparts curvature to the
spacetime. The Ricci tensor in GR is derived from the energy-momentum of the local fluid
distribution. The Ricci tensor will be zero if the matter distribution is zero, but spacetime
is not always flat in this instance due to the fact that Conformal tensor adds curvature to
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the Riemann curvature tensor. Thus, the gravitational field in spacetime vacuum scenarios
is not always zero. This phrase permits gravity to propagate in areas with no matter or
energy.

Next, we are going to compute the structure scalar YTF named as the complexity
factor. There will be five structure scalars that can be found for our fluid configuration by
implementing the method of orthogonal splitting of the Reimann tensor [59]. Our focus
is on the YTF which is helpful to estimate the extent of complexity in celestial objects and
hence named as complexity factor. To gain more knowledge about the structure scalars one
can see [60–63]. We will cover the main steps to reach our goal. In order to evaluate the
complexity factor, the first step is to consider the tensor [60]

Yζξ = RζηξδVηVδ,

where Vη depicts the four velocity. The previously mentioned tensor can be divided in
term of its trace and trace free portion as

Yζξ =
YThξζ

3
+ YTF

(
χζ χξ −

hξζ

3

)
(36)

With the help of the field equations and Equation (35), one can easily procure

YT = 4π(µ− 2Π + 3Pr) +
s2

4πH4 ,

YTF = −4πΠ + ε +
s2

H4 . (37)

The combination of Equations (13), (14), (23) and (35) result in the following equation

3m
H3 = 4πΠ− 4πµ + ε− 3s2

2H4 (38)

Making use of Equations (28) and (37), the following expression is achieved

YTF = −8π

(
Π− s2

4πH4

)
+

4π

H3

∫ r

0
H3
(

DRµ− 3DRs2

2H
− 3qUH2

E

)
H′dr +

3s2

H4 . (39)

The use of field equations and the expression for ε turns Equation (39) into

YTF =
1

K2

(
J′′

J
− J′

J
H′

H
− J′

J
K′

K

)
+

1
J2

(
J̇
J

K̇
K
− J̇

J
Ḣ
H
− K̈

K
+

Ḧ
H

)
. (40)

The scalar function YTF has been chosen as a measure of the complexity of the fluid
structure. The motivation behind it is that, it highlights the maximum information about
the matter distribution by measuring the anisotropic pressure and inhomogeneity in the
energy density. In addition to that, YTF is the same as in the static case, ensuring that
we recover the correct complexity factor expression in the limit to the static regime. The
dissipative variables are also included in it. The condition YTF = 0 is helpful to develop
different models as well as it can also tell us about the effects of charge on the physical
attributes of the astrophysical objects.

6. Transport Equation

In thermodynamics, the radiative flow within a fluid is governed by the transport
equation. This equation is utilized in diffusion approximation during a dissipative grav-
itational collapse. We will use a heat transfer equation [64] derived from a well-known
dissipation theory [65,66] to describe the thermodynamical effects. The temperature of
the dynamically collapsing stellar fluid is taken into account in this equation. It is a gen-
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eral partial differential equation that describes transportation phenomena including mass
transfer, heat transmission and fluid dynamics, etc, and is formulated as

τhζξVγqξ;γ + qζ = −κhζξ
(
T,ξ + Taξ

)
− 1

2
κT2

(
τVξ

κT2

)
;ξ

qζ , (41)

where T, κ and τ indicate the temperature, thermal conductivity and the relaxation time,
respectively. The non-vanishing component of Equation (41) is

τDTq = −q− κ

JK
(JT)′ − 1

2
τΘq− 1

2
κT2DT

( τ

κT2

)
q. (42)

The truncated version of transport equation can be written as

τhζξVγqξ;γ + qζ = −κhζξ
(
T,ξ + Taξ

)
, (43)

whose non-vanishing component is

τq̇ + qJ = − κ

K
(TJ)′. (44)

The temperature gradient is related to the four acceleration as

(TJ)′ = 0⇒ T′ =
TJ′

J
= −TaK. (45)

Because of the equivalence principle, thermal energy will seek to shift to places with
lower gravitational potential, changing the thermal equilibrium condition in the presence
of a gravitational field. To put it another way, a temperature gradient is now required to
maintain thermal equilibrium [67]. Equation (45) shows that if a < 0 then the gravitational
force will be repulsive in nature and the temperature gradient will be positive in this case
to keep the system in thermal equilibrium.

