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Abstract: The Hubble diagram (HD) is a plot that contains a luminous distance modulus presented
with respect to the redshift. The distance modulus–redshift relation of the most well-known “standard
candles”, the type Ia supernovae (SN), is a crucial tool in cosmological model testing. In this work, we
use the SN Ia data from the Pantheon catalogue to calibrate the Swift long gamma-ray bursts (LGRBs)
as “standard candles” via the Amati relation. Thus, we expand the HD from supernovae to the area
of the Swift LGRBs up to z ∼ 8. To improve the quality of estimation of the parameters and their
errors, we implement the Monte-Carlo uncertainty propagation method. We also compare the results
of estimation of the Amati parameters calibrated by the SN Ia, and by the standard ΛCDM model and
find no statistically significant distinction between them. Although the size of our LGRB sample is
relatively small and the errors are high, we find this approach of expanding the cosmological distance
scale promising for future cosmological tests.

Keywords: cosmology; supernovae; gamma-ray bursts; Hubble diagram

1. Introduction

The Hubble diagram (HD) is a plot of object redshifts z with respect to object distances
d. The HD is a well-known and widely used practical cosmological test [1–3]. Based
on cosmological models, one usually describes the theoretical redshift–distance relation
as a parametric function d(z, p), where p is a parameter vector. Thus, the cosmology-
independent determination of distances to objects with known redshift gives one a unique
opportunity to verify, compare and probe parameters of cosmological models. In the case
of the standard ΛCDM cosmological model, for the HD, p may be considered, for example,
as (H0, ΩM).

Usually, the HD is built up using the so-called standard candles (SC), i.e., the objects
with theoretically or empirically known absolute brightness (or magnitude). Measured
visible magnitudes of SCs directly give one required distances. At the end of the 20th
century, the HD was constructed for type Ia supernovae (SNe Ia) standard candles. Thus,
the accelerated expansion of Universe within the standard Friedmann–Lemaitre–Robertson–
Walker (FLRW) [2] cosmological model was discovered. This led to the introduction of
dark energy into the standard cosmological model (SCM) [4,5]. However, there is still a
wide discussion on cosmological models and their parameter values [6–9]. The wCDM
model, where the ΛCDM model is a special case of one, is often considered an alternative
to SCM. The wCDM model is defined as the FLRW model that contains two cosmological
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non-interacting fluids, having an equation of state of cold matter p = 0, and the quintessence
(dark energy) p = wρc2 (with w < 0) [2].

The current limit of SN observations is about z ∼ 2–3, while the long gamma-ray
bursts (LGRBs) up to z . 10 are already seen [10,11]. This makes them promising objects to
prolong the HD significantly further into the Universe. The LGRB sources are related to
explosions of massive core-collapse SN in distant galaxies [12], though up to now, there is
no satisfactory theory of the LGRB radiation origins [13,14]. There are a number of studies
that suggest using LGRBs as SCs [15–25]. We suppose that LGRB HD can be used for
probing cosmological parameters p and comparing cosmological models, as well as the SN
HD [3,26,27].

The Amati relation is an observed linear-like correlation between LGRB spectrum
parameters, including redshift and distance to LGRB host galaxy, in the logarithmic plot [18].
Despite the fact that individual LGRBs may not satisfy the Amati relation due to both
physical and observational factors, we expect that for a statistically large ensemble of LGRBs,
the correlation is correct on average. So the relation gives one a statistical opportunity
to measure the distance to LGRBs with known redshift independently of a cosmological
model. However, it depends on two unknown parameters that have to be calibrated
observationally. For calibration of the correlation, the LGRBs with known distances and
redshifts are needed, so the first step of our study is in determining distances d for a
subsample of LGRBs in near galaxies by cosmology-independent methods.

In this study, we try to calibrate the Swift LGRBs (https://swift.gsfc.nasa.gov/archive/
grb_table/ (accessed on 12 January 2022)) as standard candles by using ΛCDM as a basis,
i.e., obtaining distances from the model. However, this approach involves the circularity
problem [28] as, for the proper calibration of the cosmologically independent distance, the
measurement that should be used. So next, we calibrate LGRBs as standard candles by
using the Pantheon SNe Ia [29] as a basis.

