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1. Introduction and Historical Perspective

The strongly coupled dynamics of quarks and gluons has many important implications
in particle physics, astrophysics, and cosmology [1–16]. The fundamental theory of strong
interactions, known as Quantum Chromodynamics (QCD), provides a successful descrip-
tion of a variety of observables in high-energy hadronic collisions [17], hadronic masses [18],
and, to a lesser extent, also of the properties of phases of the QCD matter [19,20]. While
QCD is successful in the interpretation of short-distance phenomena (i.e., in the weakly
coupled regime), a long-standing theoretical problem is a dynamical description of the color
confinement phenomenon. The latter appears in the infrared (strongly coupled) regime of
QCD and still remains the major unsolved problem of the Standard Model (SM) of particle
physics [21,22].

Due to confinement, color-charged particles do not exist as free states at large spacetime
separations. They are instead bound together into colorless collective excitations that evolve
into a gas of hadrons. No exact dynamical transition in spacetime between the fundamental
(parton) and the composite (hadron) states of QCD is known to date despite the wealth of
phenomenological information available from particle and heavy-ion collision experiments.
Therefore, one usually resorts to a heuristic description using the concept of quark-hadron
duality [23,24] together with effective field theoretical (EFT) approaches [25]; this is used
also in the framework of thermal field theory (for recent reviews of the latter, see also
Refs. [26–28]). On the theory side, effective (typically, static or equilibrium) approaches,
such as lattice QCD (LQCD) [19,21], are commonly being exploited while very little has
been done on first-principle real-time evolution of QCD states [8].

The term “quark matter” was first used in 1970 by Itoh [29] in the context of neutron
stars. Even before then, in 1965, Ivanenko and Kurdgelaidze [30] considered a star made of
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quarks. Since the mechanism for quark confinement was unknown at that time, they had to
assume that the quark masses are much larger than the masses of ordinary baryons. A few
years later, however, following the realization that QCD exhibits asymptotic freedom [31,32],
several authors have suggested that the transition from a hadronic phase to a one dominated
by quarks and gluons may be relevant to describe the state of matter in the early universe or
inside the neutron stars with a possibility to re-create such a condition also in the laboratory
by colliding heavy ions [3,5,33–38].

The terms “hadronic plasma” [35] and “quark-gluon plasma” (or QGP) [36] were
coined by Shuryak to describe a hypothetical state of matter existing at temperatures of
order 100 MeV. The corresponding phenomena were expected to occur at a characteristic
energy density close to 1 GeV/fm3. This makes a good analogy with a classical gaseous
plasma in which electrically neutral gas at high enough temperatures turns into a statistical
system of mobile charged particles [39]. While for such plasma the particle interactions
obey the U(1)em gauge symmetry of Quantum Electrodynamics (QED), in the former QCD
case, the interactions between plasma constituents are driven by their SU(3)c color charges.
For an exhaustive collection of key references tracing the development of theoretical ideas
on the QGP up to 1990, see e.g., Ref. [2]. For a summary of later developments, see more
recent reviews [8,10,40].

Let us note that contrary to initial oversimplified expectations [2], strongly interacting
multi-particle systems feature numerous emergent phenomena that are difficult to predict
from the underlying QCD theory, just like in condensed matter and atomic systems where
the interactions are controlled by QED. In addition to the hot QGP phase, several additional
phases of QCD matter were predicted to exist [15,41]. In particular, the long-range attraction
between the quarks in the color anti-triplet (3̄) channel was predicted to lead to the color
superconductivity (CSC) phase with condensation of 1S0 Cooper pairs [42,43]. This result
was anticipated, though using a different reasoning, already in 1969 by Ivanenko and
Kurdgelaidze [44], who predicted that the superconducting quark phase may be relevant
for the super-dense star interiors. At high baryon density, an interesting symmetry breaking
pattern SU(3)c× SU(3)L× SU(3)R× U(1)B → SU(3)c+L+R× Z(2) leading to the formation of
quark Cooper pairs was found in QCD with three massless quark flavors (i.e., under an
assumption that mu = md = ms = 0) [41,45]. This breaking of color and flavor symmetries
down to the diagonal subgroup SU(3)c+L+R implies a simultaneous rotation of color and
flavor called the color-flavor locking (CFL). It is expected that CSC and CFL phases might
play important role in the equation of state (EoS) of neutron stars [46].

Another interesting phase of QCD matter called quarkyonic matter situated in the
QCD phase diagram between the chirally restored and the confined phases was proposed
in Ref. [47]. The quarkyonic matter is expected to exist at densities parametrically large
compared to ∼Λ4

QCD when the number of colors Nc is large. Since gluons are in the adjoint
representation of SU(3)c, their effects are scaled as ∼N2

c , and so, they dominate all quark-
induced ∼Nc effects. This provides the binding of gluons into quark-free states, so-called
glueballs, and so, the quarkyonic matter has only Nc degrees of freedom (DoFs). This form
of matter is expected to play some role in the structure of neutron stars [48]. The existence
of another peculiar form of hadronic matter—the pion condensate—was suggested by
Migdal already in the 1970s [49].

The rich phase structure of QCD at nonzero temperature and baryon chemical poten-
tial was recently reaffirmed by the proposed existence of phases with spatial modulations;
see [50] and references therein. Their moat-shaped energy spectrum with a minimum of the
energy over a sphere at nonzero momentum leads to a characteristic peak. In heavy-ion col-
lisions at low energy, these new QCD phases are expected to leave their imprints in particle
spectra and their correlations. Their cosmological implications are so far unexplored.

Our current knowledge of the QCD phase diagram is illustrated in Figure 1. Compar-
ing this diagram to the phase diagram of water, see e.g., Ref. [8], one notices that (at least,
theoretically) the complexity of the former approaches the latter.



Universe 2022, 8, 451 3 of 77

Figure 1. The schematic phase diagram for QCD matter in terms of the temperature T and net baryon
density n normalized to the cold nuclei baryon density no. From https://nica.jinr.ru/physics.php
accessed on 27 April 2022 (see also Ref. [51]).

Experimental study of the QCD phase diagram at high temperatures, see Figure 2,
dates back to the CERN SPS fixed-target program with the lead ion beams in 1995–2000
and covers the domain of the baryon chemical potential µB=200− 400 MeV [8]. With the
advent of a first heavy-ion collider in 2000, the investigation of the µB'0 region soon led to
a discovery of the strongly interacting quark-gluon plasma (sQGP) at RHIC in 2005 [52–55].
The existence of this new phase of hot and strongly interacting QCD matter was five years
later confirmed at order-of-magnitude higher energies of the LHC at CERN [8,40].
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Figure 2. A schematic QCD phase diagram in the thermodynamic parameter space spanned by the
temperature T and the baryonic chemical potential µB. The corresponding (center-of-mass) collision
energy ranges for different accelerator facilities, especially the RHIC Beam Energy Scan (BES II)
program, are indicated in the figure. Adapted from Ref. [56] (see also Ref. [57]).
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Starting from 2010, it became possible to explore systematically the phase structure of
hot and dense matter at nonzero baryon density and, in particular, to search systematically
for the critical endpoint (CEP) of the QCD phase diagram. The CEP, a postulated second-
order phase transition point, is an expected endpoint of a line of the first-order phase
transitions (FOPTs) that separates the low-temperature, low-density hadronic phase from
a low-temperature, large-baryon number density QGP phase. Similarly to the water-
steam transition where at the critical point, one finds bubbles of steam and drops of water
intermixed at all length-scales from macroscopic, visible sizes down to atomic scales (with
drops and bubbles near micron scale causing the strong light scattering called “critical
opalescence” [58]), several interesting phenomena are also expected to occur near the CEP
of the QCD phase diagram [57,59–62]. The search for the CEP is conducted by the STAR
collaboration at RHIC within its Beam Energy Scan (BES) program at the energies indicated
in Figure 1.

Current experimental and theoretical studies of the QCD phase diagram thus cover a
wide region in temperature and baryon chemical potential (T, µB), particularly, at small
µB'0 [19,20,63,64] and large µB' 100− 600 MeV [20,41,57,60], see Figure 2. The red and
black full circles denote the critical endpoints of the chiral and nuclear liquid-gas phase
transitions, respectively. The (dashed) freeze-out curve indicates where the hadro-chemical
equilibrium is attained at the final stage of the collision. The nuclear matter ground-state
at T = 0 and µB = 0.93 GeV and the approximate position of the QCD critical point at
µB ∼ 0.4 GeV are also indicated. The dashed line is the chiral pseudo-critical line associated
with the crossover transition at low temperatures.

The hot and dense QCD matter is considered to be a dominant ingredient of the early
universe evolution in its first few microseconds. Physics of heavy-ion collisions (HIC),
therefore, provides necessary means for theoretical understanding of the cosmological
processes at those time scales. In HIC theory, an important progress has been made when
relativistic viscous fluid dynamics was formulated starting from the first principles in an
EFT framework, which was based entirely on the knowledge of symmetries and long-
lived degrees of freedom, see e.g., Ref. [25] and Appendix B of this review. However,
for proper understanding of the cosmological evolution, at least in a vicinity of the QCD
phase transition epoch, the precise dynamical information on color-field media at finite
temperatures is mandatory. Ongoing precision tests of QCD under extreme conditions,
in particular those at the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), are currently pushing the
energy, temperature and density frontiers, opening up new largely unexplored possibilities
for understanding also the cosmological QCD phase transition. There is strong hope
that the growing amount of data and phenomenological concepts will eventually boost
theoretical developments on infrared and finite-temperature dynamics of QCD. The latter
is particularly relevant for understanding the real-time evolution of its ground state and the
associated phase transitions as well as hadronization processes relevant for the dynamics
of the early universe.

The QCD dimensional transmutation mechanism, breaking the conformal symmetry
of the classical QCD action, has deep implications for the early universe evolution. Indeed,
from higher to lower primordial plasma temperatures, QCD crosses a phase transition to
a chiral symmetry-breaking ground state related to the color confinement phase. Thus,
an attractive possibility is that the QCD vacuum energy may provide a source of universe
acceleration and Dark Energy (DE) [65,66]. For the current status of this problem, see also
Ref. [67] and references therein.

At high temperatures above the confinement scale ΛQCD, i.e., during the first micro-
seconds after the Big Bang, the thermal bath in the early universe was dominated by the
primordial QGP [11,12,68,69]. When the temperature of the universe decreases down to
ΛQCD, the QGP dissolves out through collective hadronization phenomena. It is worth
remarking that the QGP formation can be highly favoured under the very high-density
conditions, where the matter chemical potential starts to be comparable to the QCD critical
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scale. Indeed, this can happen in high-density objects such as in the core of neutron stars
as an effect of the gravitational potential [9,70,71]. Nevertheless, the issue of whether the
QGP exists inside the neutron stars is still highly controversial and is under intense debate
in the literature. In fact, the critical phenomena of QCD dynamics and hadronization
and their connections to the QCD ground-state evolution in real time have paramount
consequences on the whole cosmological scene, which may also shed light on the late-time
cosmic acceleration [65], the formation of Dark Matter (DM) [72], primordial black holes
(PBHs) [73] and could be imprinted in the spectra of primordial density perturbations and
gravitational waves (GWs) [74].

The main aim of our review is to provide a new critical sight on our current picture of
quantum Yang-Mills (YM) field theories in the strong-coupling regime in a dynamical (i.e.,
non-stationary) spacetime background and in cosmology, in connection to the empirical
knowledge that comes from particle physics measurements and cosmological data. In the
following, unless otherwise noted, we will mainly exploit the standard natural units
h̄ = c = kB = 1, where kB is Boltzmann constant, c is speed of light in the vacuum and
h̄ = h/(2π), with h is the Planck constant.

The review is organized as follows. In Section 2, we discuss the nowadays standard
scenario of the phase transitions in the early universe, making a connection to the produc-
tion of primordial black holes and to super-dense weakly interacting saturated QCD matter.
We also discuss possible applications of the axion dynamics to the early universe and
close with the possible role of non-perturbative QCD ground-state cosmological evolution.
For completeness, we also mention the possible role of the phase transitions in grand
unified theories of particle interactions. In Section 3, we first introduce the basic notions
of the hydrodynamical description of an expanding universe. There, we discuss simple
models with constant speed of sound and then move on to a more complicated equation
of states for the early universe. We also present current progress in the description of the
dissipative effects in relativistic hydrodynamics. The section is finalized by an overview
of the problematics regarding the Cosmological Constant and the Vacuum Catastrophe.
Section 4 is devoted to a brief discussion of the real-time dynamics of the ground state in
an effective action approach to quantum YM theories. We first discuss the YM ground state
as time crystal; then, we develop an effective action approach providing the equation of
state of the quantum ground state of the universe. The section is closed with a discussion
of cosmological attractors—the solutions of the YM-Einstein equations using the Renormal-
ization Group (RG) methods. Section 5 provides an overview of basic concepts of cosmic
inflation models driven by YM dynamics in the early universe. Finally, a short summary is
given in Section 6.

2. The Phase Transitions in the Early Universe
2.1. The Phase Transitions in the Standard Model

In the SM of elementary particle interactions, the dynamics of fireball expansion is
based on the asymptotic freedom property of underlying non-Abelian gauge theories [31,32].
QCD is a quantum non-Abelian field theory, an important part of the SM, that describes
the fundamental interactions between colored quarks and gluons. The generalization of
classical electrodynamics to non-Abelian gauge theories was first studied and exemplified
in SU(2) by Yang and Mills in 1954 [75]. The classical Lagrangian density of an SU(N)
gauge theory reads,

Lcl = −
1
4

Fa
µνFa µν , (1)

in terms of the field strength tensor defined in terms of YM fields Aa
ν as Fa

µν = ∂µ Aa
ν− ∂ν Aa

µ+

gYM f abc Ab
µ Ac

ν, where f abc are the structure constants of the SU(N) group. Throughout,
a, b, . . . denote internal indices of SU(N) in the adjoint representation. Here, the parameter
gYM is known as the YM coupling constant. Gauge theories based on SU(N) are known as
YM theories, and they became the target of a wider interest prompted by the discovery that
massless particles may acquire a mass and a longitudinal polarization through spontaneous
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symmetry breaking (or Higgs) mechanism of a massless YM theory [76–78]. The latter is a
vital part of the SM framework realizing the classical Higgs mechanism of EW symmetry
breaking that has found an excellent confirmation through the discovery of the Higgs
boson [79,80].

In the framework of the quantum field theoretical approach, the YM field fluctuations
are quantized around a given ground state through the first quantization procedure à la
QED. However, due to self-interactions of the YM quanta, manifested via the term ∝A2

in the field strength tensor, the quantum YM ground state acquires, in general, a very
non-trivial structure. This structure is well understood in the weakly coupled (perturbative)
regime of the theory, implying gYM � 1, which is the case of the EW theory or in the
UV regime of QCD with the so-called asymptotic freedom of color charges. The strongly
coupled (non-perturbative) regime, in which gYM & 1 that is realized in particular in the
infrared limit of QCD, corresponds to the color confinement phenomenon and has remained
the subject of active research over the last few decades. In recent years, significant progress
has been made in understanding of the quantum YM ground state in SU(N) gauge theories
at finite temperatures, see e.g., Refs. [81,82].

As a result of a series of cosmological phase transitions that occurred in early universe
during the first few microseconds after the Big Bang, new vacuum subsystems associated
with breaking of the fundamental symmetries were formed. In the early universe, the SM
predicts that cooling proceeds as a series of two phase transitions associated with the vari-
ous spontaneous symmetry breakings of the corresponding gauge symmetries [12,68,83–86].
One at the temperature TEW

c = 160 GeV [87] is responsible for spontaneous breaking of the
EW symmetry providing masses to the elementary particles; see the left panel on Figure 3.
Due to the large value of its critical temperature Tc, it is not amenable to experimental study
under the laboratory conditions. The second and the only one accessible in the laboratory,
QGP-to-hadronic matter phase transition happening at TQCD

c ≈ 160 MeV [88], is related
to the spontaneous breaking of the chiral symmetry and manifesting itself in the massless
quark limit of the QCD Lagrangian. Since both phase transitions are considered to be
analytic crossovers, the bulk motion of the corresponding plasmas did not depart from
thermal equilibrium. Therefore, such transitions, if realized in nature, are not expected to
generate cosmological relics [86,89,90] or to be helpful for a baryogenesis mechanism.

The QCD phase transition has occurred at characteristic temperatures of above 200 MeV
that correspond to a cosmological time-scale of above 10−5 s and the Hubble length-scale
of approximately 10 km. The nature of the QCD phase transition is still a matter of intense
debates in the literature [74,91–103], with results derived so far heavily relying either on
lattice field theory methods applied to QCD [92,93], i.e., lattice QCD, or on holographic
analyses of QCD at early cosmology [103]. For a thorough review on various aspects of the
QCD transition epoch, see e.g., Refs. [12,104–108].

It is undeniable that an abrupt QCD phase transition occurring reversibly in the early
universe would lead to a promising cosmological scenario, according to which a large
part of the quark excess would be condensed into invisible quark nuggets—a possible
explanation for DM only relying on QCD. As Witten suggested in Ref. [5], this would
happen only if quark matter retains an energy per baryon which is less than 938 MeV: then,
neutron stars might generate a quark matter component for cosmic rays, and detectable
gravitational radiation could be produced during the QCD phase transition. Conversely,
several recent studies drew a different conclusion, pointing toward the realization of
second-order or crossover phase transition scenarios [101,102].

In a hot and dense QCD matter, the u, d and to some extent, depending on the tem-
perature, also the s quarks become nearly massless, and the QCD Lagrangian acquires an
approximate chiral symmetry SU(NF)L × SU(NF)R, with the number of massless quark
flavors NF = 2 (u, d) or 3 (u, d, s). At low T < TQCD

c , the QCD vacuum becomes unstable,
and this symmetry is spontaneously broken by q− q̄ pairing. The corresponding order
parameter 〈q̄q〉=−(245 MeV)3, known as the chiral quark condensate, gives rise to masses
of light hadrons as well as to constituent masses of u, d quarks and to some extent also to
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the s quark; see the left panel of Figure 3. Recent lattice calculations with mu = md = 0
and strange quark having its physical mass reveal that the chiral phase transition occurs at
TQCD

χ =132+3
−6 MeV [109].
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Figure 3. (Left) Quark masses in the QCD vacuum and the Higgs vacuum. A large fraction of
the light quark (u, d, s) mass is due the chiral (χc) symmetry breaking in the QCD vacuum, with
numerical values from Ref. [110] (see also Ref. [111]). (Right) The effective number of relativistic
DoFs geff in the cosmological plasma in the SM as a function of temperature T, taking into account
interactions between particles, obtained with both perturbative and lattice methods. From Ref. [112].

Let us note that in addition to the above scenario when the thermal history of the
universe proceeds by a sequence of phase transitions from a more symmetric to a less
symmetric state of matter, there is also a possibility of the reverse evolution when part
of the zero-temperature unbroken gauge group of the SM or other gauge theory might
have been broken in the early universe by thermal effects. As first noted by Weinberg [113]
in the context of an O(n) ×O(n) gauge theory, with decreasing T, one may encounter
a transition to a state of higher symmetry O(n)×O(n− 1) → O(n)×O(n). Within the
minimal extensions of the SM containing an additional color triplet scalar field, the scenario
in which the early universe underwent an epoch when SU(3)c was spontaneously broken
but later restored was analyzed in Ref. [114]. The attractiveness of such a multi-step phase
transition scenario stems from the fact that it may generate the observed baryon asymmetry
of the universe [115].