7. Quasi- Homologous Constraint

In this section, we determine the condition which is designed to meet the need of least
intricate form of evolution. To do so, the first step is to write Equation (12) as(

U
H

)′
= 4πqK + σ

H′

H
. (46)

The solution of the differential Equation (46) is obtained with the aid of Equation (24),
is

U = j̃(t)H + H
∫ r

0

(
4πq

E
+

σ

H

)
H′dr, (47)

where j̃(t) denotes the integration constant. The boundedness of fluid distribution by a
surface Σe is defined with the help of expression r = rΣe = constant. Implementing the
previously stated constraint on Equation (47), one can attain

U = H
UΣe

HΣe
− H

∫ rΣe

r

(
4πq

E
+

σ

H

)
H′dr. (48)

The quasi-homologous constraint suggests

U = H
UΣe

HΣe
, (49)
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which entails

4πq
E

+
σ

H
= 0. (50)

In classical astrophysics, this condition has wide applications as it is the relativistic
interpretation of homologous condition. This condition will be used as a supplementary
condition with the condition YTF = 0 to construct several specific models. In order to have
a better understanding for this condition one can see [68–71].

8. Stellar Models

In this section, we will give several precise solutions representing dissipative or non-
dissipative systems that meet the diminishing complexity factor criterion and evolve quasi-
homologously. Moreover, to completely describe the models, some realistic conditions will
also be used.

8.1. Vanishing Dissipation

In spite of the fact that in this manuscript our concern is with the dissipative systems
still, to complete the picture, we will discuss what will be the scenario when the heat flux
nullifies. Consider the quasi homologous condition and put heat flux equals to zero in it,
we obtain

q = 0⇒ σ = 0⇒ K̇
K

=
Ḣ
H
⇒ H = rK. (51)

Utilizing Equation (47), we get

U =
Ḣ
J
=

rK̇
J

= j̃(t)rK. (52)

The implementation of the condition of vanishing complexity factor gives

J′′

J
− J′K′

JK
− J′H′

JH
= 0 (53)

Equation (53) shows that in non-dissipative system there is also no influence of charge
on the complexity factor, in order to keep it zero.

8.1.1. Isotropic Pressure and Conformal Flatness

Here, we impose a few supplementary constraints that the surface is conformally flat
(ε = 0) and the pressure is isotropic (Π = 0), in order to provide particular solution. The
previously stated constraints along with YTF = 0 nullifies the effect of density inhomo-
geneity, i.e., µ′ = 0. Utilizing the condition of conformal flatness and pressure isotropy, we
achieve the following equation

1
H2 +

1
K2

[(
H′

H

)2

+
K′

K
H′

H
− H′′

H

]
− 1

J2

(
Ḣ2

H2 −
K̇
K

Ḣ
H

)
= 0. (54)

Equations (53) and (54), with the help of Equation (51), turns out into

1 + r2
[

2
(

H′

H

)2

− 1
r

H′

H
− H′′

H

]
= 0 (55)

and

J′′

J
− J′

J

(
2H′

H
− 1

r

)
= 0. (56)
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The solution of the system of differential Equations (55) and (56) give

H =
H̃(t)

cos
[

a1(t) + ln r
] , (57)

K =
H̃(t)

r cos
[

a1(t) + ln r
] , (58)

J = γ(t)H̃2(t) tan
[

a1(t) + ln r
]
+ k(t), (59)

where H̃(t), a1(t), γ(t), k(t) are arbitrary functions of time. One can also accomplish
the above mentioned solutions using Maple or Mathematica. In order to further specify the
solution, we introduce some functions

