Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations
Abstract
:1. Introduction
2. Observations and Reduction
2.1. Spectropolarimetry
2.2. Polarimetry
3. Results
3.1. Object LEDA 3095839
3.1.1. Continuum Polarization
3.1.2. Bolometric Luminosity
3.1.3. Inclination Angle and Spin Value
3.1.4. Magnetic Field
3.2. Object VII Zw 244
3.2.1. Polarization in Broad Lines
3.2.2. Mass Estimation
3.2.3. Bolometric Luminosity
3.2.4. Inclination Angle and Spin Value
3.2.5. Magnetic Field
4. Conclusions
- for LEDA 3095839, no signs of equatorial scattering were detected in the polarized spectrum. At the same time, we estimated the level of continuous polarization as %, which is generated, as we believe, in an accretion disk. Using the approach from Du et al. [50] we came to the conclusion that for this object it makes sense to consider two options: inclination angle and . Thus, we obtained spin values and and magnetic field strengths at event horizon of SMBH and respectively. Additionally, we estimated magnetic field strength and the exponent s of the power-law dependence of the magnetic field on the radius in accretion disk via polarimetric data using model from Piotrovich et al. [57] for this two cases: , and , .
- for VII Zw 244 we detected the specific features of equatorial scattering in both H and H broad lines. It allowed us to estimate the SMBH mass as . The comparison of the given mass with the previously obtained results gave the estimation of the inclination angle , which allowed us to use the approach from Du et al. [50] (estimation via the AGN luminosity) assuming that (minimum possible value for this object in this method). This approach give us the spin value and magnetic field strength at event horizon of SMBH .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Details about the characteristics of medium-band filters can be found at https://www.sao.ru/hq/lsfvo/devices/scorpio-2/filters_eng.html Accessed 14 June 2022. |
2 | Details about the characteristics of gratings can be found at https://www.sao.ru/hq/lsfvo/devices/scorpio-2/grisms_eng.html Accessed 14 June 2022. |
3 | The GAIA parallax of the star (2MASS J08540279+7700478) indicates it is located at the distance of 400 pc [40]. |
References
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 2013, 51, 511–653. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. ARA&A 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Daly, R.A. Estimates of black hole spin properties of 55 sources. Mon. Not. R. Astron. Soc. 2011, 414, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, D.; Evans, D.A.; Sambruna, R.M. The evolution of radio-loud active galactic nuclei as a function of black hole spin. Mon. Not. R. Astron. Soc. 2010, 406, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
- Novikov, I.D.; Thorne, K.S. Astrophysics of black holes. In Black Holes (Les Astres Occlus); Dewitt, C., Dewitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 343–450. [Google Scholar]
- Krolik, J.H. Making black holes visible: Accretion, radiation, and jets. In Proceedings of the 2007 STScI Spring Symposium on Black Holes, Baltimore, MD, USA, 23–26 April 2007; pp. 309–321. [Google Scholar]
- Krolik, J.H.; Hawley, J.F.; Hirose, S. The Relationship between Accretion Disks and Jets. Rev. Mex. Astron. Astrofis. Conf. Ser. 2007, 27, 1–7. [Google Scholar]
- Martin, P.G.; Thompson, I.B.; Maza, J.; Angel, J.R.P. The polarization of Seyfert galaxies. Astrophys. J. 1983, 266, 470–478. [Google Scholar] [CrossRef]
- Webb, W.; Malkan, M.; Schmidt, G.; Impey, C. The Wavelength Dependence of Polarization of Active Galaxies and Quasars. Astrophys. J. 1993, 419, 494. [Google Scholar] [CrossRef]