We decided to approximate the SN HD by using a smooth elementary mathematical
function dSN(z) that can be directly used to obtain the distances to sources of LGRBs with
known z. The LGRBs should be near enough so that they can lie inside representative SN
sample, where the distance error σdSN(z) is small enough. Corresponding cosmological
background of the Amati relation and introduction in mathematical approach of its calibra-
tion was described in [3]. In that article, the LGRB sample calibrated by Amati via globular
clusters [19] was used to construct the Hubble diagram, and the calibration method for
supernovae was also described. In the current article, we use a specially selected LGRB
sample, a modified supernova calibration method (by improved formula), and more ad-
vanced statistical methods: the Monte-Carlo uncertainty propagation to account for errors
and the Theil–Sen estimator to find the best-fit parameters. Thus, in this work, we obtain a
new estimation of values of the Amati parameters and of the LGRB Hubble diagram.

The second step is in determining the Amati relation parameters via selected near
LGRBs (i.e., LGRB calibrating), finding distances to all LGRBs with known redshift via the
calibrated Amati relation, and plotting the HD for them. In fact, SNe are also calibrated
SCs via cepheids that are also calibrated (via parallaxes) such that our approach lies in the
frameworks of extending the cosmological distance scale. Since the supernova catalogue
data are tied to a fixed value of the Hubble constant H0 = 70 km/s/Mpc, this approach is
not completely cosmologically independent, and all values are obtained with an accuracy
of the scale factor H0 [30].

At almost every stage of this study, it is required to find the best-fitting parameter
estimation. In case, for example, of the Amati parameters, the best-fitting function y = f (x)
should take into account errors in data points both of x and y. Because of this and the lack
of LGRB statistics, we find the common linear least-square method to be unsuitable for our
study. Instead we use the Theil–Sen estimator (also known as the single median method) for
the linear regression purposes [31]. In this method, the estimation for the slope is defined as
the median slope among all of the possible pairs of dots. We also need a method to perform
the parameter estimation (the curve fitting) routines for the arbitrary function f . For this, we

https://swift.gsfc.nasa.gov/archive/grb_table/
https://swift.gsfc.nasa.gov/archive/grb_table/
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use the trust region reflective algorithm [32], which is the non-linear least-squares method
implemented in the curve_fit function of the scipy.optimize Python library [33]. We can
interpret both of these methods as pipelines that return the estimated parameters based on
the input data. Our purpose is to also estimate the errors and covariances of the parameters.
To do this, we utilise the Monte-Carlo sampling uncertainty propagation approach [34,35].
Applied to our pipelines, this approach allows us to correctly propagate the errors directly
from the input data to the estimated parameters.

In the paper, we calibrated the LGRBs from the specially selected Swift subsample as
SCs via supernovae, as it is described above, and built the corresponding LGRB HD, which
is the main result of this work. Nowadays, there are still not enough statistics and theory to
obtain reliable values of cosmological parameters from the LGRB HD. However, we find
our method promising. We also compare ΛCDM-based and SN-based Amati parameters
and find no significant difference between them.

2. Materials and Methods
2.1. The Hubble Diagram as a Basic Cosmological Test

The HD is the redshift–distance relation, which can be represented as a table of points
(zi, di) on the plot for each i-th object. Usually, the luminosity distance dL is used. This
value depends on the visible magnitude m, absolute magnitude M, and distance modulus
µ as

m−M = µ = 5 log(dL/1 Mpc) + 25 . (1)

In fact, a HD plots the (zi, µi) relation.
In general, cosmological models give theoretical assumptions on the function dL(z, p),

where p are model parameters. For example, in wCMD model p = {H0, w, Ωw, Ωk},
and in ΛCMD model p = {H0, w = −1, Ωw = ΩΛ, Ωk = 0.0}. The HD is one of the
cosmological tests that allow one to find the model parameters via fitting the observational
data. For this one, the redshift z and distance dL should be determined independently (e.g.,
z directly via spectrum, and dL via various indirect methods).

2.2. Gamma-ray Bursts as Standard Candles

Standard candles are a group of objects with the known (theoretically or empirically)
typical absolute magnitude M. They allow one to find the luminosity distance or distance
modulus directly from Equation (1) by using the visible magnitude m, or bolometric fluxes.