To describe the evolution of energy density ε(T) and entropy density s(T) of the
early universe, it is customary to normalize both quantities to their values ε0(T) and s0(T)
corresponding to an ideal massless Bose gas with a single degree of freedom (DoF) [112,116]

geff(T) ≡
ε(T)
ε0(T)

, ε0(T) =
π2

30
T4 , (2)

heff(T) ≡
s(T)
s0(T)

, s0(T) =
2π2

45
T3 , (3)

and call geff(T) and heff(T) the effective numbers of DoFs in energy and entropy, respec-
tively. For the particular case of a non-interacting gas consisting of NF Dirac fermions,
NV massive vectors, NV0 massless vectors and NS neutral scalars, the two functions are
identical and read

geff(T) = heff(T) =
7
8

4NF + 3NV + 2NV0 + NS , (4)

where the prefactors account for the DoF of each of the considered particles.
It is worth mentioning that in a generic case of interacting (non-ideal) gas geff(T)

and heff(T), they are not identical and depend on temperature. Using the relationship
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p = sT − ε between the pressure p, the entropy density s, the energy density ε and the
generalized EoS parameter w,

p = wε . (5)

and the speed of sound cs can be expressed in terms of the effective DoF measures geff(T)
and heff(T),

w(T) =
sT
ε
− 1 =

4heff(T)
3geff(T)

− 1 , (6)

c2
s (T) =

dp
dε

= T
ds
dε

+ s
dT
dε
− 1 =

4
3

[
4heff(T) + Th

′
eff(T)

4geff(T) + Tg′eff(T)

]
− 1 , (7)

where the prime indicates differentiation with respect to temperature T [116]. It is worth
mentioning that the causality condition between the speed of sound and the speed of light
cs ≤ 1 induces the inequality

heff(T)
geff(T)

≤ 3
2

, (8)

with an upper bound saturated for w = 1 corresponding to the case of absolutely stiff fluid.
Taking into account all permissible interactions in the SM, one can calculate either

directly [117] or on a lattice the temperature dependence of ε(T) and s(T) and extract cor-
responding DoFs. This is illustrated on the right panel of Figure 3 showing the temperature
dependence of geff(T) in the SM. For realistic values of both geff(T) and heff(T) for a wide
temperature interval from 10 keV to 10 TeV, see Ref. [117].

The simultaneous presence of the EW and the QCD matter in thermal equilibrium is
one of the remarkable differences between the QGP produced in accelerator experiments
and the primordial QGP in the early universe [13,118,119]. To find out which form of matter
prevails, let us use Equation (2) and compare the number of DoFs in an ideal massless gas
consisting only of EW or QCD matter. Including only the particles which at the temperature
T . TEW can be considered as massless, we obtain gEW

eff = 7
8 (12 + 6) + 2 = 17.75 DoFs for

the EW case. The first term in the brackets corresponds to charged leptons e, µ, τ, and the
second term corresponds to neutrinos νe, νµ, ντ . The last term corresponds to photons.
For non-interacting or weakly interacting QCD matter, Equation (4) reduces to

gQCD
eff = 2× 8 + 7

8 (3× NF × 2× 2) , (9)

where the first term accounts for the two spin and N2
c − 1 = 8 color DoFs of the gluons

and the second term accounts for Nc = 3 colors, NF flavors, two spin and two particle-
antiparticle DoFs of the quarks. Including only the quarks with the mass mi/T ' 0,
i = (u, d), s, c, b, we obtain successively gQCD

eff = (37, 47.5, 56, 68.5) DoFs. In thermal
equilibrium at the temperature T . TEW and for NF active quark flavors, the QGP contains
a factor of gQCD

eff /gEW
eff ' 2− 4 more energy and pressure than those for the EW matter.

For temperatures T � TEW
c , deep inside the EW era, all six quarks u, d, s, c, b, t can be

considered to be massless, cf. the left panel of Figure 3, and gQCD
eff = 79. At the same time,

the EW matter acquires gEW
eff = 7

8 (12 + 6) + 8 + 4 = 26.75 DoFs, where 8 = 2× (3 + 1)
are the DoFs of massless gauge bosons, W±, W0, B0, and the last term is due to the Higgs
scalar doublet. For this case, the QGP has a factor of gQCD

eff /gEW
eff ' 3 larger energy density

and pressure than those of the EW matter. Hence, we conclude that the QGP was the most
dense form of matter filling the early universe during both the QCD and EW epochs.

2.2. Creation of Primordial Black Holes during the Phase Transitions

According to inflationary theories, initially, very small inhomogeneities in the mat-
ter distribution were produced by the end of the exponential expansion regime. Such
inhomogeneities filling the early universe are described by the metric perturbations δgµν

which can be decomposed into three irreducible pieces—scalar, vector and tensor ones,
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see, e.g., Refs. [84,120]. While the scalar part is induced by energy density fluctuations δε,
the vector and tensor perturbations are related to the rotational motion of the fluid and to
the gravitational waves, respectively [84]. Given the scope of this review, in the following,
we focus only on one spectacular phenomenon related to metrics fluctuations in the early
universe—the matter collapse into primordial black holes (PBHs).

Whereas their existence was proposed already a half-century ago first by Zeldovich
and Novikov [121] and later by Hawking [122], it was the detection of gravitational waves
from mergers of tens of solar mass M� black hole binaries [123] which has led to a surge
of current interest in the PBHs as a Cold Dark Matter (CDM) candidate [73,124–126].
It can be shown that the creation of PBHs due to the gravitational collapse of hot and
dense matter occurs for the density contrast δ = δε/ε exceeding the critical threshold
δc(w[T]) ≈ 0.3− 0.45, which generally depends on the EoS parameter w [73,125]. Such
large values of δ can be generated, e.g., during a period of inflation in the very early
universe [126] or during an intermediate period dominated by long-lived massive particles
(for recent work, see e.g., Ref. [127] and references therein) or when the universe in the
course of the phase transition passes a local minimum in the pressure-to-energy density
ratio w = p/ε [125].

For the PBHs forming from Gaussian inhomogeneities with root-mean-square ampli-
tude δrms, the present CDM fraction for PBHs with a mass around M is found as [125,128]

fPBH(M) ≈ 2.4β(M)

√
Meq

M
, β(M) =

2
π

∫ ∞

x
e−y2

dy , x =
δc(w[T(M)])√

2δrms(M)
, (10)

where β(M) is the fraction of horizon patches undergoing collapse to PBHs when the tem-
perature of the universe is T, Meq = 2.8× 1017M� is the horizon mass at matter-radiation
equality, and the numerical factor comes from the ratio of measured baryon Ωb and CDM
ΩCDM abundances. In Equation (10), we have explicitly taken into account dependence of
the critical overdensity δc on the EoS parameter w(T). The temperature depends on the
PBH mass M as T ≈ 200

√
M�/M MeV. Note that the parameter δrms(M) appearing in

Equation (10) can be always adjusted to counterbalance the theoretical uncertainties in the
value of δc so that the current PBH DM fraction is preserved [128]. It is worth mentioning
that in the scenarios where PBHs are formed during inflation, their abundance is larger
than the Gaussian result by orders of magnitude, but also the mass function has a more
pronounced tail at larger masses [126].

In fact, there are a plethora of other mechanisms for PBHs formation (including
besides the already mentioned FOPTs, bubble collisions, and the collapse of cosmic strings,
necklaces, domain walls, non-standard vacua, etc., see e.g., the recent reviews [73,125]).
In the following, in conformity with the topic of our review, we will concentrate on the
softest point (SP) mechanism of creation of the PBHs discussed in Ref. [128]. Its virtue
stems from the fact that by tracing the origin of PBHs to the SM phase transitions, it is
capable of explaining the provenance of part, if not all, of the CDM in the universe [124].

The SP, corresponding to a local minimum in the pressure-to-energy density ratio
w = p/ε as given in Equation (6), gives rise to elongation of the expansion time of the hot
and dense matter. In HICs, the interest in locating the SP was started by the recognition
that the longest-lived fireball might provide a clear signature of the QGP-to-hadron phase
transition [129]. Shortly after that, the formation of horizon-size PBHs due to a substantial
reduction of pressure during adiabatic collapse in the course of the QCD transition was
analyzed in the context of the early universe in Refs. [130,131]. Even though the previously
used assumption of the first-order character of the phase transition was later on replaced by
a crossover scenario, the lattice calculations have found a local minimum in w = 0.145(4)
at T = 159(5) MeV [132].

To become acquainted with the influence of the SPs on the cooling of the universe
during its radiation-dominated era, let us follow Ref. [128] and inspect the behavior of the
function geff(T) shown on the right panel of Figure 3. Let us focus on the temperatures
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when a part of the radiation matter transforms into a non-relativistic matter. Starting
from T ≈ 200 GeV downwards, this happens first to the top quark at T ≈ mt = 172 GeV,
which is followed by the Higgs boson at 125 GeV and the Z and W bosons at 92 and
81 GeV, respectively. The fact that these particles become non-relativistic at nearly the same
time of universe expansion induces a significant drop in the number of relativistic DoFs,
from geff = 106.75 down to geff = 86.75. Further changes at the b,c-quark and τ-lepton
thresholds are too small to be noticeable. Hence, further on, geff remains approximately
constant until the QCD transition at around 160 MeV. The number of relativistic DoFs then
falls abruptly to g = 17.25. A little later, pions become non-relativistic, and then muons,
yielding geff = 10.75. Thereafter, geff remains constant until e+e− annihilation and neutrino
decoupling at around 1 MeV, when it drops down to geff = 3.36 [128].

Provided that total entropy is conserved, an abrupt reduction of geff(T) leads to a
sudden drop in the speed of sound cs(T), cf. Equation (7), and hence to a drop of pressure,
p = w(T)ε, cf. Equation (6). The effect is clearly visible on the left panel of Figure 4 showing
the four periods in thermal history of the universe when w(T) reaches its local minimum.
After each period, w returns back to its relativistic value of 1/3, but each sudden drop
modifies the probability of gravitational collapse of any large curvature fluctuations present
at that time [128].
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Figure 4. (Left) EoS parameter w as a function of temperature T. The gray vertical lines correspond to
the masses of the electron, pion, proton/neutron, W, Z bosons and top quark, respectively. The gray
dashed horizontal line indicates value of w = 1/3. Adapted from Ref. [128]. (Right) The mass
spectrum of PBHs fPBH(M) in solar mass units M�. The gray vertical lines correspond to the EW
and QCD phase transitions and e+e− annihilation. The vertical colored lines indicate the masses of
the three LIGO-Virgo events. Gray curves are constraints from microlensing (M), ultra-faint dwarf
galaxies and Eridanus II (E), X-ray/radio counts (X), and halo wide binaries (W). The accretion
constraint (A) is shown dashed, as it relies on uncertain astrophysical assumptions. Adapted from
Ref. [128].

Consider one cooling period T1 < T < T2 with w(T) < w(T1,2) = 1/3 centered
around the local minimum w(TSP) and define the quantity,

∆heff(T) ≡ geff(T)− heff(T) , (11)

measuring departure from the w = 1/3 case; see Equation (6). At the endpoints ∆heff(T2) =
∆heff(T1) = 0 but for w(T) < 1/3, it is always positive ∆heff(T) > 0, cf. Equation (7). Hence,
the initial drop in the entropy DoFs, heff(T), always precedes the jump in the energy density
DoFs, geff(T). This leads to the following “coarse-grained" scenario for the PBH formation:
the reduction in heff(T) occurring for T2 > T > TSP is followed by a fall in geff(T) for
T1 > T > TSP. An excess in entropy ∼ ∆heff(TSP) lost by the radiation during its cooling is
dumped into the collapsing matter, emerging eventually in the form of PBHs—the matter
with the largest entropy density in the universe [133]. This may explain why even at
the present stage of the universe evolution, there is by a huge factor far more entropy in
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supermassive black holes (BHs) in galactic centers than in all other sources of entropy put
together [134].

Assuming that the amplitude of the primordial curvature fluctuations is approximately
scale-invariant [128], one obtains from Equation (10) the mass spectrum of PBHs fPBH(M)
shown on the right panel of Figure 4. The peaks at M ' 10−6, 2, 30 and 106M� correspond
to the EW and QCD phase transitions, to pions and muons becoming non-relativistic and to
e+e− annihilation, respectively. The latter may also provide seeds for the supermassive BHs’
formation in galactic nuclei. The largest contribution to fPBH(M) comes from the PBHs
formed at the QCD transition epoch and that would naturally have the Chandrasekhar mass
(1.4 M�) [128]. Moreover, the peak in the range 1–10 Mrm� could explain the LIGO/Virgo
observations [123]. The latter favor mergers with low effective spins as expected for PBHs,
but it is hard to explain BHs of stellar origin [135].

The simple analytical models that describe the dynamical process of gravitational
collapse which may be relevant for PBH formation were studied in Ref. [136]. It is also
worth noting that the gravitational collapse of large inhomogeneities during the quark-
hadron transition epoch may also explain the baryon asymmetry of the universe [137].
The asymmetry can be generated in local hot spots through the violent process of PBH
formation at the QCD transition triggered by a sudden drop in the radiation pressure
and the presence of large amplitude curvature fluctuations caused by the axion field—the
subject to be discussed in Section 2.6.

2.3. Perturbative and Strongly Coupled Regimes of QCD

An important contribution to the effective number of relativistic DoFs, geff, comes from
the hadron-to-QGP phase transition—see a big jump in the interval 102 . T . 103 MeV
in Figure 3 (right panel). At higher temperatures, in the QGP region, the strength of the
interactions between the quarks and gluons is set by the QCD coupling αS(Q) which at the
one-loop order of perturbation theory takes the form,

αS(Q) ' 2π

b0 ln(Q/ΛQCD)
, b0=11− 2

3
NF , (12)

where Q is the momentum transferred during the interaction, ΛQCD ' 200 MeV is the
characteristic QCD scale, and NF is the number of active quark flavors. The logarithmic
decrease of αS(Q) with increasing Q, i.e., with decreasing distance among the quarks
and gluons, is due to the fact that, in contrast to the photon in QED, the force carriers in
QCD, the gluons, have color charge. Their exchanges in higher-order processes involving
both the quarks and the gluons occur more frequently with increasing Q and lead to a
color charge spread (or anti-screening). Indeed, the gluon multiplicity increases at low
momentum fractions corresponding to the limit of large energies. Dilution of the initial
color charge is responsible for the weakening of αS at small distances `� Λ−1

QCD, i.e., when
the quark experiences a large momentum transfer Q, see Equation (12). This effect known as
asymptotic freedom [31,32,138] is illustrated on the left panel of Figure 5 where the values of
the αS(Q) extracted from proton-(anti)proton and lepton-proton collisions are shown [139].
In agreement with Equation (12), a slow logarithmic decrease from αS(Qmin=5 GeV) = 0.22
to αS(Qmax=1500 GeV) = 0.08 is observed.

Before proceeding further, let us recall that quantum field theory (QFT) at finite
temperature T is often considered to be equivalent to Euclidean QFT in a space which
is periodic, with period 1/T along the “imaginary time" axis (for a recent review of this
subject, see e.g., Refs. [26,140] and references therein). Thus, in order to formulate the theory
at T > 0 using its variant at T = 0, one should replace zero components of all 4-momenta
kµ in the Euclidean integrals by the discrete Matsubara frequencies—2πnT for bosons and
(2n + 1)πT for fermions, and sum over n ∈ Z instead of integrating over kµ. Consequently,
the average momentum transferred during the interactions in the hot medium Q can be
related to the temperature as Q = 2πT. In particular, the maximum value of the momentum
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transferred Qmax=1500 GeV, which has been so far measured in pp collisions at the LHC,
roughly corresponds to the “temperature” Tmax = Qmax/(2π) ' 240 GeV ' TEW
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Figure 5. (Left) The QCD coupling αS(Q) as a function of the momentum transfer scale Q obtained
by using the MSTW2008 NLO PDF set [141]. Adapted from Ref. [139]. (Right) The partonic phase
diagram showing evolution of the partons’ density and size as a function of their rapidity Y = ln(1/x)
and the logarithm of momentum transfer squared ln Q2. Adapted from Ref. [142].

The asymptotic freedom formula given by Equation (12) is based on the applicability of
QCD perturbation theory to the processes at high momentum transfers, as it is a well-known
fact that the perturbative expansion is an example of asymptotic series. It looses its validity
with decreasing Q when the perturbative approximation breaks down. Interestingly,
by performing the matching of the fundamental theory onto the effective chiral Lagrangian
at the infrared scale Q ' 4π fπ ' 1 GeV, at which the ranges of validity of perturbative QCD
and chiral perturbation theory (describing interactions among low-momentum hadrons)
descriptions meet, one can infer the information about the behavior of αS(Q) at large
distances. Such a matching implies that the QCD coupling in the infrared region is “frozen"
at 〈αS〉IR ' 0.56 [143], incidentally at twice the upper scale value of αS(Q) shown on the
left panel of Figure 5.

Let us note that evolution of the strong coupling parameter αS(Q) described at the
leading order by Equation (12) is valid only for DoFs that dominate the thermodynamical
evolution, i.e., for the partons (quarks and gluons) with momenta of order T = Q/2π,
and it does not apply to the long wavelength non-perturbative modes residing at the
length scales of ` > T−1. Those modes are occupied by a liquid in which neighboring
“unit cells” are tightly coupled to each other [144]. This strongly coupled regime [10]
makes the QGP behave as the ideal fluid [145,146]. The fluidity of the QGP was first
established in the collisions of ultra-relativistic nuclei at RHIC [53–55] and later confirmed
at higher energies of the LHC [147–149]. The most prominent signals of the strong in-
teraction in the deconfined bulk manifest in a collective flow of matter [8,146] and in a
spectacular phenomenon of suppression of very energetic partons passing through the
QGP medium [8,150,151]. Direct evidence for the non-perturbative character of deconfined
matter comes from the low-momentum spectra of direct photons measured in Au+Au
collisions at RHIC. The temperatures obtained from the spectra T ' 220 MeV [152] point to
the initial temperatures Tini ' 300–600 MeV at early times of τ0 = 0.6–0.15 fm/c, which are
way below the perturbative regime of QCD.

By definition, plasma is a state of matter in which charged particles interact via
long-range (massless) gauge fields [153]. This distinguishes it from neutral gases, liquids,
or solids in which the inter-particle interaction is of short range. So, plasmas themselves
can be gases, liquids, or solids, depending on the value of the plasma parameter Γ, which
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is the ratio of interaction energy to kinetic energy of the particles forming the plasma [39].
For a classical plasma of N particles with charge Ze occupying a volume V,

Γ ≡ (Ze)2

akBT
, a(T) =

(
3V

4πN

)1/3
≈ 0.62n(T)−1/3 , (13)

where n(T) = N/V is the temperature-dependent particle number density. While most
plasmas are ideal with Γ < 10−3, a strongly interacting plasma has Γ & 1. For plasma with
Z ' 1 at the temperature T ' 106 K ' 100 eV, the number density n must be as high as
1026 cm−3 to make Γ ' 1 [39]. Ion plasma in a white dwarf has Γ = 10–200, in transient
plasmas produced in explosive shock tubes, the values of Γ = 1–5 are found [39]. A more
down-to-earth example is table salt (NaCl), which can be considered as a crystalline plasma
made of permanently charged ions Na+ and Cl− [153]. At temperatures of T ≈ 103 K, still
too small to ionize non-valence electrons, the table salt transforms into a molten salt, which
is a liquid plasma with Γ ≈ 60.