- Impey, C.D.; Malkan, M.A.; Webb, W.; Petry, C.E. Ultraviolet Spectropolarimetry of High-Redshift Quasars with the Hubble Space Telescope. Astrophys. J. 1995, 440, 80. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, B.J.; Schmidt, G.D.; Smith, P.S.; Mathur, S.; McLeod, K.K. Optical Detection of the Hidden Nuclear Engine in NGC 4258. ApJ 1995, 455, L13. [Google Scholar] [CrossRef] [Green Version]
- Barth, A.J.; Tran, H.D.; Brotherton, M.S.; Filippenko, A.V.; Ho, L.C.; van Breugel, W.; Antonucci, R.; Goodrich, R.W. Polarized Narrow-Line Emission from the Nucleus of NGC 4258. Astron. J. 1999, 118, 1609–1617. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Young, S.; Robinson, A.; Corbett, E.A.; Giannuzzo, M.E.; Axon, D.J.; Hough, J.H. A spectropolarimetric atlas of Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 2002, 335, 773–798. [Google Scholar] [CrossRef] [Green Version]
- Modjaz, M.; Moran, J.M.; Kondratko, P.T.; Greenhill, L.J. Probing the Magnetic Field at Subparsec Radii in the Accretion Disk of NGC 4258. Astrophys. J. 2005, 626, 104–119. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Borisov, N.V.; Gnedin, Y.N.; Natsvlishvili, T.M.; Piotrovich, M.Y.; Buliga, S.D. Spectropolarimetric observations of active galactic nuclei with the 6-m BTA telescope. Astron. Lett. 2011, 37, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Afanasiev, V.L.; Gnedin, Y.N.; Piotrovich, M.Y.; Natsvlishvili, T.M.; Buliga, S.D. Determination of Supermassive Black Hole Spins Based on the Standard Shakura-Sunyaev Accretion Disk Model and Polarimetric Observations. Astron. Lett. 2018, 44, 362–369. [Google Scholar] [CrossRef]
- Pariev, V.I.; Blackman, E.G.; Boldyrev, S.A. Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disc model. A&A 2003, 407, 403–421. [Google Scholar] [CrossRef] [Green Version]
- Netzer, H.; Trakhtenbrot, B. Bolometric luminosity black hole growth time and slim accretion discs in active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 438, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. A&A 1973, 24, 337–355. [Google Scholar]
- Peterson, B.M. Measuring the Masses of Supermassive Black Holes. Space Sci. Rev. 2014, 183, 253–275. [Google Scholar] [CrossRef]
- Blandford, R.D.; McKee, C.F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982, 255, 419–439. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Popović, L.Č. Polarization in Lines—A New Method for Measuring Black Hole Masses in Active Galaxies. ApJ 2015, 800, L35. [Google Scholar] [CrossRef] [Green Version]
- Afanasiev, V.L.; Popović, L.Č.; Shapovalova, A.I. Spectropolarimetry of Seyfert 1 galaxies with equatorial scattering: Black hole masses and broad-line region characteristics. Mon. Not. R. Astron. Soc. 2019, 482, 4985–4999. [Google Scholar] [CrossRef]
- Savić, Đ.V.; Popović, L.Č.; Shablovinskaya, E. The First Supermassive Black Hole Mass Measurement in Active Galactic Nuclei Using the Polarization of Broad Emission Line Mg II. ApJ 2021, 921, L21. [Google Scholar] [CrossRef]
- Bentz, M.C.; Denney, K.D.; Grier, C.J.; Barth, A.J.; Peterson, B.M.; Vestergaard, M.; Bennert, V.N.; Canalizo, G.; De Rosa, G.; Filippenko, A.V.; et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. Astrophys. J. 2013, 767, 149. [Google Scholar] [CrossRef]