ȧ1 =
˙̃H

H̃
, k(t) = γ(t)H̃2, (60)

which generates

Ḣ
H

=
Ḣ
H̃
(1 + tan u), (61)

J = γ(t)H̃2(1 + tan u), ⇒ J =
j̃Ḣ
H

, (62)

where u = a1(t) + ln r and j̃ = γ(t)H̃3

H̃ . With the aid of above functions one can easily
evaluate the physical parameters and the mass functions as

8π

(
µ +

s2

8πH4

)
= − 3

H̃2 +
3
j̃2

, (63)

8π

(
Pr −

s2

8πH4

)
= − 3

j̃2
+

3 tan u + 1
H̃2(tan u + 1)

+
2H̃ ˙̃j

j̃3Ḣ(tan u + 1)
, (64)

8π

(
P⊥ +

s2

8πH4

)
= − 3

j̃2
+

3 tan u + 1
H̃2(tan u + 1)

+
2H̃ ˙̃j

j̃3Ḣ(tan u + 1)
(65)(

m− s2

2H

)
=

H̃
2 cos3 u

(
1− H̃2

j̃2

)
. (66)

If we set H̃(t), a1(t) and γ(t) to constants as t approaches to infinity, the foregoing
solution tends to the incompressible isotropic solution in [26], which is a special case of the
hyperbolically symmetric Bowers-Liang solution in [28].

Due to the fact that this model share several aspects (i.e., ε = σ = Π = µ′ = 0), the
above solution might be regarded as the version of the Friedman-Lemaître-Robertson-
Walker spacetime (FLRW) for the charged hyperbolically symmetric situation. However,
unlike the spherically symmetric instance, it is not geodesic. As a result, we will look for
another hyperbolically symmetric FLRW spacetime that also meets the geodesic criterion
in the presence of charge.
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8.1.2. Geodesic Solutions

In this section, we will impose the additional geodesic condition on the fluid and then
evaluate the physical parameters together with mass function under the influence of charge.
To do so, we put J = 1 and the quasi homologous condition gives

HI
HI I

= constant (67)

where HI and HI I are the areal radii of two shells (I, II), illustrating with help of expressions
r = rI = constant and r = rI I = constant, respectively. Putting J = 1 and q = 0 in
Equation (12), we get

K̇
K

=
Ḣ′

H′
. (68)

Equation (67) is the indication that H is a separable function. As a result, K is also
separable function utilizing H = rK. Therefore, according to simple reparametrization of r,
K depends on t only, i.e.,

H = rK(t). (69)

Equation (68) is also satisfied using Equation (69). Moreover, YTF = 0, as verified by
Equation (40). The physical attributes of this model are found to be

8π

(
µ +

s2

8πH4

)
= − 2

r2K2 +
3K̇2

K2 , (70)

8π

(
Pr −

s2

8πH4

)
=

2
r2K2 −

K2

K2 −
2K
K

, (71)

8π

(
P⊥ +

s2

8πH4

)
= −2K2

K2 −
2K
K

, (72)(
m− s2

2H

)
=

rK
2

(
2− r2K̇2

)
, (73)

Equation (47) in the absence of heat flux and shear becomes U = j̃(t)H. If the fluid
is geodesic then the expression U = j̃(t)H suggests (67) in the background of relativistic
regime. While in non relativistic regime, the proportionality between areal radius and
velocity always suggests (67).

In short, the fluid is shear-free, conformally flat, geodesic, develops homologously, and
meets the criterion of diminishing complexity factor even in the presence of electromagnetic
force. In this way, it might be thought of as a hyperbolically symmetric form of the FRW
spacetime under the influence of charge. But it is anisotropic, and the energy density is
inhomogeneous, unlike the spherically symmetric case.