Generalization of Equation (13) to the QGP case was suggested in Ref. [154]

Γ ' 2
Cq,gαS

aT
, Cq =

N2
c − 1
2Nc

=
4
3

, Cg = Nc = 3 , (14)

where the strong coupling αS is a slowly varying function of temperature, Cq and Cg
are the Casimir invariants of fundamental and adjoint irreducible representations of the
color SU(3)c group corresponding to quarks and gluons, respectively, and a = a(T) is the
average inter-parton distance at a given temperature T as follows from Equation (13). The
factor 2 in Equation (14) takes into account the equal importance of chromoelectric (CE) and
chromomagnetic (CM) interactions in ultra-relativistic systems. For ideal massless QCD
gas with NF active quarks and dF = gQCD

eff degrees of freedom, see Equation (9), the particle
number density reads

n = dF
ζ(3)
π2 T3 ≈ dF

(
T
2

)3
, dF = 2× 8 + 7

8 (3× NF × 2× 2) . (15)

From Equations (13) and (15), it follows that a ' 1.24d−1/3
F T−1, and so, the term aT,

appearing in the denominator of Equation (14), depends on T through the temperature-
dependent number of active quark flavours NF(T) only. Consequently, for an ideal massless
QCD gas, the temperature-dependence of the plasma coupling parameter Γ is driven by
αSd1/3

F . For the QGP created in HICs at RHIC T ≈ 200 MeV and αS = 0.3–0.5 with NF = 2,
Equations (15) and (14) yield dF = 37 and Γ ' 2–8 well inside the strongly coupled regime.
At much higher temperatures, say, at T ' TEW, with αS = 0.08 and NF = 5, we obtain
dF = 52.5 and Γ ' 0.5–1.5—the value located in the vicinity of the strongly coupled regime.
At even higher temperatures, the number of active quark DoFs saturates at NF = 6 and the
evolution of Γ(T) becomes solely driven by the (logarithmically decreasing) QCD coupling
αS(T), cf. (12). Let us note that the ideal gas approximation serves only as a lower estimate
of Γ because it ignores the interactions in the partonic liquid. The latter will slow down the
temperature dependence of the average inter-parton distance a, thus weakening the strong
coupling parameter dependence on T.

A more in-depth approach to strongly coupled non-Abelian plasmas [155] was expected
to come from the gauge/string duality [156]—a correspondence between d-dimensional
conformal QFT and (d + 1)-dimensional string or gravity theory. In these theories, the
graviton needs not live in the same spacetime as the QFT, but due to the holographic principle,
the description of gravity within a volume of spacetime can be thought of as encoded on a
lower-dimensional boundary to the region in the formalism of conformal field theory [157,158].
However, the inherently conformal character of the gauge QFT used in the duality with anti-
de Sitter gravity (AdS) is at variance with QCD where the scale invariance is broken by
the confinement scale (for a recent review of confinement dynamics, see Ref. [22]), causing
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the running of the coupling. This limits the applicability of gauge/string duality [156] to
temperatures T � TQCD

c and hence to weak couplings.

2.4. QCD at High Parton Densities and Saturation

To proceed further, a different type of analysis of the QCD dynamics of partonic matter
is needed. There are two independent paths along which the density of partons can evolve,
and these are illustrated in the right panel of Figure 5. The two together form the basis of
our current understanding of high-energy scattering in QCD.

The first path follows the development of partonic cascade in variable Q. For par-
tons that occupy a transverse area 1/Q2, the increase of Q and hence of the tempera-
ture T ∼ Q leads to dilution of their density. The process is controlled by the Dok-
shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) [159–161] equations describing the evo-
lution of partonic density as a function of evolution variable ln(Q2/Λ2

QCD) [17,162].
The second path follows the development of a parton shower in variable x = k+/P+,

which is a fraction of the light cone momentum1 P+ of the parent parton, which has
radiated a parton emerging with the light-cone momentum k+. In the x⊥ plane transverse
to the direction of the fast-moving primary parton, the partonic cascade initiated by the
primary parton can be visualized as a Brownian motion-like trajectory developing from
x = 1 toward x → 0. The corresponding Gribov diffusion process is controlled by the
so-called evolution parameter Y = ln(1/x), leading to a difference in rapidity between the
primary and radiated partons, with a coefficient being the diffusion constant proportional
to αS. Its evolution in the Y variable is described by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation that is complementary to the DGLAP evolution realized in ln Q2 (see
standard textbooks, e.g., Refs. [17,162] and references therein).

At fixed Q, the radiated partons (mostly, soft gluons with x � 1) are typically of
the same size. When a parton-parton interaction cross-section ∼αS/Q2 multiplied by
xGA(x, Q2)—the probability to find at fixed Q a parton carrying a fraction x of the parent
parton momentum—becomes comparable to the geometrical cross section πR2

A of the
object A occupied by the gluons, the partons “overlap”. The repulsive interactions among
the gluons ensure that their occupation number fg (the number of gluons with a given
x multiplied by the area each gluon fills up divided by the transverse size of the object)
saturates at fg ∼ 1/αS. Note that this is a very generic behavior—the same density
scaling as the inverse interaction strength α−1 is characteristic of a number of condensation
phenomena such as the Higgs condensate, see, e.g., Ref. [163], or superconductivity [164].

The phenomenon of saturation [165] is thus important for gluons with transverse
momenta k⊥ ≤ Qs [166,167], where

Q2
s (x) =

αS(Qs)

2(N2
c − 1)

xGA(x, Q2
s )

πR2
A

∼ 1
xλ

(16)

is the x-dependent saturation scale representing a fixed point of the parton density evolution
in x or, equivalently, the emergent “close packing” scale [167]—see the right panel of
Figure 5 where the saturation line ln Q2

s (Y) = λY, Y = ln x is also displayed. Such gluons
form a highly coherent configuration called Color Glass Condensate (CGC) [142,167,168],
or glasma [169], which due to the high occupation number fg has properties of QCD in the
classical regime [166].

At high temperatures, one usually expects that quantum effects become less important.
To show that, for the CGC, we follow Ref. [166] and write the gluonic part of the QCD
action in terms of the gauge field potential Aa

µ and field strength F a
µν which are obtained
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by rescaling of their equivalents Aa
µ and Fa

µν used in a more traditional approach when the
coupling constant gs multiplies the interaction terms in the Lagrangian,

Aa
µ → Aa

µ ≡ gs Aa
µ , Fa

µν → gsFa
µν ≡ F a

µν = ∂µAa
ν − ∂νAa

µ + f abcAb
µAc

ν , (17)

Sg = −1
4

∫
Fa

µνFµν,ad4x = − 1
4g2

s

∫
Fµν,aF a

µνd4x , (18)

where f abc with (a, b, c) ∈ {1, . . . , 8} are the SU(3) group structure constants. For a classical
configuration of gluon fields, by definition, F a

µν does not depend on the coupling, and the
action is large, Sg � h̄. The number of quanta in such a configuration is then

fg ∼
Sg

h̄
∼ 1

h̄g2
s

ρ4V4 , (19)

where we rewrote Equation (18) as a product of four-dimensional gluon condensate density
ρ4 ∼ 〈Fµν,aF a

µν〉 and spacetime volume V4. The number of quanta fg in such a config-
uration depends only on the product of the Planck constant h̄ and the strong coupling
squared g2

s = 4παS. The classical limit h̄ → 0 is indistinguishable from the weak cou-
pling limit g2

s → 0 [166]. Thus, the weak coupling limit of small αS corresponds to the
semi–classical regime.

An equivalent argument employs the fact that the path integral formulation of the
quantum theory in Minkowski space sums over all field configurations weighted with
exp(−iSg/h̄). Since g2

s appears in the exponential in the same place as h̄, cf. Equation (18),
this already suggests that for g2

s → 0, the path integral is dominated by the classical
configurations. Such configurations are believed to describe the matter inside incident
nuclei during the initial stage of relativistic HICs at RHIC and the LHC [142,168].

Although in its original formulation, the QCD saturation is used for partons with
fixed Q in case of the macroscopic bodies, it is more relevant to consider the partons at
a fixed temperature T = Q/2π, avoiding at the same time the quantum entanglement
problem [170], which is inevitably present in the description of microscopic objects. In this
generalized setting, an object A filled with gluons may represent not only a fast-moving
proton or nucleus but also the interior of the expanding early universe. Moreover, as follows
from Equation (16), the saturation phenomenon is not necessary related to the growth of
the gluon density at small x. For a big fast-moving domain of space filled with deconfined
quarks and gluons, with radius R � 1 fm, and hence also for the fast-expanding early
universe itself characterized by the Hubble horizon LH ≫ 1 fm, the saturation limit can be
reached even at x ' 1 [162]2. In the extreme case, when the gluonic part of QCD matter
completely decouples from the QCD fermionic fields and forms the vacuum condensate,
the first term in Equation (9) can be neglected, and we obtain gQCD

eff /gEW
eff ' 8/3, making

the CGC a prevailing form of matter during both the QCD and EW epochs.
Thus, in the periods of cosmological evolution when T � ΛQCD, including a very hot

QCD era, EW era and beyond, it is perfectly conceivable that the universe was dominated
by the fully saturated gluonic matter with occupation number fg ∼ α−1

S . If during its
subsequent cooling, the universe followed a trajectory in the

[
ln(1/x), ln Q2] plane staying

still above the ln Q2
s = λY line, see the right panel of Figure 5, the CGC phase would be

a prevailing form of matter down to the temperatures T ≈ (2− 5)× ΛQCD. For lower
temperatures, the glasma is expected to fragment into a strongly interacting QGP.

The issue of emergence of classical behavior in the cosmological history has drawn
recently a great deal of attention because of its conceptual as well as practical importance,
see e.g., Ref. [171] and references therein. Although the origin of the observed anisotropies
in the cosmic microwave background (CMB) radiation is traced back to vacuum fluctuations
of quantum fields in the very early universe [84,120,172], there is a general expectation
that the main characteristics of the universe can be described in classical terms even in
its early history [171,173,174]. This is consistent with the fact that the initial conditions
of the Hot Big Bang were determined by cosmic inflation driven by the so-called inflaton
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field [84,86,175,176]. Apart from the quantum fluctuations of this field, its very emergence
may well be a quantum phenomenon, e.g., the axion condensation (for a more thorough
discussion, see below).

Let us note that the word “glass” appearing in the acronym CGC is used in condense
matter physics to describe a non-equilibrium, disordered state of matter acting like solids
on short time scales but liquids on long time scales [177]. In the glasma case, there are
two scales present—the light cone time τwee of low x (or wee) partons and the light cone
time τvalence of primary (or valence) partons. For partons of transverse momentum k⊥,
we obtain

τwee =
1

k−
=

2k+

k2
⊥

=
2xP+

k2
⊥
� 2P+

k2
⊥
≈ τvalence , (20)

suggesting that the valence parton modes are static over the times scales over which the
wee modes are probed [167]. It is quite tempting to identify τvalence with the quantum
break-time discussed in Refs. [178,179] defined as the time-scale after which true quantum
evolution of the parton densities departs from the classical mean field evolution.

Glasses are formed when liquids are cooled too fast to form the crystalline equilibrium
state. The fast cooling leads to an enormous number of possible configurations Ngl(T) into
which the glasses can freeze and consequently to their large entropy S = ln Ngl(T), which
does not vanish, even at T = 0, see e.g., Refs. [177,180]. In case of the CGC, the fast cooling
is expected to take place in the Grand Unified Theory (GUT) era (see Section 2.5) when
about one-third of all gauge bosons are gluons. By the end of that period, the excess of
effective entropy DoF heff is almost completely absorbed by the saturated gluonic matter.

The gluon condensation into (many domains of) the saturated phase was also facil-
itated by the fact that the wee partons “see” the color charge of other gluons over very
large distances given by their transverse wavelength λwee ∼ 1/k+ = 1/(xP+). Since the
glasma domains were formed in separate and completely different gluonic configurations,
the saturated gluonic matter occupying the early universe had a substantial excess in
the entropy DoF, hQCD

eff , over the effective number of DoF in energy, gQCD
eff . Consequently,

the value of the generalized EoS parameter w was higher than that of the ideal massless
gas; see Equation (6).

One possibility of how the EoS of a non-equilibrium matter comprising weakly in-
teracting gluons can be approximated by the ideal massless gas of quasi-particles with
w(T) > 1/3 follows from Equation (48) discussed later in Section 3.1. The glasma with
w(T) ≈ 1/D may be looked upon as either a two-dimensional sheet (D = 2), a one-
dimensional string (D = 1) or, more generally, a fractal with the Hausdorff dimension
1 ≤ D < 3. Recent investigations of the dynamics of expanding glasma show that the
spatial asymmetry introduced by the initial geometry is effectively transmitted to the
azimuthal distribution of the gluon momentum field, even at very early times [181,182].

2.5. The Running Couplings of the Standard Model and Their Unification

The importance of QCD interactions in the EW era of the universe evolution can be
also seen by comparing the corresponding couplings—the strong αS, electromagnetic αEM
and weak αW ones. This is illustrated on the left panel of Figure 6 showing the RG flow
in the scale µ = Q of the electromagnetic, weak and strong coupling parameters above
Q = 100 GeV. Note that due to the fact that the gauge group of SM interactions SU(3)C
× SU(2)L × U(1)Y is not a simple Lie group, the theory has not one but three coupling
parameters, which are often denoted as α1 ≡ αEM, α2 ≡ αW and α3 ≡ αS [183].

To see how the values of the coupling parameters influence the state of early universe,
let us compare the collision time among its constituents tc ∼ 1/(σnv) (σ is the effective
cross-section, n is the particle number density and v is their relative velocity) with the
characteristic time-scale of the universe expansion tH ∼ 1/H [84]. Let us first restrict
ourselves to the temperatures T & TEW when all particles of the SM are ultra-relativistic and
the gauge bosons are massless. Then, the cross-sections for strong and EW interactions have
a similar energy dependence σ ∼ α2/T2, where α ' 10−1 − 10−2 are the corresponding
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dimensionless running couplings α1,2,3 varying logarithmically with T; see Figure 6. Taking
into account Equations (39) and (42) for n ∼ T3, we find

tc ∼
1

σnv
∼ 1

α2T
� tH ∼

1
H
∼ 1√

ε
∼ 1

T2 . (21)

Thus, for the temperatures 1015 − 1017 GeV & T & TEW, the local equilibrium in the
fluid is established before expansion of the universe becomes relevant.

At the lower temperatures down to TQCD
c ≈ 160 MeV, the strong interactions prevail

over the EW ones, and the local equilibrium is controlled by the interactions among the
quarks and gluons in the strongly interacting QGP liquid. Even though the number density
of the medium may be smaller3, the big effective cross-section among the particles form-
ing the medium guarantees that the condition for local equilibrium tc � tH is satisfied.
Thus, over that whole range of the temperatures, the early universe is in the local equi-
librium. It develops along the maximal possible entropy path, making it amenable to the
hydrodynamical description.

In spite of its success, the SM cannot be the ultimate theory of particle physics. Such
long-standing problems as the absence of a suitable DM candidate, no explanation of the
observed baryon asymmetry in the universe, as well as various hierarchy problems in
the underlined mass spectra (such as the flavor problem, the neutrino mass problem and
the Higgs hierarchy problem) call for various bottom-up extensions of the SM framework
as well as continuous attempts to derive the SM structure from a top-down perspective.

As was earlier discussed, e.g., in Ref. [184], the Higgs boson quartic coupling in the
SM turns negative at scales &1010 GeV, rendering the vacuum state of the theory unstable
at high energies. The current theoretical developments and experimental measurements
suggest that the metastability of the Higgs vacuum is favored. This means a vacuum decay
may occur with possibly catastrophic consequences for cosmology, since there are many
catalysts that could trigger such a decay in the early universe. For a comprehensive review
on cosmological implications of the Higgs vacuum metastability, see, e.g., Ref. [185].

Incidentally, almost immediately after the discovery of the asymptotic freedom, it
was suggested [186] that at very high energies, the three gauge interactions of the SM are
merged into a single force. The model, a first example of the Grand Unified Theory (GUT),
is based on the smallest simple Lie group which contains the SM gauge groups SU(5) ⊃
SUc(3) × SU(2)L × U(1)Y. Among its 24 gauge bosons, there are in addition to eight gluons
of QCD and four EW gauge bosons W±, Z and γ also 12 new ones called X and Y. Their
emission or absorption makes it possible to transform a lepton into a quark or vice versa.
Hence, the SU(5) GUT does not conserve baryon and lepton numbers separately, making it
the first theory providing an explicit mechanism for the proton decay p→ e+π0, with the
half-time τp ' M4

X/m5
p ' 1030 − 1031 years, where MX is the mass of SU(5) gauge boson at

the scale of Grand Unification and mp is the mass of the proton. Although it was later found
to disagree with experimental lower limit of τp ≥ 8.2× 1033 years [187] SU(5), unification
is still considered an important example and a reference point of GUT model-building.

The basic property of the SU(5) theory and its later GUT successors [188–192] is that by
virtue of the unification into a single (simple Lie) gauge group at very high energies, strict
unification of the SM gauge couplings must take place. This is hinted at but not really achieved
in the SM; see the left panel of Figure 6. First, α1 and α2 cross each other at µ ∼ 1013 GeV;
then, α1 crosses α3 at µ ∼ 1014 GeV, and finally, α2 and α3 cross at µ ∼ 1017 GeV, providing a
hint of unification close to the Planck scale. Thus, as ultraviolet (UV) completions of the SM
describing the physics at very high energies, GUTs are sometimes connected to theories of
gravity such as string theory.
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Figure 6. (Left) RG flow of the inverse SM gauge couplings α−1
a as functions of the renormalization

scale parameter µ. Index a = 1, 2, 3 stands for QED (a = 1), weak (a = 2) and QCD (a = 3) couplings.
(Right) RG flow of the MSSM gauge couplings. Adapted from Ref. [192].

Let us now try to speculate on how the Grand Unification might have influenced the
dynamics of the early universe at the temperatures when gluons decouple from quarks,
forming a condensate. In SU(5) GUT, with increasing temperatures T � TEW

c , the gluon
exchange between quarks (antiquarks) becomes overshadowed by the exchange of EW
massless gauge bosons W±, W0, B0 to be finally superseded by the GUT super-heavy X
and Y gauge bosons. The latter also facilitate the conversion of quarks into leptons and
vice versa. Since the transformations occur in the thermal and chemical equilibrium, the
number of quarks and leptons remains constant on average.

One of the fundamental issues with the GUT models, which remains a challenge
today, is the large hierarchy between the mass scale of Grand Unification and the EW scale.
The latter is a source of large loop corrections to the Higgs mass. The problem is usually
solved by extending the GUT with supersymmetry, the hypothetical symmetry between
fermions and bosons (for a recent review on the concepts of supersymmetric GUTs, see
e.g., Ref. [192]), which is broken at lower energies. Some of its minimal realizations, such
as the Minimal Supersymmetric Standard Model (MSSM) [193], predict the unification of
all three gauge couplings at the same scale; see the right panel of Figure 6.

Notwithstanding the drawbacks of GUTs, their cosmological signatures look quite
promising. With the critical temperature TGUT

c of the GUT phase transition approximately of
the same order of magnitude as the particle masses at that temperature, the phase transitions
that take place in GUTs at T & 1014 GeV, as a rule, prove to be FOPTs [194]. Such transitions
proceed via bubble nucleation [195]. While an isolated spherical bubble may produce GWs
through sound waves in the plasma and magneto-hydrodynamics turbulence effects (see for
example Refs. [196–199] and references therein), the process of bubble collision contributes
to the GWs spectrum in the quadrupole approximation [86,200]. This contrasts with the
SM phase transitions where the crossovers do not lead to a strong enhancement over
the primordial GW spectrum. Moreover, the FOPTs also generate a primordial magnetic
field during the turbulence phase of the plasma and bubble collision [86,201], and in some
instances, they may generate topological defects such as domain walls and strings [195,202].