- Uklein, R.I.; Malygin, E.A.; Shablovinskaya, E.S.; Perepelitsyn, A.E.; Grokhovskaya, A.A. Photometric Reverberation Mapping of AGNs at 0.1 < z < 0.8. I. Observational Technique. Astrophys. Bull. 2019, 74, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Malygin, E.A.; Shablovinskaya, E.S.; Uklein, R.I.; Grokhovskaya, A.A. Measurement of the Supermassive Black Hole Masses in Two Active Galactic Nuclei by the Photometric Reverberation Mapping Method. Astron. Lett. 2020, 46, 726–733. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Moiseev, A.V. Scorpio on the 6 m Telescope: Current State and Perspectives for Spectroscopy of Galactic and Extragalactic Objects. Balt. Astron. 2011, 20, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Oliva, E. Wedged double Wollaston, a device for single shot polarimetric measurements. A&AS 1997, 123, 589–592. [Google Scholar] [CrossRef] [Green Version]
- Geyer, E.H.; Kiselev, N.N.; Chernova, G.P.; Jockers, K. Surface Polarimetry of Comet Tanaka-Machholz 1992d Using a Novel Double Wollaston Prism. In Asteroids, Comets, Meteors; LPI Contributions: Houston, TX, USA, 1993; Volume 810, p. 116. [Google Scholar]
- Afanasiev, V.L.; Amirkhanyan, V.R.; Moiseev, A.V.; Uklein, R.I.; Perepelitsyn, A.E. SCORPIO-2 guiding and calibration system in the prime focus of the 6-m telescope. Astrophys. Bull. 2017, 72, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Popović, L.Č.; Afanasiev, V.L.; Shablovinskaya, E.S.; Ardilanov, V.I.; Savić, D. Spectroscopy and polarimetry of the gravitationally lensed quasar Q0957+561. A&A 2021, 647, A98. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Amirkhanyan, V.R. Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophys. Bull. 2012, 67, 438–452. [Google Scholar] [CrossRef]
- Shablovinskaya, E.S.; Afanasiev, V.L. The intraday variations of the polarization vector direction in radio source S5 0716+714. Mon. Not. R. Astron. Soc. 2019, 482, 4322–4328. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.F.L.; Stewart, B.G. Point and interval estimation of the true unbiased degree of linear polarization in the presence of low signal-to-noise ratios. A&A 1985, 142, 100–106. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gaia Collaboration. VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020). VizieR Online Data Catalog 2020, I/350. Available online: https://cdsarc.cds.unistra.fr/viz-bin/cat/I/350 (accessed on 14 June 2022).
- Xu, Y.; Cao, X.W. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei. Chin. J. Astron. Astrophys. 2007, 7, 63–70. [Google Scholar] [CrossRef]
- Xu, D.W.; Komossa, S.; Wei, J.Y.; Qian, Y.; Zheng, X.Z. An Active Galactic Nucleus Sample with High X-Ray-to-Optical Flux Ratio from RASS. II. Optical Emission Line Properties of Seyfert 1-Type Active Galactic Nuclei. Astrophys. J. 2003, 590, 73–85. [Google Scholar] [CrossRef]
- Richards, G.T.; Lacy, M.; Storrie-Lombardi, L.J.; Hall, P.B.; Gallagher, S.C.; Hines, D.C.; Fan, X.; Papovich, C.; Vanden Berk, D.E.; Trammell, G.B.; et al. Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars. Astrophys. J. Suppl. Ser. 2006, 166, 470–497. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Richards, G.T.; Hernquist, L. An Observational Determination of the Bolometric Quasar Luminosity Function. Astrophys. J. 2007, 654, 731–753. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, W.; Liu, H.Y.; Breeveld, A.A.; Jin, C.; Liu, B. Modelling accretion disc emission with generalized temperature profile and its effect on AGN spectral energy distribution. Mon. Not. R. Astron. Soc. 2019, 487, 3884–3903. [Google Scholar] [CrossRef] [Green Version]
- Netzer, H. Bolometric correction factors for active galactic nuclei. Mon. Not. R. Astron. Soc. 2019, 488, 5185–5191. [Google Scholar] [CrossRef] [Green Version]
- Duras, F.; Bongiorno, A.; Ricci, F.; Piconcelli, E.; Shankar, F.; Lusso, E.; Bianchi, S.; Fiore, F.; Maiolino, R.; Marconi, A.; et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. A&A 2020, 636, A73. [Google Scholar] [CrossRef]