In the case of LGRBs, the situation is a little different. The Amati relation for
LGRBs [15,18,19] is the equation

log Eiso = a log Ep,i + b , (2)

where

• Ep,i = Ep(1 + z) is the rest frame spectral peak energy, where Ep is the observed
spectrum peak energy;

• Eiso = 4πd2
L · Sbolo/(1 + z) is the isotropic equivalent radiated energy in gamma-

rays [36]. The distance dL and observed integral fluence Sbolo are determined as
quantities transferred per a unit energy frame area and that are corrected for the
instrumental (observed) spectral energy range, and source redshift. The correction is
performed by the equation

Sbolo = Sobs

∫ 104
1+z
1

1+z
EN(E) dE∫ Emax

Emin
EN(E) dE

,

where Sobs is the observed fluence, and {Emin, Emax} is the instrumental spectral
energy range, which is {15, 150} keV for the Swift’s BAT instrument;
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• a and b are the Amati relation parameters mentioned above that can be calibrated
empirically as in this study.

If observed parameters z, Sbolo, Ep,i, and model-independent measurement of dL(z)
(at the small scales z . 1.5) are known, then the best fit of the Amati relation parameters a
and b can be found. Using a, b, z, Sbolo, and Ep,i, one can find the LGRB distances dLGRB

L (z)
via the Amati relation and plot the LGRB HD.

The value of Ep is usually determined via fitting the LGRB spectrum by the Band
model [37]. However, the Swift database contains values of Ep determined via fitting the
spectrum by a cut-off power law (CPL) model function N(E),

N(E)
[

photons
KeV s cm2

]
= AEα exp

(
− (2 + α)E/Ep

)
,

where α and Ep are the CPL model best-fit parameters of an LGRB. A normalized example
of the CPL model (energy spectrum, E2N(E), that has its maximum at Ep) is shown in
Figure 1. Although the result of determining the peak energy of the spectrum may differ
for different spectrum fitting function choices, we expect that this difference will not
significantly affect the linear correlation of log Ep,i and log Eiso. We find the Swift database
sample containing the values of Ep, estimated via the CPL model, to be more representative
and suitable in our current study in the sense of measurement error equality, as obtained
on a single instrument.

100 101 102 103

Energy E, keV

10−1

100

101

102

E2 N
(E

)

The GRB161117A spectrum at z= 1.549,
Ep = 73.1+4.8

−3.7, α= − 1.20 ± 0.12

spectrum
Ep
Ep/(2 +α)
1σ-conf. int. for spectrum

Figure 1. LGRB 161117A spectrum in the CPL model as an example. Values of α, Ep and their
errors was found at Swift database https://swift.gsfc.nasa.gov/results/batgrbcat/GRB161117A/
web/GRB161117A.html (accessed on 12 January 2022) (referred as Ph_index and Epeak respectively).

So, to find a and b, one needs to obtain the luminosity distances dL for near LGRBs.
Although taking dL(z) from the ΛCMD model or from any other cosmological model is
a dead-loop (a circularity problem), we have first calibrated a and b using ΛCMD model
using parameters from [6] as a comparison basis.

Then, we chose the way of the SN calibration. Thus, we attempted to build a function
dSN

L (z) by using SNe Ia as SCs. Distance dL was calculated as function dSN
L (z) for near

LGRBs that have redshifts z low enough in order to perform an interpolation of the SN HD.
This lets one directly obtain the Amati relation parameters and use them for cos-

mological model-independent determination of distances dL to all LGRBs with known
observational data for z, Sbolo, and Ep,i and to plot the HD for them.

https://swift.gsfc.nasa.gov/results/batgrbcat/GRB161117A/web/GRB161117A.html
https://swift.gsfc.nasa.gov/results/batgrbcat/GRB161117A/web/GRB161117A.html
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2.3. Catalogues of SNe Ia and LGRBs

We used the Pantheon database (containing 1048 SNe). In this catalogue, there are
two kinds of redshift, which are the redshift in terms of the cosmic microwave background
radiation zcmb, and the redshift in terms of the heliocentric system zhel [29]. Between these
two methods, we chose the zcmb one. All the catalogue data are calculated in assumption
of H0 = 70 km/s/Mpc, so we set this value throughout our study.