Let us add that an FOPT in the EW sector though precluded in the SM is possible
in many of its scalar sector extensions [203]. In the most exotic scenario, a very peculiar
history of the universe may occur: a first-order QCD phase transition (with six massless
quarks) triggers an EW FOPT, which is eventually followed by a low-scale reheating of
the universe where hadrons (likely) deconfine again, before a final, conventional crossover
QCD transition to the current vacuum [204].

2.6. Axions

A promising avenue connecting the strong interactions with physics beyond the SM
having at the same time far-reaching consequences in cosmology is provided by hypothet-
ical ultra-light particles—the axions [183,205–208]. The QCD, unlike the EW interaction,
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is symmetric under time reversal and hence under a combined charge conjugation C and
parity P operation CP. In principle, one can add to the QCD Lagrangian the term:

LQ = θ
g2

s
32π2 Fa

µν F̃µν
a , (22)

where Fa
µν is the gluon field strength tensor (see Equation (17)), and F̃µν

a = 1
2 εµναβFa

αβ is its
dual. For a non-zero value of the parameter θ, called the vacuum angle [209], the strong
coupling permits violation of the CP symmetry. However, since LQ can be written as a total
derivative of Kµ, the Chern–Simons current, LQ = ∂µKµ, the new term does not produce
any effects in perturbation theory and is therefore usually neglected. Nevertheless, classical
configurations, topological in nature, do exist, one example being the instantons [210],
for which this term cannot be ignored. For instance, in the semi-classical dilute instanton
gas approximation (DIGA) [211], the QCD vacuum energy density ε0 depends on θ as

ε0(θ) = −2Ce−Sinst cos θ , Sinst =
8π2

g2
s

. (23)

Here, C is a positive constant and Sinst is the QCD instanton action [207,208],
cf. Equation (18). Moreover, since LQ in Equation (22) preserves the charge conjugation C,
it contributes directly to the neutron electric dipole moment dn ≈ emq/m2

nθ, where e is the
proton charge, mq denotes the mass of u, d quarks, and mn is the neutron mass. Current
measurements [212] provide an upper bound on the CP-violation parameter, |θ| . 10−10.

Within the SM, the smallness of the θ parameter becomes a true fine-tuning problem.
Since θ could acquire anO(1) contribution from the observed CP-violation in the EW sector
(via the common quark mass phase, arg det(Mq), where Mq is the quark mass matrix),
its not obvious why it becomes cancelled to a high precision by the (unrelated) gluon
term [207]. To solve this problem, the SM is augmented with an extra pseudo-scalar particle
called axion A, whose only non-derivative coupling is to the CP-violating topological gluon
density Fa

µν F̃µν
a that is suppressed by a large scale fA. With θ → θ + φ(x)/ fA, where φ is

the angular DoF of spin-zero complex field,

ϕ = |ϕ|eiθ = |ϕ|eiφ/ fA , (24)

the minimum of the vacuum energy occurs when the coefficient θ + φ/ fA in front of Fa
µν F̃µν

a
vanishes.

It is worth noting that interactions of the scalar field with ordinary matter is controlled
by the factor ∂µ ϕ/ fA. Thus, even at its originally suggested value of fA ∼ 250 GeV
at the EW breaking scale [213], the axions interact so weakly that they emerge without
attenuation from reactor cores or stellar interiors. Present astrophysical constraints push
fA to substantially higher values, which are somewhere between a few 108 GeV and a few
1017 GeV.

In cosmology, since their introduction, the axion-like particles were considered to be
potentially important candidates if not for all than at least for the main component of the
DM—a form of matter accounting for about one-quarter of its total energy density [72].
In order to fulfill their mission, the axions must contribute a non-negligible amount to
the energy density of the universe and should have not been in thermal equilibrium with
the cosmological plasma at any time in the history of the universe. This, together with
the smallness of axion mass, implies their large occupation numbers [207]—the situation
already encountered when we have discussed the properties of saturated gluon matter,
cf. Equation (19). This implies that the axions over the whole history of the universe can be
modeled by solving the classical field equations of a scalar condensate [214].
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Starting from the Peccei–Quinn (PQ) scalar field ϕ introduced in Equation (24), the La-
grangian invariant under the global U(1)PQ transformation reads [215]:

L =
1
2
|∂µ ϕ|2 −Veff(ϕ, T) , Veff(ϕ, T) =

λ

4
(|ϕ|2 − f 2

A)
2 +

λ

6
T2|ϕ|2 . (25)

Focusing on the early universe, the evolution of the field ϕ passes the following
milestones. At high temperatures T � Tc =

√
3 fA, the effective potential Veff(ϕ, T)

depicted on the left panel of Figure 7 has the U(1)PQ symmetric minimum at ϕ = 0.
With increasing time t, the universe cools, and the vacuum with ϕ = 0 becomes unstable.
Due to the misalignment mechanism, the field starts to roll down from ϕ = 0, and the
potential becomes tilted. At T . fA, the PQ symmetry is spontaneously broken—the
field acquires the vacuum expectation value 〈ϕ〉 = fA. Then, the axion—the Nambu-
Goldstone boson of the spontaneously broken U(1)PQ symmetry—becomes a massless
angular DoF at the minimum of the potential. The detailed results depend on whether the
PQ phase transition occurs before or after inflation. While in the former case, only one θ0
angle contributes (all other values are inflated away), in a post-inflationary scenario, the
initial value of the angle θ takes all values in the interval 〈−π, π〉. Eventually, when the
universe cools to the temperatures of a few GeV, the axion obtains a mass through the QCD
non-perturbative instanton effect known as the axial anomaly [183,216,217].
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Figure 7. (Left) Potential of the PQ scalar V(ϕ) at different temperatures T � Tc (pink) and
T � Tc (violet). The yellow circles show the positions of the minimum. Adapted from Ref. [215].
(Right) Continuum limit of χtop(T) from LQCD. The inserted sub-figure shows the behavior around
the QCD phase transition temperature. Adapted from Ref. [89].

At the leading order in f−1
A , the axion mass mA(T) at some temperature T can be

extracted from the QCD-generating functional Z(θ) in the presence of a theta term [218],

m2
A(T) =

δ2

δφ2 lnZ
(

φ

fA

)∣∣∣
φ=0

=
1
f 2
A

d2

dθ2 lnZ(θ)
∣∣∣
θ=0

=
χtop(T)

f 2
A

, (26)

where χtop(T) is the QCD topological susceptibility. This quantity is typically computed
using the lattice methods developed by several groups, see e.g., Refs. [89,219–228], but also
in the framework of analytical approaches [218,229]. Its temperature dependence can be
extracted either from the DIGA or from the LQCD calculations; see the right panel of
Figure 7. The lattice simulations performed, for instance, in Ref. [89] have revealed that
for T > T∗ = 150 MeV, the susceptibility falls as χtop(T) ∼ T−b with b = 8.16, extending
thus the previous DIGA result χtop(T) = χ(0)T−8 up to T ≈ 3 GeV. At the temperatures of
T = 100− 140 MeV in the vicinity of the QCD chiral phase transition temperature Tc, see
Section 2.1, χtop(T) flattens. Further analysis performed in Ref. [89] exploiting the QCD
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EoS obtained therein has revealed that in the post-inflationary scenario, depending on the
fraction of DM consisting of axions, mA = 50–1500 µeV. In particular, for the 50% axion
content of the DM, one obtains the axion mass scale of mA = 50(4)µeV. Since at T < Tc,
the chiral perturbation theory [183] becomes applicable, it is worth making a comparison
with the original formula for the axion mass,

m2
A =

mumd
(mu + md)2

m2
π f 2

π

f 2
A

=⇒ mA ≈ 5.7
(

1012GeV
fA

)
µeV , (27)

where fπ is the pion decay constant, and md and mu are the down- and up-quark masses
appearing in the QCD Lagrangian [183,208]. Let us note that if mA & 20 eV, the axions
decay faster than the age of the universe.

For temperatures above the chiral phase transition, the axion potential computed in
DIGA reads [211]:

V(φ, T) = χtop(T)
[

1− cos
(

φ

fA

)]
. (28)

Expanding Equation (28) around φ/ fA = 0, we obtain V(φ) = m2
Aφ2/2 at a finite T.

Assuming the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and classical axion
field with this potential, the corresponding unperturbed energy density ε̄A and pressure
p̄A due to the axion field read

ε̄A =
1
2

φ̇2 +
1
2

m2
Aφ2 and p̄A =

1
2

φ̇2 − 1
2

m2
Aφ2 , (29)

respectively. Substituting ε̄A and p̄A from Equation (29) into the fluid Equation (39),
we obtain

φ̈ + 3Hφ̇ + m2
A = 0 . (30)

At early times H(t) � mA(t), we can neglect mA in Equation (30) to obtain the
solution φ(t) = φ0—the axion field is frozen at a constant value φ0 ∼ fA.

With increasing time t, eventually, the oscillating term proportional to m2
A(t) ≡

m2
A(T(t)) in the equation of motion of the axion field (28) begins to contribute. At the

time tosc defined implicitly as mA(tosc) ≈ 3H(tosc), the universe is sufficiently large to
host a sizeable fraction of one oscillation period—the axion field starts to oscillate with an
amplitude damped by the expansion rate. A solution of Equation (30) then reads [120],

φ(t) = φ1

(
a(t1)

a(t)

)3/2

cos
(∫ t

0
mA(t)dt + α

)
, (31)

where t1 is the time at which H(t1) = mA, i.e., when the temperature drops below the
QCD chiral phase transition temperature Tc, φ1 ∼ fA is the constant and α is the phase.
In particular, for mA(t) = mA and a radiation-dominated universe, one obtains φ1 ≈ 1.44φ0
and α = −3π/8 [120].

For the initial conditions at the onset of oscillations θi ≡ θ(tosc), θ̇i ≡ θ̇i(tosc), where θi
is called the initial misalignment angle, we obtain from Equation (30)

θi = θPQ +
φ̇PQ

HPQ
and θ̇i = θ̇PQ

(
H(tosc)

HPQ

)3/2

, (32)

where θ(tPQ) ≡ θPQ, φ̇(tPQ) ≡ φ̇PQ, HPQ ≡ H(tPQ) and aPQ ≡ a(tPQ) are the values at
the PQ symmetry breaking time tPQ � tosc. In the second equation, we have also used
a ∼ 1/T and H ∼ T2G1/2 [208].

While in the pre-inflationary scenario, inflation selects one patch of the universe within
which the spontaneous breaking of the PQ symmetry leads to a homogeneous value of the
initial misalignment angle φi, in the post-inflationary scenario, the PQ symmetry breaks
with θi, taking different values in patches that are initially out of causal contact; see the



Universe 2022, 8, 451 22 of 77

left panel of Figure 7. However, today, they populate the volume enclosed by our Hubble
horizon. In the post-inflationary scenario, the initial misalignment angle φi takes all possible
values on the unit circle. For a quadratic potential, V(φ) = m2

Aφ2/2, this is equivalent to an

assumption that the initial condition reads φi ≡
√
〈φ2

i 〉 = π/
√

3, where the angle brackets
represent the value averaged over 〈−π, π〉 [208].

Starting from Tosc, the number of axions in a comoving frame becomes frozen, and their
number density evolves as

nA(Tosc) ≈ mA(Tosc) f 2
A〈φ2

i 〉 . (33)

For isotropic evolution, the ratio of the number density nA to the entropy density s in the
comoving frame is conserved, i.e., nA(T)/s(T) = nA(Tosc)/s(Tosc) leading for T � Tc to
the expression for the axion energy density,

εmis
A = mAnA(Tosc)

heff(T)
heff(Tosc)

(
T

Tosc

)3
= mA f 2

A〈φ2
i 〉

heff(T)
heff(Tosc)

(
T

Tosc

)3
Tc , (34)

where the effective number of DoFs of the entropy heff(T) is defined in Equation (3). Let
us note that in contrast to Ref. [208] in Equation (34), the constancy of the axion mass for
T . Tc is already taken into account.

After the spontaneous U(1)PQ symmetry breaking the axion field, φ, being an angular
variable, takes values in the interval 〈0, 2π fA〉, cf. Equation (24). Consequently, the axion
potential V(φ) given by Equation (28) is periodic in φ with period ∆φ = 2π fA/NDW.
In the other words, V(φ) has an exact ZNDW discrete symmetry. The axion acquires a
periodic potential with NDW equivalent minima. The Kibble mechanism [195,230] then
dictates that, depending on the homotopy group π(M) of the manifoldM of degenerate
vacua, the topological defects—domain walls, strings or monopoles—form each time the
symmetry is broken [195,202]. WithM = U(1)PQ and π(M = ZNDW), the production of
axionic strings, which are vortex-like topological defects that form as soon as the symmetry
is spontaneously broken, is possible. Those are not important when the PQ symmetry is
broken before inflation—they are inflated away—but they play an important role in the
post-inflationary scenario. When the Hubble parameter H becomes comparable to the
axion mass mA, the axion starts to roll down to one of the minima. Since the axion field
settles into different minima in different places of the universe, domain walls are formed
between the different vacua; see the left panel of Figure 7. It is worth mentioning that this
phenomenon is similar to ice formation on the surface of a pond or a puddle when the
water begins to freeze in many places independently, and the growing plates of ice join up
in random fashion, leaving zigzag boundaries between them [195].

As an example, let us consider a planar wall orthogonal to the z-axis φ = φ(z).
The solution of the classical field equation with potential given by Equation (28) reads [231]:

φ(z)
fA

=
2πk
NDW

+
4

NDW
tan−1 emAz . (35)

This configuration interpolates between the two allowed vacua, φ/ fA = 2πk/NDW at
z→ −∞ and φ/ fA = 2π(k + 1)/NDW, which are separated by the wall of thickness 1/mA.

Astrophysical signatures of the axion can be broadly divided into its couplings to
elementary/composite particles, i.e., photons, electrons, protons or neutrons, and to the
macroscopic objects in the universe such as BHs [208]. In the latter case, when the Compton
length of the axions becomes of order of the BH size, they form gravitational bound
states around it. The phenomenon of superradiance [232,233] causes the axion occupation
numbers to grow exponentially, providing a way to extract very efficiently energy and
angular momentum from the BH. The presence of axions could be inferred by observations
of BH masses and angular momenta. Current measurements exclude the region of 6×
1017 GeV ≤ fA ≤ 1019 GeV.
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In particle physics signatures, the most important is the decay channel of axion into two
photons with the decay width ΓA→γγ = g2

Aγγm3
A/(64π) in terms of the model-dependent

coupling constant gAγγ. The main uncertainty is due to the electromagnetic and color
anomalies of the axial current associated with the axion. The most relevant process induced
by the gAγγ is the Primakoff process—the conversion of thermal photons in the electrostatic
field of electrons and nuclei into axions,

γ + Ze→ A + Ze . (36)

A strong bound on exotic cooling processes in the sun is provided by the helioseis-
mological considerations [234] giving the following constraint: gAγγ ≤ 4.1× 10−10 GeV−1.
For more details, consult Refs. [205–208,215]. Another option is the inverse Primakoff
scattering, which allows solar axions to coherently scatter off the atomic electric field and
back-convert into photons in the detector volume, A + Ze→ γZe, proceeding through a
t-channel photon exchange [235].

The axion besides being a well-recognized DM candidate may provide also an inter-
esting explanation of a wider range of phenomena related to the early universe dynamics.
As a first example, let us mention the SMASH model—a minimal extension of the SM with
additional particle content comprising three sterile right-handed neutrinos Ni, i = 1, 2, 3,
a color triplet Q and a complex SM-singlet scalar σ, whose VEV of vσ ∼ 1011 GeV breaks
the lepton number and the PQ symmetry simultaneously [236]. At low energies, the model
reduces to the SM, which is augmented by seesaw-generated neutrino masses and mixing,
plus the axion. In this scenario, the inflaton, a scalar field driving cosmic inflation in the
very early universe, is a mixture of σ and the SM Higgs fields. The reheating of the universe
after inflation occurs via a mechanism known as a Higgs portal [237]—by the DM particles,
which interact only through their couplings with the Higgs sector of the theory. The model
provides a consistent picture of particle physics from the EW scale to the Planck scale MPL
and of cosmology from inflation until today. In particular, in the SMASH model framework,
the PQ symmetry is first broken and then restored non-thermally during preheating for
fA = 4× 1016 GeV.

The second example, the Axion Quark Nugget (AQN) DM model, see, e.g., Ref. [238]
and references therein, replaces the commonly accepted baryogenesis scenario with a
charge separation process in which the global baryon number of the universe remains
zero at all times. Similarly to Witten’s idea of stranglets [5], the AQN DM is composed of
quarks and anti-quarks but now in a new high-density CSC phase. Initially, nuggets of
both matter and antimatter are formed with equal probability as a result of the dynamics
of the axion domain walls which at the same time provide the extra pressure needed to
stabilize the CSC phase. Later on, due to the global CP violating processes associated with
the initial misalignment angle θ0 6= 0 during the early formation stage, the populations
of the nuggets with the positive and negative baryon number become different. The un-
observed antibaryons hidden inside the DM would not participate in nucleosynthesis
and, therefore, according to the usual definition would not contribute to the visible matter.
However, since antimatter nuggets can interact with regular matter via annihilation leading
to electromagnetic radiation, their existence has observational consequences [238].

It is worthwhile mentioning here an interesting generalization of the PQ mechanism
where in addition to θ angle, also the strong coupling αS is promoted to a dynamical
quantity. The latter evolves through the VEV of a singlet scalar field that mixes with
the Higgs field [239,240]. In the resulting cosmic history, the QCD confinement and EW
symmetry breaking initially occur simultaneously close to the weak scale.

To conclude this section, as we have already noticed in several examples above, the non-
perturbative dynamics of QCD often exhibits very non-trivial and rather unexpected
consequences at cosmological scales. An attractive mechanism proposing that the QCD
axion may emerge as a composite state has been discussed very recently in Ref. [241].
In particular, it was suggested that Majorana neutrinos, that combine into Cooper pairs,
can form collective low-energy degrees of freedom. This motivates the existence of the
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QCD axion as a collective excitation of the neutrino condensate. Such a condensate can
be produced after the QCD phase transition epoch in a cold coherent state by means of a
misalignment mechanism, thus providing an alternative DM candidate. In this case, a QCD
anomalous portal provides the necessary means for a tiny mass gap generation by neutrinos.
Furthermore, the Cosmological Constant emerges as a result of the spontaneously broken
mirror symmetry of the QCD ground state triggered by the quantum gravity effects as
suggested by Refs. [65,66] (see also below). Hence, one concludes that QCD may be
responsible for the dynamical generation of both the DM and DE components of the
universe such that a complete knowledge of the QCD in the infrared regime may be
absolutely critical for understanding of the cosmological evolution since the latest QCD
transition epoch and for eventual formation of the current state of the universe.