- Davis, S.W.; Laor, A. The Radiative Efficiency of Accretion Flows in Individual Active Galactic Nuclei. Astrophys. J. 2011, 728, 98. [Google Scholar] [CrossRef]
- Raimundo, S.I.; Fabian, A.C.; Vasudevan, R.V.; Gandhi, P.; Wu, J. Can we measure the accretion efficiency of active galactic nuclei? Mon. Not. R. Astron. Soc. 2012, 419, 2529–2544. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Hu, C.; Lu, K.X.; Wang, F.; Qiu, J.; Li, Y.R.; Bai, J.M.; Kaspi, S.; Netzer, H.; Wang, J.M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign. Astrophys. J. 2014, 782, 45. [Google Scholar] [CrossRef] [Green Version]
- Trakhtenbrot, B. The Most Massive Active Black Holes at z ~ 1.5-3.5 have High Spins and Radiative Efficiencies. Astrophys. J. 2014, 789, L9. [Google Scholar] [CrossRef] [Green Version]
- Lawther, D.; Vestergaard, M.; Raimundo, S.; Grupe, D. A catalogue of optical to X-ray spectral energy distributions of z ≈ 2 quasars observed with Swift - I. First results. Mon. Not. R. Astron. Soc. 2017, 467, 4674–4710. [Google Scholar] [CrossRef] [Green Version]
- Piotrovich, M.Y.; Buliga, S.D.; Natsvlishvili, T.M. Determination of supermassive black hole spins in local active galactic nuclei. Astron. Nachrichten 2022, 343, e10020. [Google Scholar] [CrossRef]
- Sobolev, V.V. A Treatise on Radiative Transfer; Van Nostrand: Princeton, NJ, USA, 1963. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
- Gnedin, Y.N.; Piotrovich, M.Y.; Silant’ev, N.A.; Natsvlishvili, T.M.; Buliga, S.D. Polarization of Radiation and Basic Parameters of the Circumnuclear Region of Active Galactic Nuclei. Astrophysics 2015, 58, 443–452. [Google Scholar] [CrossRef]
- Piotrovich, M.; Buliga, S.; Natsvlishvili, T. Determination of the Magnetic Field Strength and Geometry in the Accretion Disks of AGNs by Optical Spectropolarimetry. Universe 2021, 7, 202. [Google Scholar] [CrossRef]
- Piotrovich, M.Y.; Mikhailov, A.G.; Buliga, S.D.; Natsvlishvili, T.M. Determination of magnetic field strength on the event horizon of supermassive black holes in active galactic nuclei. Mon. Not. R. Astron. Soc. 2020, 495, 614–620. [Google Scholar] [CrossRef]
- Daly, R.A. Black Hole Spin and Accretion Disk Magnetic Field Strength Estimates for More Than 750 Active Galactic Nuclei and Multiple Galactic Black Holes. Astrophys. J. 2019, 886, 37. [Google Scholar] [CrossRef]
- Smith, J.E.; Robinson, A.; Young, S.; Axon, D.J.; Corbett, E.A. Equatorial scattering and the structure of the broad-line region in Seyfert nuclei: Evidence for a rotating disc. Mon. Not. R. Astron. Soc. 2005, 359, 846–864. [Google Scholar] [CrossRef]
- Gravity Collaboration; Pfuhl, O.; Davies, R.; Dexter, J.; Netzer, H.; Hönig, S.; Lutz, D.; Schartmann, M.; Sturm, E.; Amorim, A.; et al. An image of the dust sublimation region in the nucleus of NGC 1068. A&A 2020, 634, A1. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, Y.; Liu, X.; Aguena, M.; Annis, J.; Avila, S.; Banerji, M.; Bertin, E.; Brooks, D.; Burke, D.; et al. Dust Reverberation Mapping in Distant Quasars from Optical and Mid-infrared Imaging Surveys. Astrophys. J. 2020, 900, 58. [Google Scholar] [CrossRef]
- Lyu, J.; Rieke, G.H.; Smith, P.S. Mid-IR Variability and Dust Reverberation Mapping of Low-z Quasars. I. Data, Methods, and Basic Results. Astrophys. J. 2019, 886, 33. [Google Scholar] [CrossRef] [Green Version]
- Savić, D.; Goosmann, R.; Popović, L.Č.; Marin, F.; Afanasiev, V.L. AGN black hole mass estimates using polarization in broad emission lines. A&A 2018, 614, A120. [Google Scholar] [CrossRef] [Green Version]