Eventually , it is informative to construct a toy model using the aforementioned results
given in Equations (70)–(73) by selecting a particular form for the function H that leads to
a static regime asymptotically. Therefore, suppose

K = ω(e−αt + 1) (74)

where ω and α are positive constants. It can be straightforwardly verified that as t ap-
proaches to infinity we get

8π

(
µ +

s2

8πH4

)
= − 2

r2ω2 , 8π

(
Pr −

s2

8πH4

)
=

2
r2ω2 (75)

8π

(
P⊥ +

s2

8πH4

)
= 0,

(
m− s2

2H

)
= rω. (76)



Universe 2022, 8, 337 13 of 20

As a result, the static solution corresponding to the stiff equation of state (Pr = |µ|)
reported in [72] converges to our toy model.

8.2. Dissipative Case with K = 1

Dissipation is the concept of the dynamical system which experiences the loses in
energy by virtue of the frictional forces. In this subsection, we will discuss about the
dissipative solutions whose velocity between the neighboring layers of matter (DT(δl)) is
zero but the areal velocity (U) is not zero. The condition DT(δl) = 0 produces H = H(r)
and by simple reparametrization and without the loss of generality, we can consider

K = 1, J =
Ḣ

j̃(t)H
. (77)

Utilizing Equation (77) in the field equations, the consequence of charge on the physical
variables for this specific model is evaluated as

8π

(
µ +

s2

8πH4

)
= − 1

H2 −
2H′′

H
−
(

H′

H

)2

+ j̃2, (78)

4πq =
j̃(t)H′

H
, (79)

8π

(
Pr −

s2

8πH4

)
=

1
H2 −

(
H′

H

)2

+
2Ḣ′H′

ḢH
− 2 j̇ j̃

H
Ḣ
− 3 j̃2, (80)

8π

(
P⊥ +

s2

8πH4

)
=

Ḣ′′

Ḣ
− Ḣ′

Ḣ
H′

H
+

(
H′

H

)
− ˙̃jj̃

H
Ḣ
− j̃2. (81)

As we described earlier that there is a loss of energy in the process of dissipation. This
loss in energy becomes the cause for the rise in temperature by transforming it into heat.
Hence, one can say that the thermal energy releases in the dissipation processes of the sys-
tem. The temperature for this particular model is calculated using Equations (44) and (77)
as

T(t, r) =
j̃H
Ḣ

(
f (t)− τ j̇

4πκ
ln H − 1

4πκ

∫ Ḣ
H

H′

H
dr
)
− τ j̃2

4πκ
, (82)

where f (t) is arbitrary function of t and treated as function of integration. The combination
of quasi-homologous condition and vanishing complexity factor generate

J′′ − J′
H′

H
+ Jσ2 = σ̇, (83)

− Ḣ
σH

= J. (84)

Inserting variables (Y, Z), we get

J = Y +
σ̇

σ2 and R = Y′Z. (85)

Equations (83) and (84) turn out to be

−Y′Z′

YZ
+ σ2 = 0, (86)

Ẏ′

Y′
+

Ż
Z

= −σY− σ̇

σ
. (87)

Due to the fact that these models include a vacuole surrounding the center, we should
not be concerned with regularity conditions at the center. Thereby, we will choose certain
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solutions among the family of dissipative solutions. Implementation of supplementary
restrictions on Equations (86) and (87) will permit us to integrate these equations.

8.2.1. Y Is a Separable Function

Now, we integrate the Equations (86) and (87) by treating Y as a separable function
and compute the metric coefficients as

J =
σ̇

2ω2σ2

[
2ω2 − σ2(ωr + a1)

2
]

, (88)

H =
H̃0

σ
e

σ2

4ω2 (ωr+a1)
2
(ωr + a1), (89)

j̃ = −σ. (90)

The substantial parameters are obtained with the help of Equations (88)–(90) as

8π

(
µ +

s2

8πH4

)
= −σ2e−

σ2

2ω2 (ωr+a1)
2

H̃2
0(ωr + a1)2

− ω2

(ωr + a1)2 −
3σ4

4ω2 (ωr + a1)
2 − 3σ2, (91)