3. Dynamics of the Early Universe
3.1. Simple Models with Constant Speed of Sound

In accord with the observations, the Standard Cosmological Model (SCM) postulates
that the cosmic matter at scales larger than 100 Mpc is homogeneously and isotropically
distributed. Consequently, thermodynamic pressure p at early times of its evolution
depends on temperature T and various chemical potentials µi, i = B, Q, L, . . . corresponding
to baryon number B, electric charge Q, lepton number L etc., only via the energy density ε.
Solution of the Einstein equations of general relativity

Rµν − 1
2 gµν(R− 2Λ) = −8πGTµν , (37)

where Rµν is the Ricci tensor, R = Rµνgµν is the scalar curvature, gµν is the metric tensor, and
Λ and G are the cosmological and gravitational constants; preserving the homogeneity and
isotropy of space under its time evolution is a spacetime of constant curvature parameter
k = {+1, 0,−1}. It is described by a single function—the time-dependent scale factor
a(t) [84,120,242] which connects the Lagrangian (or comoving) coordinates r with the
physical Euler coordinates r̂(t) = a(t)r. The metric tensor gµν in the preferred coordinate
system where these symmetries are clearly manifest reads4

ds2= gµνxµxν =dt2−a2(t)
[ dr2

1−kr2 +r2(dθ2+sin2 θdφ2)
]

, k=const . (38)

Using this metric in Equations (37) and (38) and neglecting the dissipative terms yields
the Friedmann equation for the time evolution of a(t) and the fluid equation for the time
evolution of ε(t), respectively (see e.g., Refs. [84,175]),

H2(t) ≡
( ȧ

a

)2
=

8πG
3

ε− k
a2 +

Λ
3

, ε̇ + 3(ε + p)H(t) = 0 , (39)

where H(t) is the Hubble parameter. From Equation (39), it follows that the expanding
universe is characterized by a natural time-scale H−1 = a/ȧ. Any particle species will
remain in thermal equilibrium with the cosmic fluid so long as the mean interaction time tc
allows rapid adjustment to the falling temperature provided that tc < H−1.

In the period of the universe evolution when ε & 1 GeV fm−3, the terms containing
constants Λ and k in Equation (39) can be safely neglected, transforming the above two
equations into a single one describing the time evolution of the energy density [6],

− dε

3
√

ε(ε + p)
=

√
8πG

3
dt . (40)
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For the time-independent speed of sound cs and for the energy densities negligible
compared to the initial density ε(t > 0) � ε(t = 0) integration of Equation (40), the
calculations yield [13]

ε(t) =
1

6πG(1 + c2
s )

2t2 , c2
s ≡

dp
dε

= const . (41)

Substituting this equation into the fluid Equation (39), we obtain the expansion rate of
the early universe

ȧ ∼ t−α , α =
1 + 3c2

s
3(1 + c2

s )
. (42)

In particular, for the massless non-interacting gas with c2
s = 1/3, one obtains ȧ ∼ t−1/2

and hence a(t) ∼ t1/2.
It is worth mentioning that in the cosmological literature, see, e.g., Ref. [120], it is

customary to express the EoS in terms of the parameter w, Equation (5). For the constant
speed of sound case, i.e., for w = const, the solution of the Friedmann Equation (39) yields

ε ∼ a−3(1+w) . (43)

For the non-relativistic matter (dust) with p = 0, we obtain ε ∼ a−3, for the massless
non-interacting gas, ε ∼ a−4, for the EoS p = ε corresponding to absolutely stiff fluid [243],
ε ∼ a−6, and for the vacuum energy with the EoS p = −ε, Equation (43) gives ε = const.

Let us now follow Ref. [244] and consider an ideal gas of free particles in D-dimensional
space. Its particle number density n, energy density ε and pressure p expressed in terms of
single-particle statistical sum f (E, T, µ) of particle with energy E, momentum P and spin s
reads (see e.g., Ref. [245]):

f (E, T, µ) =
1

exp[(E− µ)/T]± 1
, n = γ

∫
f (E, T, µ)dDP , (44)

ε = γ
∫

f (E, T, µ)E(P)dDP = γS(D)
∫ ∞

0
f (E, T, µ)E(P)PD−1dP , (45)

p = − T
V

ln Z = −γT
∫

ln f (E, T, µ)dDP = γ
S(D)

D

∫ ∞

0
f (E, T, µ)

∂E(P)
∂P

PDdP , (46)

where dDP = [DπD/2]/[Γ(D/2 + 1)]PD−1dP ≡ S(D)PD−1dP is a volume element of the
D-dimensional hypersphere and γ ≡ (2s + 1)(2π)−D. When evaluating the first integral
in Equation (46), we have performed integration by parts assuming that the particle energy
E(P) is some generic function of P. The substitution of Equations (45) and (46) into
Equation (5) constrains E(P) to satisfy the differential equation

P
D

∂E(P)
∂P

= wE(P) , (47)

whose solution for w = const reads

E(P) = ξPwD , (48)

with ξ some arbitrary constant. Hence, the medium with constant speed of sound squared
c2

s = w in ordinary three-dimensional space can be equivalently described as an ideal gas
of quasi-particles with energy E and momentum P satisfying the dispersion relation (48) in
D-dimensional space [244]. It is worth mentioning that at some instances, the dispersion
relation (48) can be satisfied by the real particles. The case of w = 0 corresponds to non-
relativistic particles, while wD = 1 corresponds to massless particles in D-dimensional
space with the EoS p = ε/D and hence with the sound velocity cs = D−1/2.

Unfortunately, this is not the case of the absolutely stiff fluid, as first discussed by
Zeldovich [243]. Notwithstanding that its EoS p = ε can be used to describe a large
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variety of systems such as phonon-like excitations in a thin channel (D = 1) [244], thin
film (D = 2) of non-relativistic quasi-particles [244], interiors of neutron stars [246,247], Big
Bang nucleosynthesis [248] or warm self-interacting DM component [249]. The cosmology
and thermodynamics of the FLRW universe with bulk viscous stiff fluid was studied in
Ref. [250]. The fact that the stiff fluid saturates the holographic covariant entropy bound
was used in Ref. [251] to describe a cosmology of the very early universe. Last but not
least, a stiff perfect fluid is energetically equivalent to a time-like massless scalar field φ,
see, e.g., Ref. [252]. From its energy-momentum tensor,

Tφ
µν = ∂µφ∂νφ− 1

2
gµν∂αφ∂αφ , ∂αφ∂αφ > 0 , (49)

we obtain that p ≡ Tφ
kk = ε ≡ Tφ

00 = ∂αφ∂αφ.

3.2. Equation of State of the Early Universe

As already discussed in Section 3.1, the only way how to write the EoS compatible with
homogeneity and isotropy of the universe is through the pressure expressed as a function
of the energy density. Thus, given the barotropic EoS p(ε) of the expanding matter, we
can for instance use Equation (40) to predict the temporal evolution of the energy density
ε(t) and the temperature T(t). For the ideal gas EoS, Equation (41) yields the relation
between the temperature T of the early universe and the time tsec elapsed from the Big
Bang, TMeV=O(1)/

√
tsec [84], i.e., the same time-dependence as for the time derivative of

the scale factor ȧ(t); see Equation (42) and the discussion below it. For the QGP-to-hadronic
matter transition, this leads to tQGP

sec ∼10−5 s, and for the EW phase transition, this leads to
tEW
sec ∼10−11 s.

More sophisticated EoS can be based either on the phenomenological models or on
the microscopic theory. In the latter case, a quantum physics formulation of statistical
mechanics in terms of the S matrix, which describes the scattering processes taking place
in the thermodynamical system of interest, is available—see Ref. [253]. It provides a
simple prescription for calculating the grand canonical potential Z(T, µ) of any gaseous
system given the free-particle energies and S-matrix elements. The application of S matrix
formulation to study the thermal properties of an interacting gas of hadrons can be found
in Ref. [254]. It can be also used to show how the hadron resonance gas model emerges
from the S-matrix framework [255]. However, this approach is based on the perturbative
expansion of the S-matrix and is therefore not applicable in the strong coupling regime of
QFT. There, one resorts to direct calculation of the grand canonical potential on the lattice.

Our first example of the EoS used in a description of the evolution of the early universe
is the Bag Model (BM) EoS [1,256,257] based on the phenomenological description of the
mass spectrum of the hadron states [11,258,259] in terms of gas of massless color objects—
quarks and gluons—moving inside the confining potential—the bag,

εq(T) = σqT4 + B , pq(T) =
σq

3
T4 −B , pq(ε) =

1
3
(ε− 4B) . (50)

In Equation (50), σq = π2

30 gQCD
eff is the Stefan-Boltzmann constant with gQCD

eff given by
Equation (9). The BM EoS (50) incorporates color confinement through the bag constant
B = εbag − εvac > 0, indicating the difference between the energy densities of the physical
vacuum and the ground state for quarks and gluons in the medium. The latter can be
interpreted as the energy needed to create a bubble in the vacuum in which the non-
interacting quarks and gluons are confined. While the fit to hadron masses made in the
original BM predict B1/4 ≈ 140 MeV, the value of B1/4 ≈ 220 MeV is frequently quoted in
works dealing with the vacuum structure of QCD, see, e.g., Ref. [11].

Let us note that BM EoS represents a bare-bones model of hadron-to-QGP phase
transition. At small energy densities, hadrons—the bubbles inside the non-perturbative
vacuum—occupy only a small fraction of the total considered volume V. An increase of ε
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leads to the coalescence of several bubbles into larger ones. For ε ≥ 4B, the volume V is
filled with one large bubble, cf. Equation (50), whose surface coincides with the enclosing
walls. Hence, there is no longer free surface against the vacuum, and the new de-confined
phase of matter is created [256]. The critical temperature Tc of the phase transition can be
estimated using Gibbs criteria. Equating the BM pressure (50) with the pressure ph of the
hadron (pion) gas with 3 DoF and hence with σh = 3π2/30, we obtain

pq(Tc) =
σq

3
T4

c −B = ph(Tc) =
σh
3

T4
c , Tc =

(
3B

σq − σh

)1/4
. (51)

For NF = 3 active quark flavors u, d, and c, Equation (2) yields Tc ≈ 0.67B1/4 and
≈150 MeV. Let us add that Equation (51) describes the first-order phase transition with
energy density discontinuity,

∆ε = εq(Tc)− εh(Tc) = 3pq(Tc) + 4B − 3ph(Tc) = 4B . (52)

Last but not least, expressing the BM EoS (50) in terms of the dimensionless interaction
measure—the trace anomaly describing the thermal contribution to the trace of the energy-
momentum tensor T µν ≡ Tµν

Θ ≡ T
µµ(T)
T4 =

εq − 3pq

T4 =
4B
T4 =

4σqB
εq −B

, (53)

we observe a monotonous weakening of the interaction strength with increasing εq [33],
leading ultimately to a Stefan-Boltzmann (SB) value of Θ = 0. At the same time, the
entropy density sq = (εq + pq)/T = 4/3σ1/4

q (εq − B)3/4 converges to its SB limit from
below. The speed of sound derived from the BM EoS (50) is energy-density-independent
and coincides with that of the ideal gas of massless particles c2

s = dpq/dεq = 1/3.
More sophisticated EoS can be constructed, e.g., by adding the term ∼ T2 to expres-

sions for ε(T) and p(T) in Equation (50) with σ = σq

ε(T) = σT4 − CT2 + B , p(T) =
σ

3
T4 − DT2 −B . (54)

The motivation for such a modified BM EoS comes from the observation [260,261] that
in the case of a pure gauge theory up to temperatures a few times the transition temperature
Tc, the dominant power-like correction to the pQCD high-temperature behavior is O(T−2)
rather than O(T−4). Moreover, the quadratic thermal terms in the deconfined phase can be
also obtained from gauge/string duality [262].

In its original setting with C = D > 0, Equation (54) represents the LQCD-motivated
“fuzzy” BM EoS of Ref. [263]. On the other hand, for C = −D < 0, it represents a particular
case of gas of gluonic quasi-particles EoS with a temperature-dependent bag function
B(T) = −CT2 + B; see e.g., Refs. [264,265]. In the following discussion, we will keep the
values of the constants C and D in Equation (54) unrestricted.

By inverting ε(T) in Equation (54) with respect to temperature squared T2,

T2(ε) =
C +

√
C2 + 4σ(ε−B)

2σ
> 0 , (55)

and substituting for T2(ε) into Equation (54), we obtain the barotropic form of the EoS (54):

p(ε) =
1
3
(ε− 4B)− 1

3
sgn(A)|A|T2(ε) A = 3D− C . (56)
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The corresponding sound velocity squared reads

c2
s (ε) =

dp(ε)
dε

=
1
3

(
1− sgn(A)|A|√

C2 + 4σ(ε−B)

)
. (57)

Note that for A = 0, both Equations (56) and (57) degenerate to the corresponding re-
sult from the BM EoS; see Equation (50). In the context of Equation (54), the situation
with C = 3D = 3

2 NFµ2
B describes the EoS of ideal QGP with non-zero baryon chemical

potential [266]. It is worth mentioning that by tuning the phase transition temperature to
Tc = 160 MeV, this EoS predicts a six times higher value of the bag constant B than the
original BM [266].

Therefore, in the following, we discuss only the non-trivial case of A 6= 0. First, we
check which values of the constants C and D in Equation (57) are compatible with the
condition c2

s > 0. While for A < 0 (i.e., C > 0 and −C < D < C/3), Equation (57) is always
satisfied for A > 0 (C ≥ 0 and D > C/3 or D > −C > 0), there exists a lower bound ε0 on
energy density

ε > ε0 =
A2 − C2

4σ
+ B . (58)

Thus, in both cases (A > 0 or A < 0), Equation (55) represents the genuine non-
trivial EoS of non-ideal high-density matter each with its own sound velocity approaching
for ε → ∞, either from below or from above, the SB limit of

√
1/3. However, only for

A < 0, the second term on the right-hand side of Equation (56) with − 1
3 AT2(ε) represents

independent pressure. It is also worth mentioning that for the latter case (A < 0), the
trace anomaly

Θ(ε) =
4B

T4(ε)
+

sgn(A)|A|
T2(ε)

, (59)

with T2(ε) defined in Equation (55), acquires a peak at the energy density

εp =
2B ±

√
2B|A|C

|A|σ −B . (60)

Standard explanation of this phenomenon within the SU(3)c gauge theory, see, e.g.,
Ref. [267], relies on the fact that in the region around and just above the critical temperature
Tc of hadron-to-QGP phase transition, the energy density rises much more rapidly than
the pressure, leading to the observed rapid increase of Θ. Since asymptotically ε/T4

and 3p(T)/T4 converge to their common Stefan-Boltzmann value of σ, see Equation (54),
there must be some temperature Tp (and hence also some energy density εp = ε(Tp)) at
which the growth rates change roles, with the pressure now increasing more rapidly. The
further decrease of Θ is in good approximation given by T−2, so that T2Θ(T) becomes
approximately constant very soon above Tc and up to about 5Tc [263].

Note that Equation (40) with the initial condition ε0(t0) = 104 GeV fm−3 at tQGP
sec �

t0 = 10−9 s� tEW
sec was used in Ref. [13] to study the sensitivity of dilution and cooling

of the early universe to the changes in the primordial QGP EoS. The latter might modify
the pattern of the emission of GWs or the generation of baryon number fluctuations. No
dramatic changes between different EoS, including Equations (50) and (54) (with C = D)
and others, were found in the whole considered time interval. This finding seems to be
supported by the LQCD calculations which show that the transition from primordial QGP
matter to hadronic matter proceeded as a continuous crossover [92]. The latter does not
introduce any fluctuations on length scales much longer than the natural length scales of
QCD ∼ Λ−1

QCD, so it has probably left no imprint in the microseconds-old universe that
survived so as to be visible in some way today [7].

A different conclusion was, however, reached in Ref. [74] where a novel mechanism
for the production of GWs during the QCD phase transition has been proposed. It was
found that while the energy density of the homogeneous gluon condensate is smoothly
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decaying in cosmological time tsec, the pressure of the condensate undergoes a sequence of
violent oscillations at the characteristic QCD time scales—the process called relaxation—the
basic feature of the QCD transition. Such relaxation processes generate a very specific
multi-peaked GWs signature in the domain of radio frequencies. In particular, gravitational
echoes of the QCD transition potentially accessible by the FAST [268] and SKA [269]
GW telescopes are sourced by the formation of domain walls in the QCD vacuum (also
responsible for color confinement in the infrared regime). More details about the dynamical
theory of the YM vacuum will be provided below in Section 4.

Recently, the stochastic GWs induced by the scalar perturbations of the metrics were
investigated in Ref. [270] as a cosmological probe of the sound speed cs during the QCD
phase transition. Although the GW propagation itself does not depend on cs, the sound
speed value affects the dynamics of primordial density. Induced stochastic GWs can thus
be an indirect probe of both the EoS parameter w = p/ε and cs =

√
dp/dε. In particular,

similarly to the conclusions of Ref. [74], the GW frequency ∼ 10−8 Hz corresponding to the
Hubble scale during the QCD phase transition appears to be in the range of the planned
GW detectors.

Let us now turn to a description based on the fundamental theory. Using the La-
grangian of the SM, one can extract the thermodynamical quantities either directly from
the lattice calculations [89], deduce them from lattice simulations using a dimensionally-
reduced EFT [90] or use the perturbation theory. With the temperature T depending
on the lattice spacing a and the number of lattice points in the temporal direction Nt as
T = (aNt)−1, the reliable Monte Carlo simulations of QFT in the high-temperature regime
need very fine lattices. At the same time, as the lattice spacing a is reduced, the autocorrela-
tion times for zero temperature simulations rise, and the costs of these simulations explode
beyond feasibility [89]. This makes the LQCD simulations in the region of temperatures
higher then the few GeVs practically impossible. Alternatively, one can vary the gauge cou-
pling gs, which leads to changing T as well, although the spacial and temporal dimensions
do not [90]. In addition to that, even at the temperatures of the EW phase transition TEW

c ,
the dynamics needs to be treated with lattice methods. This is due to the fact that when the
particle momenta in the range k ∼ g2T/π are considered, then the dynamics of the system
is non-perturbative [194,271,272]. Values much below and far above this value p/T4 can be
determined by a direct perturbative computation [90].

In the SM framework, the basic thermodynamical observable is the pressure [273],
which can be formally defined through the grand canonical partition function Z as

Z ≡ exp
[

pB(T)V
T

]
, pB(T) = pE(T) + pM(T) + pG(T) , (61)

where pB denotes the “bare” result related to the physical (renormalized) pressure as p(T) =
pB(T)− pB(0). The pressure terms pE(T), pM(T) and pG(T) appearing in Equation (61)
collect the contributions from the momentum scales k ∼ πT, k ∼ gT, and k ∼ g2T/π,
respectively. The couplings g relevant in the SM are g ∈ {ht, g1, g2, g3}, where ht denotes
the Yukawa coupling between the top quark and the Higgs boson, and g1, g2, g3 are the
SM couplings related to U(1)Y, SU(2)L and SUc(3) gauge groups, respectively. Note that in
Equation (61), the thermodynamic limit V → ∞ is implied.

Using this technique, the SM calculations of the dimensionless function p(T)/T4

and of the trace anomaly Θ(T) (53) up to O(g5) were performed in Ref. [90]. It was
found that similarly to EoS Equation (54), Higgs dynamics induces a peak in heat capacity
c(T) = dε/dT occurring around TEW

c ≈ 160 GeV. This leads to a short period of slower
temperature change, and correspondingly, a mildly increased abundance of produced particles.
However, in general, the largest radiative corrections originate from QCD effects, reducing
the energy density by a couple of percent from the free value even at T > 160 GeV [90]. It is
worth emphasizing that the above-mentioned effects do not exhaust all possible phenomena
relevant for dynamics of the early universe. In particular, as already discussed in Section 2.4,
at high temperatures, the saturation phenomena become ubiquitous. In this case, the gluon
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DoFs are frozen in the classical field (condensate) and do not contribute to the density of the
QGP. To shed more light on the microscopic theory in the canonical picture, the dynamical
aspects of relativistic gluon and hot meson plasmas, both coupled to the homogeneous
condensate, are discussed in detail in Refs. [274–277], respectively.