For our purposes, we use the sample of 174 GRBs from the Swift catalogue with the
measured parameters of (α, Ep, Sobs, z), where the spectral parameter α, the peak energy
Ep, and the observed flux Sobs are described above, and z is the redshift. Some of the
uncertainties of these parameters were missing (several α errors and approximately a
third of Ep errors were not presented). To deal with this issue, we assume the points with
unknown errors to have the relative uncertainties equal to the median relative uncertainties
of the corresponding parameter of the sample. The redshift z values are also presented in
the lack of uncertainties, as is expected. A significant proportion of the LGRB parameters
has asymmetric and relatively huge errors, which leads to the inexpediency of using the
common uncertainty propagation rule. Instead, we use the approach of Monte-Carlo
sampling, which is thoroughly described in Section 2.4.

2.4. Monte-Carlo Uncertainty Propagation

The standard approach to the error propagation problem is known as the linear
uncertainty propagation (LUP) theory. One of the best implemented error propagation
software is the uncertainties package of the Python language. The errors in this approach
are interpreted as the standard deviations, while the values have the sense of the mean. So,
the values of variable with their error are defined by the normal distribution, which denotes
the possible whereabouts of the variable via distribution parameters. However, the LUP
theory requires that the errors be relatively small compared to the values of variable so that
the functions in calculations are nearly linear compared to these small shifts. Additionally,
the LUP approach is not capable of handling asymmetric errors. Thus, we cannot use it.

For that reason, we decided to use the Monte-Carlo sampling. In this approach,
the values and their errors also have the sense of defining the distributions of possible
locations, and we used these distributions to draw samples of the size of 10,000. To handle
the asymmetric uncertainties, we interpreted the values as the medians, the lower bounds
were interpreted as the 0.16 quantiles, and the upper bounds as the 0.84 quantiles. With this
interpretation of errors, the case of symmetric uncertainties reduces to the normal distribu-
tion with the known mean and standard deviation. In the case of asymmetric errors, we
used the split-normal distribution, which results from joining the two halves of normal
distributions with different standard deviations at their mode. Some of the Ep values from
our LGRB data set had remarkably huge lower uncertainties such that trying to Monte-
Carlo sample them would lead to negative Ep values, which has absolutely no physical
sense. Because of that, in the case of Ep variables, we drew the split-normal distributions
in the space of log Ep. So, the peak energy values were drawn using the log-split-normal
distributions. Taking the logarithms does not move the quantiles, so the errors in this case
are not changed.

The Monte-Carlo approach to propagating the errors is simple yet powerful. It allows
one not only to calculate the uncertainties of calculated values, but also to track and take
into account the correlations between variables for free.

2.5. Best-Fitting Methods

To obtain the best-fit parameters of the approximation function dSN
L (z) for the SN HD,

one needs to minimise the functional value

χ2 =
n

∑
i=1

1
σ2

i

(
yi − f (xi, p)2) , (3)
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where

• (xi, yi) are observed table values;
• σi is error of i-th value;
• f is the model function and p = {p1, p2, . . . , pm} are the parameters.

This function utilises the trust region reflective algorithm [32] to minimise the
χ2 function.

2.6. Interpolation Function of the SN HD

In fact, we can use any smooth function to use it as a dSN
L (z) function. All that we need

in order to minimise the error between the real value and a mathematically predicted one
for the luminous distance at any low z, where we have enough supernovae to do this, is the
approximation accuracy that is provided by our approach in the redshifts zmin � z . zmax,
where zmin and zmax are redshifts of the nearest and the farthest supernovae (z = 0.01012
and z ≈ 2.26, respectively).