4πq = −σ[2ω2 + σ2(ωr + a1)
2]

2ω(ωr + a1)
, (92)

8π

(
Pr −

s2

8πH4

)
=

σ2e−
σ2

2ω2 (ωr+a1)
2

H̃2
0(ωr + a1)2

− 4σ2ω2

2ω2 − σ2(ωr + a1)2 +
ω2

(ωr + a1)2 +
σ4

4ω2 (ωr + a1)
2, (93)

8π

(
P⊥ +

s2

8πH4

)
= − σ2[2ω2 + σ2(ωr + a1)

2]2

4ω2(2ω2 − σ2(ωr + a1)2)
, (94)(

m− s2

2H

)
=

H̃0(ωr + a1)

2σ
e

σ2

4ω2 (ωr+a1)
2
{

1 +
H̃2

0
4σ2ω2

[
4ω4 + σ4(ωr + a1)

4
]

e
σ2

2ω2 (ωr+a1)
2
}

. (95)

Equations (91) and (94) show the fall in the density and the tangential pressure under
the influence of electric force. Contrary to that, Equations (93) and (95) show that the
radial pressure and mass function increase in the presence of charge. The heat flux remains
unchanged under the charge distribution. In this case, the temperature is computed as

T(t, r) = 2ω2σ2

σ̇

[
2ω2−σ2(ωr+a1)2

]{ f (t) + σ̇τ
4πκ

[
σ2

4ω2 (ωr + a1)
2 + ln

[
H̃0
σ (ωr + a1)

]]

+ σ̇
4πσκ ln(ωr + a1)− σ̇σ3

64πω4κ
(ωr + a1)

4
}
− τσ2

4πκ ,

(96)

where f (t) is an arbitrary function associated with T. It is found that there is no effect of
charge distribution on the temperature of the fluid.

8.2.2. J = J(r)

Next, we derive the solutions of Equations (86) and (87) by treating J as a function of r
only

J =
1
4
(
√

2b0r + a1)
2, j̃ = b0t− b1, (97)

H = H̃(r)e−
1
4 (
√

2b0r+a1)
2(− b0

2 t2+b1t), (98)

where b0, b1 and a1 are constants. Next, the physical parameters are obtained by utilizing a
restriction, i.e., H̃ = H̃0 = constant
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8π

(
µ +

s2

8πH4

)
= b2

1 −
3b0

2
(
√

2b0r + a1)
2
(
− b0

2
t2 + b1t

)2

− 1
H̄2

0
e

1
2 (
√

2b0r+a1)
2(− b0

2 t2+b1t), (99)

4πq =

√
2b0

2
(
√

2b0r + a1)(−
b0

2
t2 + b1t)(−b0t + b1), (100)

8π

(
Pr −

s2

8πH4

)
=

1
H̃2

0
e

1
2 (
√

2b0r+a1)
2(− b0

2 t2+b1t) − t2b2
0 + 2tb0b1 − 3b2

1 −
8b0

(
√

2b0r + a1)2

+
b0

2
(
√

2b0r + a1)
2
(
− b0

2
t2 + b1t

)2

, (101)

8π

(
P⊥ +

s2

8πH4

)
=

1
2

b2
0t2 − tb0b1 − b2

1 +
b0

2
(
√

2b0r + a1)
2
(
− b0

2
t2 + b1t

)2

, (102)(
m− s2

2H

)
=

H̃0

2
e−

1
4 (
√

2b0r+a1)
2(− b0

2 t2+b1t)
{

1 + H̃2
0

[
b0

2
(
√

2b0r + a1)
2
(
− b0

2
t2 + b1t

)2

− (b0t− b1)
2
]

e−
1
2 (
√

2b0r+a1)
2(− b0

2 t2+b1t)
}

. (103)

The decrease in the density and tangential pressure has been noticed in the presence of
charge from Equations (99) and (102). While the involvement of charge shows the increase
in radial pressure and mass function as one can witness it from Equations (101) and (103).
Also, there is no effect of charge on the heat flux. The expression of temperature for this
particular model is obtained as