In Ref. [278], the results from Refs. [89,90,279] were used to analyze the early universe
EoS p(ε). The extracted EoS depicted on the left panel of Figure 8 covers the broad
interval in energy density 10−2 ≤ ε ≤ 1016 GeV fm−3 and corresponds to the evolution
periods down from the GUT era, through the EW era and the QGP era, into the hadron
era. The apparent smoothness of the function p(ε) hides in the complicated temperature
dependence ε(T) = geff(T)ε0(T) depicted on right panel of Figure 3.

While the GUT EoS pGUT = (0.330± 0.024)ε valid for 108 . ε ≤ 1016 GeV·fm−3 (the
red triangles in Figure 8) appears only slightly below the ideal gas limit, the hadronic-era
EoS ph = (0.003± 0.002) + (0.199± 0.002)ε characterizes the region ε . 1 GeV·fm−3. Most
interesting is the intermediate region containing both the QCD and the EW epochs, which
can be described by a single function pSM = a + bε + cεd with
a = 0.048 ± 0.016, b = 0.316 ± 0.031, c = −0.21 ± 0.014, d = −0.576 ± 0.034 [278].
It is worth noting that the critical energy density εc defined implicitly by the equality of the
pressures in hadronic and QGP phases ph(εc) = pSM(εc) reads: εc ' (1.2± 0.2) GeV·fm−3.

As can be seen from the parametrization of the fit,

pSM = p1(ε) + p2(ε) , p1(ε) = bε , b > 0 , p2(ε) = a + cεd , a > 0 , c < 0 , d < 0 , (62)

throughout the whole QCD and EW eras, there are two independent contributions p1(ε)
and p2(ε) to the overall pressure of the universe. While p1 is always positive, the second
pressure p2 is negative up to ε . (7− 13) GeV·fm−3. Although the corresponding value of
the trace anomaly can not be directly deduced from the fitted EoS (62)

Θ =
ε− 3p

T4 =
ε(1− 3b)− 3a− 3cεd

T4 , (63)

it is positive for ε & (3− 4) GeV·fm−3, and for very large energy densities, it falls as
Θ ∼ geffε

−3/2, cf. Equation (2).
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Figure 8. (Left) The combined EoS p(ε), ε ≡ ρ of QCD and EW matter, using non-perturbative
results [89] extended to include other DoFs such as γ, neutrinos, leptons, EW, and Higgs bosons as
well as perturbative results [90,279]. Adapted from Ref. [278]. (Right) Bulk viscosity ζ at µB = 0 as a
function of the energy density ε. The top symbols stand for the SM contributions, while the bottom
ones stand for the QCD contributions, only. Adapted from Ref. [280].

Note that the sound velocities

c2
s,1(ε) =

dp1

dε
= b > 0 , c2

s,2(ε) =
dp2

dε
= cdεd−1 > 0 , (64)
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are well defined, making it possible for each of two components to represent the EoS of
some substance. Let us add that analytical expressions for the scale factor of the universe
a(t) and Hubble parameter H(t) deduced from the EoS (62) were recently discussed in
Ref. [281].

While the first component of pressure (8) corresponds roughly to the EoS of the
massless gas of non-interacting particles, the second one, in agreement with the asymptotic
freedom of QCD [33], dies out with increasing ε. Interestingly, p2(ε), up to the constant
additive term a, coincides with the generalized Chaplygin EoS used in Ref. [282] to describe
the evolution from a phase dominated by non-relativistic matter to a phase dominated by
the Cosmological Constant (or DE)5. For d = −1 in Equation (62), we obtain the ordinary
Chaplygin gas [283,284] with EoS p = c/ε.

Another possibility of how to read the term p2(ε) in Equation (62) is, in analogy with
Refs. [264,265] and Equation (54), to interpret it as the density-dependent bag function
B(ε) = −(a + cεd), cf. Equation (62). The latter may account for the density-dependent
character of the physical vacuum due to, e.g., the instanton liquid [210,285]. Instantons [272],
classical solutions to the Euclidean equations of motion, are localized in all the four dimen-
sions and correspond to tunneling events between degenerate classical vacua in Minkowski
space. Since tunneling lowers the ground-state energy, the instantons provide a simple
understanding of the negative non-perturbative vacuum energy density. Yet, the Euclidean-
based instanton model is not the only solution representing the QCD vacuum. It remains,
in fact, questionable to what extent it represents the reality due to non-analyticity of the
gluonic field operators and the associated color confinement property. Below, in Section 4,
we elaborate on a recently proposed alternative picture and new gluonic vacuum solutions,
which are readily formulated in Minkowski and FLRW spacetimes.

3.3. Hydrodynamical Description of Dissipative Effects and the Early Universe

According to the currently accepted scenario, see, e.g., Refs. [84,286], the evolution
of the early universe must include a number of dissipative processes in order to explain
the current large value of the entropy per baryon. Some of them, such as the decoupling
of neutrinos during the radiation era [120] or different cooling rates of the fluid compo-
nents in the expanding universe [287], can result from the conventional physics; others,
involving more exotic mechanisms, assume entropy production via string creation [288] or
the GUT phase transitions [289]. The hydrodynamical description of dissipative effects is
summarized in Appendix B.

Let us now follow the evolution of the early universe in terms of the EoS including
bulk viscosity ζ defined in Equation (A11). In Ref. [280], data from non-perturbative [89]
and perturbative [90,279] SM simulations were used to study behavior ζ over a wide
range of temperatures T, entropy densities s and energy densities ε. It was found that
ζ/(Ts) decreases exponentially with T increasing. The bulk viscosity dependence on
the energy density at zero baryon chemical potential µB = 0 is displayed on the right
panel of Figure 8. Looking first on the QCD contributions only, it is apparent that the
non-monotonic dependence of ζ(ε) can be divided into four regions. The first, spanning
ε . 100 GeV/fm3, corresponds to the hadron-QGP phase. The second region, up to
∼5× 107 GeV/fm3, contains both the QCD and the EW phases of matter. The third one
seems to form an asymmetric parabola with focus at the critical energy density of the
universe, ρc ' 1012 GeV/fm3 [280]. The fourth region shows a rapid increase in ε emerging
from a non-continuous point.

In the SM contributions, as shown in the upper curve of Figure 8, besides gluons
and (2 + 1 + 1 + 1) quarks, the contributions of the gauge bosons: photons, W±, and Z0,
the charged leptons: neutrino, electron, muon, and tau, and the Higgs bosons: scalar Higgs
particle, were also taken into account. An overall conclusion drawn in Ref. [280] is that
over the entire range of energy densities, the SM contributions are very significant. It is
worth mentioning that the characteristic structures observed with the QCD contributions
only are almost removed when adding also the EW contributions.
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It is worth noting that the bulk viscosity could be important even outside the realm
of the Hot Big Bang. In Ref. [290], the theory of the inflationary epoch, covering cold and
warm inflation, as well as the models of late universe expansion in the presence of bulk
viscosity, were analyzed. Assuming that the viscous effects during the inflationary epoch
can be represented by a generalized and inhomogeneous EoS of the form:

p = −ε + Aεβ + ζ(H) = −ε + Aεβ + ζ̄

(
8πGε

3

)γ/2
, (65)

where A, β, ζ̄, and γ are positive constants and ζ(H) = ζ̄Hγ is the Hubble parameter-
dependent bulk viscosity, the authors have studied the behavior of various inflationary
observables. Let us turn to important implications of non-perturbative QCD vacuum
dynamics in cosmological evolution.

3.4. Theory of Hot Meson Plasma Interacting with the QCD Vacuum

Shortly after the confinement phase transition, the universe enters the state of hot
meson plasma whose thermal evolution has been thoroughly explored in the framework of
the Linear Sigma Model (LσM) in Ref. [277]. This analysis exploits the non-perturbative
method of a generating functional derived from the effective Lagrangian at finite temper-
atures (for further references on this method, see Refs. [291–294]) and accounting for the
quartic self-interactions of the σ-meson only. The latter approximation corresponds to a
realistic well-motivated configuration of the “hadron gas” interacting with the non-linear
σ-field and reproduces some of the basic thermodynamical characteristics of the hot meson
plasma observed also in other approaches, in particular, in LσM-based scenarios [293,295]
and Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) models [296–298], but also fea-
tures additional properties such as a possibility for σ → ππ decays in the plasma above
the critical temperature.

The effective LσM chiral Lagrangian accounting for the lightest scalar and pseu-
doscalar degrees of freedom π±, π0, K±, K0, K̄0, η, η′, and the σ-meson, in the hadron gas
approximation at T = 0, reads [277],

Leff =
1
2

∂µσ∂µσ + 2g2v2
0σ2 − g4σ4+

1
2
(∂µπα∂µπα + ∂µη∂µη + ∂µη′∂µη′) + ∂µK̄∂µK−

1
2

[
2κg2(mu + md)σ

2παπα +
2
3

κg2(mu + md + 4ms)σ
2η2+

4
3

κg2(mu + md + ms + Λan)σ
2η′2

]
− κg2(mu + md + 2ms)σ

2K̄K , (66)

where mu,d,s are the constituent up, down and strange quark masses, respectively, g is the σ
quartic coupling, and Λan ' 0.5 GeV is the gluon anomaly term that provides an explicit
breaking of U(1)L × U(1)R symmetry. The QCD order parameter of the hadron mater
v0 = 265± 15 MeV represents the amplitude of the quark-gluon (quantum-topological)
condensate, such that

εtop(T = 0) = −
( b

32
+

(mu + md + ms)lg

4

)
〈0|αs

π
Ga

µνGµν
a |0〉 ≡ −v4

0 , (67)

given in terms of the gluon correlation length lg ' (1.2 GeV)−1 [210,299], and the coefficient
of the one-loop β-function of three-flavor QCD, b = 9. The quark-gluon condensate con-
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tributes together with the perturbative hadronic vacuum εhad
vac emerging due to regularized

contributions from meson fluctuations to the net QCD ground-state energy density,

εQCD
vac ≡ ε(T = 0) = εtop + εhad

vac = −v4
0 −

1
128π2

(
m4

σ(vac) + 3m4
π(vac)

+ m4
η(vac) + 4m4

K(vac) + m4
η′(vac)

)
' −7× 109 MeV4 . (68)

that satisfies the vacuum equation of state in the zero-temperature limit, ε(T = 0) =
−p(T = 0). The hadronic vacuum term is negative εhad

vac < 0 and appears to have a relatively
small magnitude, i.e., εhad

vac /εQCD
vac ≈ 0.15 [277]. The current u, d, s quark masses break the

global chiral SU(3)L × SU(3)R symmetry explicitly, while it is also broken spontaneously
by means of a σ-field expectation value,

σ = 〈σ〉+ σ̃ , 〈σ〉 ≡ v
g

, (69)

In order to generalize the effective Lagrangian approach to finite temperatures, fol-
lowing theoretical foundations laid out in, e.g., Refs. [292,300–302], one should resume
the daisy and superdaisy contributions. This is effectively achieved by utilizing an ap-
proximation that the expectation values of different fields are independent of each other,
while omitting odd-point correlation functions and factorizing the four-point correlation
functions into a product of two-point ones, for instance, 〈η2σ̃2〉 = 〈η2〉〈σ̃2〉, etc. Then, as a
result of the minimization procedure of the non-equilibrium vacuum potential, one obtains
the equation of state for the σ-condensate,

v2 = v2
0 − 3g2〈σ̃2〉 − 1

2
κ(mu + md)〈παπα〉

− 1
6

κ(mu + md + 4ms)〈η2〉 − 1
3

κ(mu + md + ms + Λan)〈η′2〉

− 1
2

κ(mu + md + 2ms)〈K̄K〉 , (70)

as well as the equations of motion for the (pseudo)scalar field fluctuations about the
evolving non-trivial ground state, for example, ∂µ∂µσ̃ + m2

σσ̃ = 0, etc. Those fluctuations
after quantization correspond to physical mesons with masses m2

σ = 8g2v2, etc. that
are, in general, dependent on temperature. The vacuum values of the pseudo-scalar
pseudo-Goldstone meson masses are found in terms of the light quark condensates via
the Gell-Mann–Oakes–Renner relation [303–305], while the σ-meson has been identified
phenomenologically with the scalar f0(500) state with mass, mσ(vac) ' 400− 500 MeV.

The generating functional in the case of zeroth chemical potential is the free energy
density of the considered meson plasma found in terms of the spatial part of the energy-
momentum tensor as follows,

F (T, v, m2
σ,M2) ≡ 1

3
〈T i

i 〉 ,

whose minimization over the independent variables m2
σ andM2 ≡ v2 + g2〈σ̃2〉 provides

the physical meson masses and the equation of state for the condensate v2. Substituting the
meson masses expressed in terms of the temperature T and the order parameter v into F ,
one obtains the non-equilibrium Landau functional,

FNE(T, v) ≡ F (T, v, mσ(T, v),M(T, v)) , (71)
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that provides the critical temperature of the chiral phase transition, where the finite-
condensate phase becomes unstable, by means of

d2FNE

dv2

∣∣∣
T=Tc

= 0 , (72)

while the stability condition of the low-symmetry phase reads d2FNE/dv2 ≥ 0. Finally,
resolving the order parameter as a function of temperature, i.e., v = v(T), one finds the
so-called equilibrium Landau functional as,

FE(T) ≡ FNE(T, v(T)) , (73)

that matches the usual free energy definition. A variety of thermodynamic observables of
the meson plasma are then derived in terms of FE(T) such as pressure, entropy density,
energy density, heat capacity and the speed of sound squared,

p(T) = −FE(T) , σ(T) = − d
dT
FE(T) , ε = FE + Tσ , cV = T

dσ

dT
=

dε

dT
, u2 =

σ

cV
, (74)

respectively. While at T = 0, the QCD vacuum equation of state, ε = −p, is satisfied, both
pressure and energy density grow with T due to positive particle contributions. The total
energy density of the “plasma + condensate” system vanishes at Tε=0 ' 237 MeV for
mσ(vac) ' 500 MeV.

Using the above formalism, in Ref. [277], the properties of different phases and transi-
tions between them are explored in detail. For instance, at temperatures T > Tc, hadrons
deconfine into quarks and gluons, while the condensates melts away, yielding a decon-
fined (or zero-condensate) phase of the QCD matter. Such a phase becomes metastable at
temperature T0 < Tc, when the σ-meson fluctuation becomes massless mσ(T0) = 0, while
v(T0) = 0 is still valid, and T0 is then found by resolving the extremum conditions on the
generating functional. At another T1, two minima of FNE(T, v) become equal such that
the zero-condensate phase stabilizes and the corresponding temperature is found from
the following equation, FNE(T1, 0) = FE(T1). The first-order chiral phase transition to
the zero-condensate phase then occurs at some temperature between T1 and Tc, and its
strength increases with the σ-meson mass in the vacuum. Note, as expected from the
first-order nature of this transition, the entropy density of the meson plasma grows with T
and remains finite at all values of T, while the heat capacity appears to have a singularity,
and the speed of sound squared vanishes at the critical temperature T = Tc.

The thermal evolution of the meson mass spectrum and the condensate of the LσM
is shown in Figure 9. Interestingly enough, both the condensate and the masses of all
the mesons decrease with temperature for T < Tc = 438 MeV. The critical temperature
becomes reduced if the fermions (quarks and baryons) are introduced [293]. As a result of
the “hadron gas” approximation, the σ-mass rapidly falls to zero at T0 = 402 MeV and then
grows much faster than the masses of other mesons (such that mσ > 2mπ almost for any
values of T) in contrast with the corresponding predictions of other existing approaches
such as PNJL. As a result, at low temperatures, the hadronic plasma is dominated by
pions. There is also a significant phase co-existence domain of size (Tc − T0)/Tc ' 0.1.
Pressure p(T), energy density ε(T) and the EoS (ε(T)− 3p(T)− A)/T4, where A = ε(T =
0)− 3p(T = 0) is the net vacuum contribution, are shown in Figure 10 from left to right,
respectively. Due to the positive “hadron gas” contribution, both p(T) and ε(T) rise with
temperature. Their profiles can be approximately reconstructed as a sum of the negatively-
definite constant QCD vacuum term ε(T = 0) and the contribution of the relativistic hadron
plasma ∝ T4 (dashed lines), with the numerical coefficient α ' 3.5 and the effective number
of DoFs, gi ' 9.
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Figure 9. The condensate and meson masses as function of T. Here, mσ(vac) = 500 MeV, g2 = 0.4,
Tc = 438 MeV, T0 = 402 MeV, T1 = 430 MeV.
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Figure 10. (Left) Pressure p(T) as a function of temperature for the finite-condensate v(T) 6= 0 phase
compared to that in the zero-condensate v(T) = 0 phase, p0(T) (solid lines), and to the approximated
result (dashed line). (Middle) The same but for the energy density. (Right) The normalized EoS
(ε(T)− 3p(T)− A)/T4 as a function of temperature, where A ≡ ε(T = 0)− 3p(T = 0) is the net
vacuum contribution.

3.5. Cosmological Constant and Vacuum Catastrophe

The tight observational constraint on the DE EoS

wDE = −1.03± 0.03 , (75)

comes through a combination of the cosmological data from various sources such as the
Type Ia supernovae, the baryon acoustic oscillations, the CMB anisotropies, and the weak
gravitational lensing, etc.; for details on the confidence level and datasets, see Ref. [306].
These constraints are consistent with the standard cosmological model known as the
ΛCDM (Λ term plus DM in the form of CDM, as two dominant components of the uni-
verse). Specifically, the DE is considered to be in the form of Cosmological Constant or
Λ-term density,

εDE = εΛ , εΛ ≡
Λ
κ

, κ = 8πG , (76)

expressed in terms of Λ-term in conventional normalization, Λ; see Equation (37). The latter
satisfies the EoS wDE = −1 exactly. For a detailed recent review on achievements and
challenges of the ΛCDM, see, e.g., Ref. [307].

Classically, an arbitrary Λ-term density ε0 can be readily added to the right-hand side
of the Einstein equations of GR that determine the macroscopic evolution of the universe,

Rµν −
1
2

gµνR = κ(ε0gµν + Tµν) , Tµν = − 2√−g
δSm

δgµν , Sm = Sm[φ, ψ, Aµ, gµν] , (77)
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in terms of action of matter fields Sm and their energy-momentum tensor Tµν. In quantum
theory, a non-trivial contribution to the ground-state energy density emerges as an average
of the energy-momentum tensor over the Heisenberg vacuum state [308,309]

〈0|Tµν|0〉 = εvacgµν , εvac 6= 0 . (78)

The latter is proportional to the trace of the energy-momentum tensor; hence, it
represents an effect of conformal symmetry breaking in a given fundamental QFT through
either the formation of a Bose-Einstein condensate in a massless theory or through nonzero
mass-dimensional terms in the original Lagrangian. It is generically ill-defined and should
be renormalized, with the classical (“bare”) ε0 being treated as a counter-term in the initial
Lagrangian, such that the divergences are cancelled between the two yielding a finite,
but renormalization scale µ dependent, vacuum energy density, εΛ(µ). This is the physical
vacuum energy density that emerges in cosmological measurements performed at some
fixed scale µ = µIR in the present universe, such that

εΛ(µIR) ≡ ε0 + εvac . (79)

A macroscopic Cosmological Constant effect causing the universe to expand with
acceleration (de-Sitter phase) is usually identified with energy density of the quantum
vacuum that acquires contributions from all the incident vacuum subsystems existing in
the SM and beyond. These would correspond to all quantum fields existing at energy scales
ranging from the quantum gravity (Planck) scale, MPL ∼ 1019 GeV, down to the QCD
confinement scale, MQCD ∼ 1 GeV—the maximal and minimal energy scales of particle
physics, respectively. The current vacuum state of the universe is considered to be produced
in the aftermath of the latest QCD phase transition associated with hadronization of the
cosmological plasma.