Since in logarithmic scales (along both of the distance and redshift) the relation dL(z)
is already known, and it has almost a linear behaviour at low z, we decided to use a
polylogarithmic function of a degree k. We tried to use the three following functions:

• Theoretically-inspired function

µSN(z) = 5 log
cz
H0

+ 25 +
p

∑
i=1

ai logi(1 + z); (4)

• Simple polylogarithmic function

µSN(z) =
p

∑
i=0

ai logi z; (5)

• Shifted polylogarithmic function

µSN(z) =
p

∑
i=0

ai logi(1 + z). (6)

The first function may be considered an addition of a small correction to the linear
Hubble law at low z. The results of using other functions are shown in Figure 2.
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Pantheon SN Ia Hubble diagram
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Figure 2. The result of fitting the shifted polylogarithmic function (left) and polylogarithmic function
(right) to the Pantheon SNe Ia data.
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3. Results
3.1. Approximation of the SN HD

The polynomials given by Equation (5) for degrees p = 1, 2, 3, 4, 5 were used. The re-
sult of the best fit is shown in Figure 3.
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37.5
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42.5

45.0

47.5

50.0

di
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nc
e m

od
ul
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 μ

Pantheon SN Ia Hubble diagram (log scale)
Linear Hubble law
Theor. just., p= 2, AIC = − 1162.1, BIC = − 1152.1
Theor. just., p= 3, AIC = − 1160.7, BIC = − 1145.8
Theor. just., p= 4, AIC = − 1158.8, BIC = − 1139.0
Theor. just., p= 5, AIC = − 1156.8, BIC = − 1132.1

Pantheon SN Ia Hubble diagram (linear scale)
ΛCDM model
Theor. just., p= 2

10−2 10−1 100

redshift z

−0.5

0.0

0.5

Δμ

0.0 0.5 1.0 1.5 2.0
redshift z

Figure 3. The result of fitting the Pantheon SN Ia data by the theoretically justified function.
The model with p = 2 is chosen as the best one due to minimal Akaike information criterion (AIC)
value and minimal Bayesian information criterion (BIC) value. The vertical dashed line marks the
redshift of z = 1.4, which is the upper bound for the near LGRBs used to calibration. The interpolated
distance–redshift relation would be used only for the LGRBs up to this border.

Usually, polynomials of degree 1 or degree 2 are used for HD approximation, e.g., [19].
We chose the model with p = 2, because it minimises the Akaike information criterion
(AIC) [38]. We used the obtained estimates of the parameters and their covariance matrix
to generate them from a multivariate normal distribution of the size of 10,000. The corner
plot of this sample is shown in Figure 4. This sample will become useful later for the
Monte-Carlo uncertainty propagation. These polynomial coefficients have no physical
sense, as they just show the best fit of a cosmology received by model-independent redshift–
distance relation.
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a1 = 3.94+0.08
−0.08

3.7
5

3.9
0

4.0
5

4.2
0

a1

−3.6
−3.0
−2.4
−1.8

a 2

−3.6 −3.0 −2.4 −1.8

a2

a2 = −2.68+0.37
−0.37

Figure 4. The sample of best-fit parameters for the theoretically justified model given by Equation (4)
with p = 2 drawn from the multivariate normal distribution with the size of 10,000 via the obtained
estimates of parameters and their covariance matrix.

3.2. Amati Relation Parameters Probing and Gamma-ray Bursts Hubble Diagram

By analysing Figure 3, we took LGRBs with z < 1.4 to calibrate the Amati coefficients
a, and b. All SN samples in this range are representative enough, and their approximations
via polylogarythmic function have low values of its formal errors. In total, 75 of 174 LGRBs
in this range (with known z and calculable Ep,i and Sbolo) are available. To estimate the
Amati parameters a and b, we used the Theil–Sen estimation, which is a reliable and robust
method for linear regression. In this method, the slope (parameter a) is estimated as the
median of all of the slopes between all pairs of points. The intersect (parameter b) is then
estimated as the median of the values yi − axi. Thus, we have the pipeline that takes
the LGRB data table and returns the Amati coefficients a and b. The Monte-Carlo error
propagation approach can be also applied to this pipeline, so that the output consists not
only of the estimated parameters of a and b, but their Monte-Carlo samples of the size
of 10,000. We can further use the medians of this samples as the estimated values for the
parameters, and the quantiles of 0.16 and 0.84 as the upper and lower 1σ-borders.