T(t, r) = 4
(
√

2b0r+a1)2

{
f (t)− τb0

4πκ

[
ln H̃0 − 1

4

(
− b0

2 t2 + b1t
)
(
√

2b0r + a1)
2
]}

−

(
− b0

2 t2+b1t

)
(−b0t+b1)(

√
2b0r+a1)

2

32πκ − τ(−b0t+b1)
2

4πκ ,

(104)

where f (t) is an arbitrary function of time associated with the temperature. It is found that
temperature remains unaltered in the presence of charge.

8.3. Constant Shear Scalar

Here, we use the approach of constant shear scalar in order to obtain the solutions of
Equations (86) and (87), as

J = ωr− ω2

σ
t + ω0, ã = −σ = const , (105)

H = H̃0ωe

(
σ2
2 r2−σωtr+ σ2ω0

ω r+ ω2
2 t2−σω0t

)
. (106)

Making use of the Equations (105) and (106), one can compute the substantial parame-
ters for this particular model as
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8π

(
µ +

s2

8πH4

)
=− σ2 − 3

[
σ2
(

r +
ω0

ω

)
− σωt

]2

− e
−2

(
σ2
2 r2−σωtr+ σ2ω0

ω r+ ω2
2 t2−σω0t

)
H̃2

0 ω2
, (107)

4πq =− σ3
(

r− ω

σ
t +

ω0

ω

)
, (108)

8π

(
Pr −

s2

8πH4

)
= −σ2 + σ4

(
r− ω

σ
t +

ω0

ω

)2

+
e
−2

(
σ2
2 r2−σωtr+ σ2ω0

ω r+ ω2
2 t2−σω0

)
H̃2

0 ω2
, (109)

8π

(
P⊥ +

s2

8πH4

)
= σ2 +

[
σ2
(

r +
ω0

ω

)
− σωt

]2

, (110)

(
m− s2

2H

)
=

H̃0ω

2
e

(
σ2
2 r2−σωtr+ σ2ω0

ω r+ ω2
2 t2−σω0t

){
1 + H̃2

0 ω2σ2
[

σ2

ω2

(
ωr

− ω2t
σ

+ ω0

)2

− 1
]

e
2

(
σ2
2 r2−σωtr+ σ2ω0

ω r+ ω2
2 t2−σω0t

)}
. (111)

The decrease in the density and tangential pressure has been noticed in the presence
of charge from Equations (107) and (110). While in the presence of electric force the radial
pressure and mass function increases as one can verify it from Equations (109) and (111).
The temperature for the particular model is evaluated as

T(t, r) =
f (t)(

ωr− ω2

σ t + ω0

) +
σ3

12ω2πκ

(
ωr− ω2

σ
t + ω0

)2

− τσ2

4πκ
, (112)

here f (t) depicts the arbitrary function of time associated with temperature. There is no
influence of charge on the temperature as one can see from Equation (112).

9. Discussion and Final Remarks

The effects of electric field inside the massive star allowed by a particular charge
fraction has been investigated in this manuscript. The quantity of charge stored in a dense
system like compact star can be quite immense, several orders of magnitude greater than
those estimated by classical balance of forces at the star’s surface. The high density of the
system is primarily responsible for this quantity of charge. Highly compact stars, whose
radius is on the cusp of producing an event horizon, can be balanced by massive amounts
of net charge, allowing the massive gravitational attraction to be balanced. A star can have
a large quantity of charge if the charge to mass ratio of the particles that make up the star is
low, say one or of order one. The matter inside the stars is large in density and pressure.
Also, the gravitational field is very strong. This shows the presence of an electric charge as
well as a strong electric field.