In the framework of SM, besides the zero-point energy contributions to the ground
state coming from each elementary particle, there are two major vacuum condensates whose
characteristics are well established in particle physics—the weakly coupled classical Higgs
condensate responsible for spontaneous EW symmetry breaking giving masses to the SM
vector bosons and fermions and the strongly-coupled quantum-topological quark-gluon
condensate in QCD.

One of the important aspects of the cosmological QCD transition epoch concerns the
formation of the negatively-definite (CM) contribution to the ground-state of the universe
that has received little attention in the literature so far. For illustration of this effect, let us
consider the conformal anomaly term in the trace of the effective QCD energy-momentum
tensor [310–312],

Tµ,QCD
µ =

β(g2
s )

2
Fa

µνFµν
a + ∑

q=u,d,s
mq q̄q , (80)

where mq are the light (sea) quark masses q = u, d, s, gs and β are the QCD coupling
constant and the β-function, respectively, and Fa

µν is the gluon field stress tensor. Taking the
vacuum average, we obtain

〈0|Tµ,QCD
µ |0〉 = − 9

32
〈0| :

αS

π
Fa

µν(x)Fµν
a (x) : |0〉+ 1

4

[
〈0| : muūu : |0〉+ 〈0| : mdd̄d : |0〉

+ 〈0| : ms s̄s : |0〉
]
' −(5± 1)× 10−3 GeV4 , αS =

g2
s

4π
, (81)

representing the maximal value of the averaged quantum-topological QCD contribution to
the physical vacuum energy density, whose spacetime dynamics is not fully understood
and yet to be established. This contribution, also known as the quark-gluon condensate,
is predicted by the theory of QCD instantons [210,299] and plays an important role in the
chiral symmetry breaking and in dynamics of color confinement as well as in generation
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of mass of light mesons in hadron physics as suggested by the Gell-Mann–Oakes–Renner
relation [303–305].

The so-called “Vacuum Catastrophe” reflects the fundamental problem of consistent
matching between the macroscopic observable εΛ value, close to the critical energy density
of the universe ρc,

εΛ ' 0.7ρc ' 2.5× 10−47 GeV4 > 0 , ρc ≡
3H2

0
κ

, (82)

and the characteristic sizes of microscopic QFT predictions for the energy scale of each
separate vacuum condensate [313,314]. Indeed, considering the topological QCD vacuum
energy density εQCD

vac alone at macroscopic time and space separations typical for cosmolog-
ical measurements, see Equation (81), its value is off by over forty orders of magnitude and
has a wrong sign compared the observable εΛ.

Indeed, such a large and negative contribution to the vacuum density creates a big
problem for existence of the spatially flat universe, as the right-hand side of the corre-
sponding Friedmann equation must be positive at all times (see, e.g., Refs. [67,307,315,316]).
The presence of a negative cosmological constant of the QCD scale would necessarily trigger
a fast collapse of the universe at the time scale of a microsecond, as the other components
of the cosmological plasma energy-density decay as ∝ 1/an (with n = 4 for relativistic and
n = 3 for non-relativistic media). This would prevent the universe from traversing the
QCD horizon scale such that no macroscopic evolution would be possible. For a recent
review on the status of this problem and the existing approaches, see, e.g., Ref. [67] and
references therein.

A consistent resolution of the so-called “old” Cosmological Constant problem (why
is εΛ small and positive?) and the “new” Cosmological Constant problem (why is εΛ
non-zeroth and exists at all?) [307] may require a dynamical mechanism for compensation
of different short-distance vacuum configurations in the infrared limit of the corresponding
QFT. Such a vacuum self-alignment in the non-perturbative regime would be desired in
order to avoid a major fine tuning of different parameters of the fundamental theory [317],
and it may be considered as a new physical phenomenon [65,67,315,318].

As has been pointed out in Ref. [27], in the thermal SU(2)/SU(3) YM theories, the con-
fining phase at low temperatures is expected to be void of energy density and pressure.
Along these lines, one introduces a natural hypothesis about a heterogeneous structure of
the non-perturbative QCD vacuum in the infrared limit of QCD [67]. Such a structure is
characterized by the presence of at least two distinct vacuum subsystems which contribute
with opposite signs to the net QCD vacuum energy density and mutually eliminate each
other on average at large space and time separations, ∆x ∼ ∆t � 1/ΛQCD. Then, it is
reasonable to assume that a phase transition in the QCD vacuum has occurred in the
course of cosmological evolution. Such a transition has led to a dramatic drop in the net
vacuum energy density due to an (almost) exact cancellation between the different vacuum
subsystems in the IR limit of QCD.

Generically, an ultimate goal would be to develop a universal framework that con-
sistently describes quantum vacua (condensates) dynamics in real cosmological time at
both macroscopic (IR limit) and microscopic (UV limit) separations and then identify the
phase transitions between those. This remains one of the major unsolved problems of
fundamental physics [319,320] (see also Refs. [67,314]).

Since the effect of the negative QCD condensate term must be eliminated somehow
beyond the Fermi scale of QCD, Ref. [277] explores the simplest scenario for cosmologi-
cal evolution by invoking an additional positively-definite cosmological constant in the
framework of the effective meson plasma model, and also using the Bag-like model of the
QCD crossover transition [321] for comparison. The basic working assumption adopted in
this work was that a positive cosmological constant has been formed (stochastically) at the
QCD scale together with the negative (topological) term, which means that the QCD vacua
effects are dynamically eliminated at distances beyond the typical hadron scale. In Figure 11
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(left), the net QCD vacuum energy density ε is shown as a function of the normalized scale
factor in both scenarios with and without an additional positive Λ-term “compensator”.
In this scenario, as the QCD vacuum evolves with temperature and the universe eventually
collapses, a “backward” QCD transition from the meson plasma to QGP may occur above
the critical QCD temperature. Provided that there exists a mechanism for a bounce from
the singularity (for possible scenarios for such a bounce, see, e.g., Refs. [322–325] and
references therein), a possible series of such sequential “direct” and “backward” QCD
transitions implies that the universe may, in principle, oscillate around the QCD epoch for
some time. Eventually, the negative QCD vacuum effect is eliminated, the universe enters
the phase of unbound expansion, and the standard cosmological evolution takes off [277]
(see Figure 11, right).
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Figure 11. (Left) The QCD vacuum energy density as a function of the (normalized) scale factor a in
the meson plasma model (solid line) and the same quantity but with an extra positive Λ-term (dashed
line) that exactly compensates the negative (topological) QCD term at large time-scales. (Right) A
scenario of the universe oscillating during the QCD phase transition epoch with stochastic generation
of a positively-definite QCD-scale Λ-term “compensator”.

4. Dynamics of Ground State in YM Theories

Let us discuss the properties of quantized YM theories and their major implications
in cosmology while focusing primarily on QCD-like strongly-coupled dynamics and its
connections to confinement and to the nearly vanishing value of the cosmological constant.

4.1. YM Ground State as a Time Crystal

While Gross, Wilczek and Politzer proved the asymptotic freedom of non-Abelian
gauge theories at large momentum transfers [31,32,138], Savvidy showed that the pertur-
bative QCD vacuum at zero field strength is unstable [326] and thereby demonstrated the
existence of the vacuum condensate (see also Batalin, Matinyan and Savvidy [327]). Nielsen
and Olesen worked out an argument for why the explanation of vacuum condensates
in terms of a homogeneous field filling the vacuum is problematic: such a field mode is
unstable, at least on a static Minkowski background [328]. The ground state of QCD is a
non-perturbative quantum-topological state of the YM theory that is of primary importance
for the understanding of color confinement dynamics [329] as well as of hadronic and
effective quark masses. For a thorough discussion on the QCD vacuum and its implications,
see, e.g., Ref. [330] and references therein.

Despite the possible theoretical frameworks that are available for the description
of the quantum ground state in YM theories, an interesting case of the formation of a
metastable condensate in the Savvidy approach, with gravitational back-reaction providing
a stationary stabilization, was studied in Ref. [74]. Intriguingly, the authors showed that
the relaxation process induced by the QCD phase transition provides a novel mechanism
for the production of GWs in the early universe. Such production is enabled through the
SSB of time translation invariance that is reminiscent of what happens in the time-crystals
that were theoretically predicted by Wilczek in Refs. [331,332] and observed by the Monroe
group [333] (for a detailed review, see Ref. [334]). Within the setting of early cosmology,
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as discussed in Ref. [74] that included the perturbative all-order effective action, it was
derived that the energy density of the quark-gluon mean-field decays monotonically in
time, while the pressure density undergoes violent oscillations at the characteristic QCD
scale. This mechanism entails the generation of a primordial multi-peaked GW signal
that eventually is shifted into the radio frequencies’ domain. If detected, such a signal
would represent an unprecedented echo of the QCD phase transition and it is, in principle,
observable through forthcoming measurements at the FAST and SKA telescopes.

The scenario depicted in Ref. [74] requires the emergence of a quark-gluon condensate
characterized, as mentioned above, by violent oscillations of the pressure density. Such os-
cillations would be periodic in multiples of the inverse characteristic scale ΛQCD ' 0.1 GeV.
A very similar result that is consistent with this analysis was derived in Ref. [103] in which
the authors deployed holography with the aim of analyzing relativistic collisions in a
one-parameter family of strongly coupled gauge theories that were undergoing thermal
phase transitions. An oscillating behavior of the pressure density was discovered also
in this latter work, and again, the period of the oscillations was found to be a multiple
of Λ−1

QCD. It was concluded that out-of-equilibrium physics smoothes out the details of
the transition.

Most parts of analyses developed that involve lattice QCD tacitly assume an analytical
continuation of the results obtained on the Euclidean space to the Minkowski spacetime.
The underlying argument, as has been commonly advocated, relies on the idea that locally,
on any FLRW spacetime, the dynamics of QCD can be studied on a “frozen” Minkowski-
like background and, thus, results may be analytically continued to the Euclidean space.
Relying on this assumption, a notable theorem due to Maiani and Testa [335] showed that
the scattering of asymptotic states can be counter-Wick rotated only in the infinite volume
limit (with the scale being the threshold amplitude) and for time scales much smaller than
the level spacing due to momentum discretization.

Specifically, the authors of [335] started out with the Osterwalder-Schrader theorem
that ensures that the Euclidean correlation functions can be analytically continued back to
the Minkowski spacetime. However, this theorem heavily relies on the so-called reflexion
positivity condition [336], and this condition is not fulfilled in the aforementioned cases
when the FLRW dynamics are studied at time scales that exceed the Hubble time by one
order of magnitude. Indeed, for the cases discussed, for instance in Refs. [74,103], non-
perturbative effects that are originating from violent oscillations of the pressure density
definitely spoil the time reflexion positivity condition. This insight suggests that the
Maiani-Testa theorem is inapplicable in the context of the current discussion.

In fact, recent analyses developed according to different frameworks surprisingly
confirm a quite different picture than the one on which the lattice QCD analyses are based:
for instance, the determined period of oscillations in [74,103] that exceeds the Hubble
time by one order of magnitude (in Planck units), as was mentioned above. Thus, effects
of the spacetime curvature cannot be neglected due to the influence of non-trivial non-
perturbative effects that are recovered beyond the characteristic-time of QCD, Λ−1

QCD. This
provides an argument that should influence the confidence of the application of lattice
QCD methods in cosmology; specifically when such methods aim to determine the order
of the phase transition.

Finally, we mention, as a further approach to the problem of determining the order
of the QCD phase transition in the early universe, a method provided by conformal
field theories prescribed by the foundation of the modern understanding of quantum
field theory and particle physics (for a comprehensive overview of the basic concepts,
see Ref. [337]). Having been hitherto deepened so as to unveil the universal properties
of scale invariant critical points, these frameworks were applied to describe continuous
phase transitions in fluids and magnets as well as in many other materials. Substantial
efforts were devoted to the study of non-perturbative strongly coupled conformal field
theories, especially concerning their symmetries and theoretical constraints. Such work
has opened the pathway to the development of the so-called conformal bootstrap [338,339],
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which has proven to be a successful framework in two dimensions and which finally
was extended within the last decade so as to account for higher dimensionality including
the physically relevant cases of three and four dimensions (for a detailed pedagogical
review on the conformal bootstrap approach in d dimensions, see, e.g., Refs. [340,341]).
Notably, significant progress in analytical methods has been achieved, shedding light on
the possibilities of how to cast the bootstrap equations and, in parallel, more powerful
numerical techniques were developed in attempts to find their solution [342]. This has
brought about ground-breaking results including the determination of critical exponents
and correlation function coefficients in the Ising O(N) models in three dimensions [343].

4.2. Effective Action Approach

In this section, the effective action approach is outlined in order to provide a back-
ground to the discussion of the contribution to the vacuum energy density through the
trace of the energy-momentum tensor (EMT). In 1977, Matinyan and Savvidy [344] and
Savvidy [326] investigated the asymptotic behavior of the effective Lagrangian density in
gauge theories building on earlier work by Heisenberg and Euler and by Schwinger (see
references therein). The behavior was studied using RG methods in order to relate the effec-
tive picture of strong fields to the short-range properties of gauge theories. The quantum
corrections to the classical action as found by Schwinger were discussed both in these two
publications and further summarized in a recent review [345].

The investigation begins with an examination of corrections to the classical action as
suggested by Schwinger, i.e., corrections that allow for an expansion of the effective YM
action in the gauge fields Āa

µ (also known as connections):

Γ[A] =
∫

dxLeff

= ∑
n

∫
dx1 · · ·dxn Γ(n) a1···an

µ1···µn
Āa1

µ1(x1) · · · Āan
µn(xn)

= Scl + W(1) + W(2) + . . . . (83)

Here, the effective Lagrangian density Leff undergoes a perturbative expansion so that the
n-loop corrections provide a deviation from the classical action Scl. The charged vector
connection Āa

µ(x) ≡ 〈0|Aa
µ(x)|0〉 is the vacuum expectation value of the field operator and

Γ(n) is the one-particle irreducible (1PI) vertex function. To each order, W(n) provides the
n-loop correction to the classical action.

The effective Lagrangian at all-loop order in an SU(N) YM theory can be defined
in terms of an order parameter J and a running coupling ḡ(J ). It should be noted that
the latter is different from the bare coupling gYM of the classical theory [66,316]. In a
non-stationary cosmological background characterized by the FLRW metric, the conven-
tional effective (quantum) YM Lagrangian can be written, through a rescaling of the fields
according to Equation (17), as

Leff =
J

4ḡ2 , ḡ2 = ḡ2(J ), J = −
F a

µνF a µν

√−g
, (84)

where Aa
µ are the rescaled SU(N) connections, F a

µν are the rescaled field-strength compo-
nents, and the equality entering the covariant field-strength F a

µν in a curved background
∇µAa

ν −∇νAa
µ = ∂µAa

ν − ∂νAa
µ has been accounted for. Furthermore, g ≡ det(gµν), where

gµν = a(η)2 diag(1,−1,−1,−1) is the FLRW metric as a function of the conformal time η.
Now, J simplifies to

J =
2√−g ∑

a

(
~Ea · ~Ea − ~Ba · ~Ba

)
≡ 2√−g

(
~E2 − ~B2) , (85)
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which is an expression that emphasizes the dependence on the components of the CE and
CM fields: ~Ea, ~Ba. The running of the coupling ḡ as a function of the order parameter J in
Equation (84) fully determines the dynamics of the effective YM theory and is given by the
solution of the RG evolution equation [66,345]

2J dḡ2

dJ = ḡ2β(ḡ2) , (86)

where β is the standard beta-function of the YM theory [346,347].
As an aside, it should be noted that apart from J , a second, independent, invariant

may be constructed using the dual field strength [344]:

G = −
F a

µνF ∗a µν

√−g
=

4√−g
~E · ~B , F ∗a µν =

1
2

εµνρσF a
ρσ . (87)

This quantity is usually disregarded in the effective YM approach, since it vanishes
for all fields that have orthogonal electric and magnetic components but it may as well,
in principle, be incorporated into the effective Lagrangian.

In order to study the vacuum dynamics on cosmological scales, the spatially averaged
quantity 〈J 〉 should be considered, and two cases are distinguished in which: (i) 〈J 〉 is
positive, meaning that the averaged CE components 〈~E2〉 dominate over the averaged
CM terms 〈~B2〉; (ii) vice versa, that is the case of a CM-dominated state with 〈J 〉 < 0
that corresponds to a CM condensate. For the purpose of studying the basic features of
the cosmological evolution of the CM and CE condensates in pure gluodynamics, it is
sufficient to consider the effective SU(2) YM theory, since SU(2) subgroups can always be
picked out of the SU(N) YM theory, and such a subgroup is the part that accounts for the
cosmological application [66]. The explicit brackets 〈. . .〉 will be dropped for the remainder
of the discussion.

Applying the variational principle to the effective YM action as in the classical field
theory, one straightforwardly obtains the effective YM equations of motion as described in
Appendix C. Similarly, the EMT of the effective YM theory can be found as

Tν
µ =

1
ḡ2

[ β(ḡ2)

2
− 1
](F a

µλF a νλ

√−g
+

1
4

δν
µJ
)
− δν

µ
β(ḡ2)

8ḡ2 J , (88)

which is particularly useful for our discussion of cosmological evolution of the quantum
YM system in what follows.

4.3. Mirror Symmetry of the Ground-State Solutions

The one-loop ground-state solution behaves differently depending on the sign of
J and of the running coupling ḡ1. In the case of the CM solution, it is again noted
that J < 0 and, hence, F > 0. In addition, one refers to a positive ḡ2 > 0 in this case so
that an absolute value in the one-loop effective Lagrangian, see Equation (A32), may be
removed. Considering the CM branch to one-loop order, which corresponds to a choice of
the initial condition in the RG equation such that ḡ2

1(µ
4
0) > 0, the RG solution as derived in

Equation (A29) can be written on the compact form

ḡ2
1(J ) =

96π2

bN ln(−J /λ4)
. (89)

Here, note that ḡ2
1(J ) > 0 when −J > λ4, with

λ4 ≡ µ4
0 exp

[
− 96π2

bNḡ2
1(µ

4
0)

]
, (90)



Universe 2022, 8, 451 42 of 77

and this gives yet another frequently used representation for the CM SU(N) Lagrangian [66]

L(1)eff, CM =
bN

384π2J ln
(
−J
λ2

)
. (91)

The minimum of the effective Lagrangian at J∗ is taken to be the physical scale of the
quantum YM theory, which in the case of a CM vacuum reads

−J∗ = µ4
0 , (92)

which is the well-known phenomenon of dimensional transmutation. Readily from Equation (91),
the minimal value of the effective CM Lagrangian reads

L(1)eff, CM(J∗) =
J∗

4ḡ2
1(J∗)

< 0 , with ḡ2
1(J∗) > 0 , (93)

and this is a negative value. In the standard notation, the CM minimum corresponds to

2g2
YMF ∗ = eµ4 ≡ Λ4

QCD → −J∗ ≡ 2Λ4
QCD , L(1)eff, CM(J∗) =

−Λ4
QCD

2g2
YM

, (94)

expressed in terms of the conventional scale, ΛQCD.
The exact ground-state solution for positive J∗ > 0 may be found immediately by

inspection of the all-loop YM equation of motion; see Equation (A25). This is the CE
condensate characterized by

β(ḡ2
∗) = 2 , ḡ2

∗ = ḡ2(J∗) , J∗ > 0 , (95)

from which it follows that the equation of motion is trivially satisfied. It should be pointed
out that such a special solution is universal for any SU(N) symmetry, i.e., it is independent
of N.