The results of the estimation process are presented in Figure 5. “Repeated Theil–Sen
estimation” means that the figure shows the average regression of 10,000 ones. In Table 1,
we compare the Amati parameters, calculated through dΛCDM

L and dSN
L , where dΛCDM

L
calculated by equation (B5) from [3]. The method we used shows low formal error for the
Amati parameter, thus we can justify using Ep from the Swift database and confirm the
Ep,i–Eiso correlation for CPL-model determined values of Ep.

With the estimated Amati parameters a and b, it is now possible to find the distance
modulus for the whole sample of LGRBs. The final SN+LGRB HD is shown in Figure 6.
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Figure 5. Left: the plane of the log Eiso–log Ep,i parameters (the Amati plane). Each LGRB is repre-
sented by the large green point with the error bars and the underlying “Monte-Carlo cloud” of the size
of 10,000 (small green dots). The plot also shows the line and the confidence region that corresponds
to the estimated a and b parameters with their errors and covariance. Right: the Monte-Carlo sample
corner plot for the Amati parameters a and b. The error borders are defined as the 0.16 and 0.84
quantiles. Top: all 174 LGRBs, distances taken from ΛCDM. Bottom: subsample of 75 LGRBs with
z < 1.4, distances taken from SN HD theoretically justified approximation function with p = 2.

Table 1. Calibration results of the Amati parameters for all LGRBs calibrated by the ΛCDM model
and for the near LGRBs calibrated by SNe Ia.

Amati Parameter a b

Value from ΛCDM 0.90± 0.11 50.5± 0.3

Value from SN 0.89± 0.21 50.1± 0.5
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Figure 6. The Hubble diagram for our sample of 174 LGRBs together with the type Ia SNe form the
Pantheon catalogue.

4. Discussion and Conclusions

We calibrated the near Swift LGRB sample up to z < 1.4 as standard candles through
the Pantheon SN Ia catalogue using the Amati relation. The calibrated HD up to z ∼7–8
is shown in Figure 6. This diagram is constructed naturally from the standard cosmolog-
ical model at fixed value of H0 = 70 km/s/Mpc, and it does not take into account any
systematic corrections.

The Amati relation for the near LGRBs calibrated by SN Ia and for all LGRBs calibrated
by the ΛCDM model (Table 1) match within the 1σ level. It can be concluded that, in terms
of statistic significance, there are no observed deviations from the standard cosmological
model for the far LGRBs with z > 1.4.

However, visual analysis of the HD in Figure 6 shows a trend towards the fogging of
distant LGRBs relatively to the standard model (shifting to the linear Hubble law). Possible
explanations include LGRB evolution [39,40], gravitational lensing [41] and gravitational
mesolensing that leads into increasing the brightness of objects in all spectral ranges [42–44],
observational selection, and others. It should also be noted that the cosmic time dilation
effect is taken into account in this study. This implies that our results are valid within
models that include this effect. These issues require additional research, including the
accumulation of the LGRB sample and the development of statistical methods.

The GRB observations in multimessenger astronomy epoch open new possibilities for
testing the fundamental physics lying in the basis of the standard cosmological model. Per-
spectives for performing cosmological tests in multimessenger astronomical observations
of GRBs were considered, and several new tests were proposed in [26,27]. The corrected HD
cosmological tests can probe the strong-field regime of gravitation theory, the spatial distri-
bution of galaxies, Hubble Law, and time dilation of physical processes at high redshifts.
Constructing the high-redshift GRB Hubble diagram and comparison of time dilation in
GRB pulses, GRB afterglow and core-collapse SN light curves test the expanding space
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paradigm [45]. The LGRB HD is the test that could be used, in particular, for gravitational
lensing and Malmquist biases testing [3], classical general relativity, cosmological principle
of matter homogeneity, and the Lemaitre space expansion nature of cosmological redshift
testing. The GRB HD can be combined with the gravitational wave standard sirens at
intermediate redshifts [46–48].

Although the LGRBs are not as good as SNe and other cosmological indicators and
the errors in final HD are quite high, currently, GRBs appear to be the only known way to
prolong the HD to high redshifts. Based on the robustness of the statistical methods used
and the low formal error of calculated Amati parameters, we find the method of LGRBs
HD construction proposed in this paper promising for performing such tests in the future
as the sample of known LRGBs is expanded.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/universe8070344/s1, Table S1: The LRGB sample data.
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