In this paper, we thoroughly examined the substantial determinants of the non-static
anisotropic matter configuration endorsed with the hyperbolically symmetry in the pres-
ence of charge. To do so, we have constructed a fundamental scheme that permit us to
gain insight into the dynamics of aforementioned fluid configuration, which eventually
leads towards the static spacetime. All the results accomplished are quite extensive that it
is expected they could be applied to further scenarios associated with hyperbolic symmetry
with an electric charge. The presence of vacuole in the central region and the negative
energy density are notable characteristics of both static and non-static hyperbolically dis-
tributed fluids. The negative energy density point towards the violation of the weak energy
condition as well as the involvement of the quantum effects. As a consequence, we can
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say that the fluid which is taken into account in this manuscript can be useful in the study
where quantum effects are intended to be relevant. The presence of the vacuole is the
indication of the zero expansion scalar. In this scenario, the relativistic fluid evolve with-
out experiencing any compression. Moreover, the zero expansion condition suggests the
occurrence of pressure anisotropy as well as the energy density inhomogeneity. Whereas,
Θ ≷ depicts the expanding and decelerating features of the universe. It should be noted
that in the scenario when the fluid fills the whole sphere, including the center (r = 0), the
regularity requirement r = 0 must be applied. However, we do not need such a condition
because we are considering the availability of a cavity encircling the center.

We pay attention to both non-dissipative and dissipative systems. Taking into account,
the quasi-homologous constraint for the former systems, we are able to construct a large
number of models that meet the diminishing complexity factor criteria. We implemented a
transport equation in the later scenario, which allowed us to obtain the explicit temperature
expressions for each model. These expressions contains the term for relaxation time (τ)
which refers to transiant processes that occur prior to relaxation. They play a critical
role for time scales on the order of τ or < τ, although their contributions are applicable
for all time scales. Furthermore, the terms where τ = 0 are linked with the stationary
dissipative regime. Consequently, this expression encompasses whole thermal history of
the astrophysical objects, including the era earlier to relaxation.

As a measure of the fluid structure’s complexity, the scalar function YTF was used. It is
motivated by the fact that it emphasizes the most information about the matter distribution
by measuring anisotropic pressure and inhomogeneity in the energy density. Furthermore,
the complexity factor is the same as in the static case, ensuring that we recover the right
complexity factor expression. It also includes the dissipative variables. If we take a system
that begins its evolution from rest (σ = 0), it will stay shearfree if the fluid is geodesic and
YTF = 0. This is another argument in favor of using YTF as the complexity factor. The quasi-
homologous condition implies the disappearance of YTF in the non-dissipative situation.
Additionally, the condition YTF = 0 is useful for developing alternative models and can
also give insight about the impact of charge on the physical properties of astrophysical
objects.

Under the charge distribution, the results that are achieved here are

• Due to the fact that any causal transport equation is formed on the notion that the fluid
is close to thermal equilibrium, i.e., q << |µ|. Hence, Equation (27) indicates that µ is
inevitably negative with the restriction that H′ > 0 along with s2

2H −
∫ r

0
ss′
H dr > 0 while

keeping in mind that E is a regular function and the mass of the fluid distribution
cannot be negative.

• The charged fluid is unable to occupy the cental region. This indicates the presence of
cavity over there.

• The temperature gradient is required to maintain the system in thermal equilib-
rium [67]. Equation (45) shows that if a < 0 then the gravitational force will be
repulsive in nature and the temperature gradient will be positive in this case to keep
the system in thermal equilibrium.

• The quasi-homologous condition implies the disappearance of YTF in the non-dissipative
situation.

• The condition YTF = 0 is useful for developing alternative models and can give insight
about the impact of charge on the physical properties of astrophysical objects.

• The fluid become less dense and the tangential pressure decreases in the presence of
charge as one can verify it from Equations (91), (94), (99), (102), (107) and (110) .

• The system become massive and more radial pressure exerts on it in the presence of
charge as one can witness it from Equations (93), (95), (101), (103), (109) and (111).

• The temperature and the heat flux remain unchanged in the presence of charge as one
can observe it from Equations (92), (96), (100), (104), (108) and (112).

• All the results obtained in this manuscript will be reduced in GR on substituting s = 0.
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