- Shablovinskaya, E.S.; Afanasiev, V.L.; Popović, L.Č. Measuring the AGN Sublimation Radius with a New Approach: Reverberation Mapping of Broad Line Polarization. Astrophys. J. 2020, 892, 118. [Google Scholar] [CrossRef] [Green Version]
- Savić, Đ.; Popović, L.Č.; Shablovinskaya, E.; Afanasiev, V.L. Estimating supermassive black hole masses in active galactic nuclei using polarization of broad Mg II, H α, and H β lines. Mon. Not. R. Astron. Soc. 2020, 497, 3047–3054. [Google Scholar] [CrossRef]
- Lani, C.; Netzer, H.; Lutz, D. Intrinsic AGN SED & black hole growth in the Palomar-Green quasars. Mon. Not. R. Astron. Soc. 2017, 471, 59–79. [Google Scholar] [CrossRef]
- Yu, L.M.; Bian, W.H.; Wang, C.; Zhao, B.X.; Ge, X. Calibration of the virial factor f in supermassive black hole masses of reverberation-mapped AGNs. Mon. Not. R. Astron. Soc. 2019, 488, 1519–1534. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, M.Y.; Ho, L.C.; Shangguan, J. The Infrared Emission and Opening Angle of the Torus in Quasars. Astrophys. J. 2018, 862, 118. [Google Scholar] [CrossRef]
- Hu, C.; Li, S.S.; Yang, S.; Yang, Z.X.; Guo, W.J.; Bao, D.W.; Jiang, B.W.; Du, P.; Li, Y.R.; Xiao, M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XII. Reverberation Mapping Results for 15 PG Quasars from a Long-duration High-cadence Campaign. Astrophys. J. Suppl. Ser. 2021, 253, 20. [Google Scholar] [CrossRef]
- Laor, A.; Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2008, 390, 847–862. [Google Scholar] [CrossRef]
- Berton, M.; Järvelä, E.; Crepaldi, L.; Lähteenmäki, A.; Tornikoski, M.; Congiu, E.; Kharb, P.; Terreran, G.; Vietri, A. Absorbed relativistic jets in radio-quiet narrow-line Seyfert 1 galaxies. A&A 2020, 636, A64. [Google Scholar] [CrossRef]
- Silpa, S.; Kharb, P. Looking at Radio-Quiet AGN with Radio Polarimetry. arXiv 2022, arXiv:2201.03877. [Google Scholar]
- Hartley, P.; Jackson, N.; Sluse, D.; Stacey, H.R.; Vives-Arias, H. Strong lensing reveals jets in a sub-microJy radio-quiet quasar. Mon. Not. R. Astron. Soc. 2019, 485, 3009–3023. [Google Scholar] [CrossRef]
Object | z | Mode | VPHG/Filter | Date dd/mm/yy | Exposure, s | Seeing | Air Mass | PA, Degrees |
---|---|---|---|---|---|---|---|---|
LEDA 3095839 | 0.109 | specpol | 1026@735 | 3 March 20 | 300 + 9 × 600 | 1.7 | 1.4 | 106.3 |
pol | SED700 SED725 | 18 November 2019 | 60 + 4 × 80 60 + 4 × 50 | 1.3 | 1.2 | 55.6 | ||
VII Zw 244 | 0.131 | specpol | 940@600 | 12 October 2020 | 6 × 900 | 1.6 | 1.3 | 0.0 |
pol | SED700 SED725 SED750 | 7 November 2019 | 7 × 180 7 × 180 7 × 180 | 2.5 | 1.3 | 54.2 |
Object | P | i | a | s | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LEDA 3095839 | 3775 | 44.95 | 35 | 1.77 ± 0.18 | |||||||
45 | 1.63 ± 0.23 | ||||||||||
VII Zw 244 | 3219 | 45.24 | 18 | – | – | ||||||
14.3 ± 3.6 | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shablovinskaya, E.; Piotrovich, M.; Malygin, E.; Buliga, S.; Natsvlishvili, T. Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations. Universe 2022, 8, 383. https://doi.org/10.3390/universe8070383
Shablovinskaya E, Piotrovich M, Malygin E, Buliga S, Natsvlishvili T. Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations. Universe. 2022; 8(7):383. https://doi.org/10.3390/universe8070383
Chicago/Turabian StyleShablovinskaya, Elena, Mikhail Piotrovich, Eugene Malygin, Stanislava Buliga, and Tinatin Natsvlishvili. 2022. "Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations" Universe 8, no. 7: 383. https://doi.org/10.3390/universe8070383
APA StyleShablovinskaya, E., Piotrovich, M., Malygin, E., Buliga, S., & Natsvlishvili, T. (2022). Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations. Universe, 8(7), 383. https://doi.org/10.3390/universe8070383