The contribution to the vacuum by the CE condensate comes from the trace of the
EMT (see e.g., Ref. [348]). The trace at the minimum as given by Equation (88) is

Tµ
µ = − β(ḡ2

∗)

2ḡ2∗
J∗ = −

1
ḡ2∗
J∗ . (96)

The CE condensate hence contributes positively to the vacuum energy density, and
this observation is intriguing when remembering that the CM condensate of Savvidy theory
comes as a negative-definite contribution [345].

A striking and very interesting property of the YM effective Lagrangian will be dis-
cussed here, namely a mirror symmetry. It is apparent that the Lagrangian of Equation (84)
is Z2-symmetric under simultaneous sign changes of J and ḡ2. The invariance of the
Lagrangian under this Z2 symmetry results in that the two condensates (CE and CM) are
associated with two, apart from the overall sign, equal minima of the Lagrangian. Since the
running of the coupling is a non-linear function of J in general, this symmetry may only
be realized close to the ground state given in Equation (95) [66]. Therefore, in the vicinity
of the ground state, the action is symmetric under the simultaneous transformation

Z2 : J∗ ←→ −J∗ , ḡ2
∗ ←→ −ḡ2

∗ . (97)

As implicated by the form of the β-function, see Equation (A28), the imposed sym-
metry forces an additional change of sign in precisely β: β(ḡ2

∗)←→ −β(−ḡ2
∗). There are

important consequences of this symmetry of the action. Mainly, the conventional CE
condensate effectively becomes mapped onto the CM gluon condensate with J∗ < 0 and
ḡ2
∗ > 0 [345].
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Taking the order parameter at the ground state to be the physical scale of the YM
theory, one has, for the two condensates µ4

0 = |J∗|. Then, for the CM branch, with ḡ2
∗ > 0,

the running coupling for the one-loop solution may be rewritten as

ḡ2
1(J ) =

96π2

bN ln(|J |/λ4)
, λ4 = |J∗| exp

[
− 96π2

bNḡ2
1(J∗)

]
, (98)

c.f. Equation (89) and Equation (A29). Insertion of this expression back into the effective
Lagrangian results in

L(1)eff, CM =
bN

384π2J ln
(
|J |
λ2

)
, (99)

c.f. Equation (91).
Due to the Z2 mirror symmetry, the minima of the effective Lagrangian on the two

symmetry branches where ḡ2
∗ is either positive or negative come with the same value but

with different scales: for the two condensates; the scale is modified by the exponential in
Equation (98), so that

λ± = |J∗| exp
[
∓ 96π2

bN|ḡ2
1(J∗)|

]
. (100)

The upper sign stands for the CM condensate while the lower sign is the CE branch
with ḡ2

1(J∗) < 0.
As is clear from Equation (100) and from the discussion in Ref. [66], the minimum for

which J∗ > 0 appears in the non-perturbative region defined by 0 < J∗ < λ4. Therefore,
this minimum corresponds to the CE condensate found in Equation (95). The mirror mini-
mum is then swiftly found by applying the Z2-symmetry transformation. Note that the
physical scale for the mirror minimum associated with the CM condensate is exponen-
tially suppressed relative to the minimum point |J∗| with the consequence that the CM
condensate, with J∗ < 0, appears in the perturbative region where |J∗| > λ4.

Finally, we may return to the contribution of the CM condensate to the vacuum
energy density. Applying the mirror symmetry to the CE minimum gives β→ −2, and
the equations of motion, as presented in Equation (A25), are no longer trivially satisfied.
However, as pointed out in Ref. [66], the dynamical equation in the vicinity of the CM
condensate becomes

D̂ab
ν

[
F b µν

ḡ2√−g

]
= 0 . (101)

This expression bears a close resemblance to the classical YM equations of motion that are
valid in the vicinity of the ground state. The EMT for the CM minimum involves extra
terms in comparison to Equation (96):

Tν
µ

(
β = −2

)
=
−2
ḡ2∗

(F a
µλF a νλ

√−g
+

1
4

δν
µJ∗

)
+ δν

µ
1

4ḡ2∗
J∗ . (102)

However, in the trace of this expression, the terms within the parenthesis cancel out,
yielding

Tµ
µ = +

1
ḡ2∗
J∗ . (103)

The conclusion of Ref. [66] is therefore that the contribution of the two condensates to
the vacuum energy density cancel each other with equal magnitude and opposite signs as
long as the averaging over macroscopic volumes that contains many CE and CM vacuum
“pockets” of typical microscopic length-scales of ∼ λ−1

± ∼ Λ−1
QCD is considered:

εvac =
1
4
〈Tµ

µ〉 = ∓Leff(J∗) . (104)



Universe 2022, 8, 451 44 of 77

Provided that the energy scales of “electric gluon” and “magnetic gluon” condensa-
tion are not the same, as was elaborated above, the condensates are formed at different
spacetime separations. However, they evolve toward the same absolute value of the energy
density, but with opposite signs, due to their cosmological attractor nature (see Section 4.4
below). This effectively causes the cancellation of “electric gluon” and “magnetic gluon”
contributions to the QCD ground state at sufficiently large separations, i.e., in the deep
infrared limit of the theory, although at the expense of a loss of homogeneity at typical
length (Fermi) scales of QCD ∼ Λ−1

QCD. As the QCD vacuum appears to be locally inho-
mogeneous at these length-scales, gravity is expected to react to its electric and magnetic
pockets in opposite ways such that the local metric fluctuations become averaged out be-
yond the length-scale of QCD to a small net effect compatible to that of the global observed
cosmological Λ-term [65].

In the framework of the YM effective action approach, one may reach an intriguing
conclusion that the exact compensation of the CE and CM gluon condensate components
in the QCD vacuum (averaged over spacetime volumes above the QCD Fermi scale) is the
necessary and sufficient condition for confinement in QCD. Indeed, as will be discussed
below, the CE and CM vacuum pockets are always separated by non-analytic domain walls
effectively blocking the gluon field from propagating over length-scales beyond the Fermi
scale of each such pocket. The domain walls that separate different CM and CE pockets of
the QCD vacuum prevent the color fields from propagating over macroscopic distances
and, thus, effectively confine them within such pockets. An exact cancellation of their
contributions to the net vacuum energy-density emerges in experimental observations
as a complete disappearance of the gluon DoFs in the IR limit of the theory, i.e., beyond
the QCD Fermi scale. In this picture of confinement, it would be natural to consider
such pockets (with quarks and gluons being locked inside of them) as hadronic vacuum
excitations. This is fully compatible with the classical limit of the YM theory where the
conformal anomaly is absent and where only the radiation-like medium (hadron gas)
remains at large separations. It remains to be seen exactly how the domain-wall picture of
confinement readily formulated in Minkowski spacetime relates to a more standard center-
vortex mechanism of confinement [349–355] strongly supported by lattice simulations in
Euclidean spacetime (for a recent review of the current status of this research field, see,
e.g., Ref. [22,356]).

Note, with respect to the exact CM/CE cancellation and, hence, color confinement,
the restoration of a discrete (mirror) symmetry between “electric gluon” and “magnetic
gluon” contributions at the level of the ground state is an intrinsic property of the pure
YM theory and the RG flow equations. This generic property is intricately connected to
the fact that the QCD-induced component of the cosmological constant term vanishes for
averages over macroscopic volumes of physical spacetime. A residual effect of the CE/CM
cancellation, emerging due to an effective dynamical breaking of the mirror symmetry by
gravitational interactions in the QCD vacuum, rigorously matches (in both the sign and an
order of magnitude) the observed value of the cosmological constant [65].

Thus, the color confinement phenomenon and the tiny value of the cosmological
constant are the direct and closely connected consequences of the mirror symmetry of the
QCD vacuum in the infrared regime. An important implication of the domain walls in
the QCD vacuum is that no analyticity of the scattering amplitudes can be assumed in
such a case, causing potential problems with the standard imaginary time and Euclidean
formulations such as lattice QCD that is relying on the analyticity properties and vacuum
triviality of the theory.

4.4. YM Cosmological Attractors

The temporal evolution of the condensate(s) discussed in the subsections above may
be described on cosmological scales where short-distance fluctuations are averaged (inte-
grated) out. A simple background can be obtained by splitting the full gauge field into a
background field component Āµ and a fluctuating field aµ: Aµ = Āµ + aµ. This scheme
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was developed in general by Wetterich in, e.g., Ref. [357,358], first for scalar fields in SO(N)
and later for gauge fields, and it was further studied by, e.g., Gies [359] and Eichhorn
et al. [360].

The (up to a rescaling) unique SU(2) pure YM theory will be parameterized in terms
of a scalar time-dependent but spatially homogeneous field component (the background)
on large scales due to the local isomorphism of the isotropic SU(2) gauge group and
the SO(3) group of spatial 3-rotations [361–365]. One may therefore obtain a unique
decomposition of the gauge field into this spatially homogeneous isotropic part (describing
the YM condensate) and a non-isotropic/inhomogeneous component (accounting for the
YM waves), the latter being the fluctuations, according to

Aa
k = U(t)δa

k + Ãa
k(t,~x) . (105)

Here, the decomposition has been performed using the gauge condition Aa
0 = 0 [66].

It should be stressed that the fluctuations that parameterize the inhomogeneous YM wave
modes interpreted as gluons in the field-theoretical framework average out over large
distances by definition in the sense that 〈Ãa

k(t,~x)〉 ≡
∫

d3~x Ãa
k(t,~x) = 0 . Further, the ho-

mogeneous YM condensate itself can be considered positively definite, U(t) > 0, and it
contributes to the ground state of the theory. The parameterization of the gauge field in
SU(2) as a spatially homogeneous isotropic condensate and wave modes may be general-
ized to SU(3) for an application to QCD.

A quasi-classical theory of SU(2) YM quantum-wave excitations of the classical ho-
mogeneous condensate (i.e., without accounting for the vacuum polarization effects) has
been thoroughly discussed in Ref. [276]. The formalism enables a proper extension to an
arbitrary gauge and symmetry group with at least one SU(2) subgroup. Among the key
results: an excitation of longitudinal wave (plasma) modes as well as an energy swap
between the evolving homogeneous condensate and waves have been established in the
linear and next-to-linear approximations. As is shown in Figure 12, the condensate tends to
loose its energy, leading to the growth of YM wave amplitudes denoted as “particles”. This
represents a possible mechanism of particle production due to the dynamical vacuum decay
which can be particularly relevant for cosmology and also in QGP production in heavy ion
collisions. The effect has further been observed in the maximally supersymmetric N = 4
YM theory and in the more complicated two-condensate SU(4) gauge theory. As the next
step, it would be important to perform an analogical study of quantum-wave dynamics in
the effective action approach, i.e., in the case of a quantum YM vacuum, in order to study
the impact of vacuum polarization phenomena on the energy balance in the “condensate +
waves” system and hence on the growth of the wave modes.

Now, the dynamical behavior of the homogeneous YM condensate U(t) introduced
in Equation (105) will be discussed. The Einstein equations for the pure YM theory in a
non-trivial spacetime are obtained through the principle of variation starting from the
effective action [315,316] and read as follows:

1
κ

(
Rν

µ −
1
2

δν
µR
)
= (106)

ε̄δν
µ +

b
32π2

1√−g

[(
−F a

µλF a νλ +
1
4

δν
µF a

σλF a σλ

)
ln

e|F a
αβF a αβ|
√−gλ4 − 1

4
δν

µF a
σλF a σλ

]
,(

δab
√−g

∂ν

√
−g− f abcAc

ν

)(
F b µν

√−g
ln

e|F a
αβF a αβ|
√−gλ4

)
= 0 . (107)
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Figure 12. The time dependence of the Hamiltonian corresponding to the YM condensate, HU, YM
wave modes (or particles), Hparticles, as well as the interaction term between them, Hint of the YM
“condensate + waves” system (with total energy H) in the quasi-classical approximation of small
wave amplitudes. Adapted from Ref. [276].

Here, λ = ξΛQCD, with ΛQCD ∼ 0.1 GeV being the QCD scale and where ξ has been in-
troduced for scaling purposes, e is the base of the natural logarithm and κ is the gravitational
constant. Finally, ε̄ describes the ground-state energy density s.t. ε̄ = εQCD

top + εCC in terms
of the quantum-topological contribution from QCD and the contribution from the Cosmo-
logical Constant. For confined QCD, εQCD

top ∼ −5× 109 MeV4 for an SU(3) color symmetric
theory, and this value may be extracted from the evaluation of non-perturbative quantum-
topological fluctuations of the quark and gluon fields. The contribution from the Cosmo-
logical Constant as obtained from astrophysical measurements is εCC ∼ 3× 10−35 MeV4,
which is a comparatively minuscule and positive value. The fact that εQCD

top contributes to
the ground-state energy of the universe with a large negative value is a severe problem for
all existing cosmological paradigms, or more accurately, for the particle physics theories
from which it arises. This is because the large negative contribution must be compensated
for, in any first-order approximation, to a remarkable precision, resulting in the observed
cosmological constant value to an accuracy of a few tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(η) and of the
scale factor a = a(η) are described by the following equations of motion as derived from
Equations (106) and (107):

6
κ

a′′

a3 = 4ε̄ + Tµ,U
µ , Tµ,U

µ =
3b

16π2a4

[
(U′)2 − 1

4
U4
]

, (108)

∂

∂η

(
U′ ln

6e|(U′)2 − 1
4 U4|

a4λ4

)
+

1
2

U3 ln
6e|(U′)2 − 1

4 U4|
a4λ4 = 0 . (109)

It should be noted that a particular exact solution to Equation (109) can be obtained if
the logarithm evaluates to zero at all times: that is, if |Q| = 1 for

Q ≡ 6e
[
(U′)2 − 1

4
U4
]

a−4(ξΛQCD)
−4 . (110)

This may be solved for the two special cases Q = ±1, and the solutions are shown in
Figure 13. The homogeneous background U = U(t) displays quasi-periodic singularities in
physical time in both cases. It should be stressed that the exact compensation of the CE and
CM gluon condensate contributions to the QCD ground-state energy density, as discussed
earlier, is realized in particular if the two components Q = ±1 co-exist in the universe.
The cancellation happens over macroscopic distances as the average of the background
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vanishes in the large-time limit, and importantly, this occurs without any fine tuning.
Crucially, the cancellation will arise due to the time-attractor nature of the contributions
coming from the two minima; a property that is demonstrated in the following.
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Figure 13. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

∫
a dη, plotted here in units of the

characteristic time scale Λ−1
QCD. To the left, the CE vacuum solution of Equation (110) with Q = 1 is

shown, and to the right, the CM ditto with Q = −1 is displayed. ξ = 4.0 has been used along with
initial conditions U = 0 and U′ = 0, respectively. These results are compatible with those of Ref. [66]
up to the scaling of the figure on the right-hand side.

The conformal integral of Equation (108) is

3
κ

(a′)2

a4 = ε̄ + T0,U
0 , (111)

T0,U
0 =

3b
64π2a4

{[
(U′)2 +

1
4

U4
]

ln
6e|(U′)2 − 1

4 U4|
a4λ4 + (U′)2 − 1

4
U4

}
,

which may be verified by differentiating this expression with respect to η and making use of
Equation (109).

Equations (108) and (111) can now be combined in order to find a solution for the
scale factor a, the trace of the EMT Tµ

µ and the total energy density T0
0. This is possible

since the latter equation incorporates the constraint of Equation (109). Solving this set of
equations provides the benefit of obtaining solutions for observable quantities that must
necessarily be smooth functions in time. Hence, the quasi-periodic singularities of U(t)
may be avoided. Since t =

∫
dη a(η), Equations (108)–(111) may be recast in terms of the

physical time as

6
κ

[
ä
a
+

ȧ2

a2

]
= 4ε̄ + Tµ,U

µ ≡ Tµ
µ(t) ,

3
κ

ȧ2

a2 = ε̄ + T0,U
0 ≡ T0

0(t) , (112)

where the energy density of the gluon condensate and the trace in the one-loop effective
YM theory read

Tµ,U
µ =

3b
16π2a4

[
a2U̇2 − 1

4
U4
]

, (113)

T0,U
0 =

3b
64π2a4

{[
a2U̇2 +

1
4

U4
]

ln
6e|a2U̇2 − 1

4 U4|
a4(ξΛQCD)4 + a2U̇2 − 1

4
U4

}
. (114)

In order to eliminate the explicit dependence on U(t) and, hence, the obstructing
singularities in the two equations, [66] introduced a universal analytic function g(t) that



Universe 2022, 8, 451 48 of 77

parameterizes the relation between the trace of the EMT and the total energy density.
The defining equation of this function is

Tµ,U
µ − C =

(
g(t) + 1

)[
T0,U

0 −
C
4

]
, (115)

C ≡ −4εQCD
top =

3b
16π2

(ξΛQCD)
4

6e
.

Using g(t), Equation (112) can be written entirely in terms of continuous functions:

6
κ

[
ä
a
+

ȧ2

a2

]
= 4εCC +

(
g(t) + 1

)[
T0,U

0 −
C
4

]
, (116)

3
κ

ȧ2

a2 = εCC −
C
4
+ T0,U

0 . (117)

Note here that T0,U
0 = T0,U

0 (U, U̇, a). After excluding T0,U
0 above, the resulting equation

for the scale factor that is left to be solved is

6
ä
a
+ 3
(
1− g(t)

) ȧ2

a2 + κεCC
(

g(t)− 3
)
= 0 . (118)

The general solution is6

a(t) = (119)

a∗ exp

√κεCC

3

∫ t

t0

1 +
√

εCC
ε0

+
(

1−
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t′ − t0) +

∫ t′
t0

g(τ)dτ
)}

1 +
√

εCC
ε0
−
(

1−
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t′ − t0) +

∫ t′
t0

g(τ)dτ
)} dt′

 ,

in terms of the initial values of the scale factor a∗ ≡ a(t = t0) and the total energy density
ε0 ≡ T0

0(t = t0), respectively. Note that εCC � ε0.
The total energy density, T0

0(t), and the trace of the EMT, Tµ
µ(t), both explicitly de-

fined in Equation (112), can be found by insertion of the solution above into Equation (117)
together with a manipulation of Equation (115). The result is

T0
0(t)

εCC
=

1 +
√

εCC
ε0

+
(

1−
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t− t0) +

∫ t
t0

g(τ)dτ
)}

1 +
√

εCC
ε0
−
(

1−
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t− t0) +

∫ t
t0

g(τ)dτ
)}


2

, (120)

Tµ
µ(t)

εCC
= 4 +

4
(

g(t) + 1
)(

1− εCC
ε0

)
exp

{√
κεCC

3

(
−3(t− t0) +

∫ t
t0

g(τ)dτ
)}

[
1 +

√
εCC
ε0
−
(

1−
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t− t0) +

∫ t
t0

g(τ)dτ
)}]2 . (121)

It shall be pointed out here that the above solutions for the scale factor, the energy
density, and the trace of the EMT do not rely on any approximations but are the general
solutions that can be obtained from Equation (112). These cosmological observables may
therefore be studied on the full range from t0 to t, provided that g(t) is known.

For practical analyses, the auxiliary function g may be studied in the vicinity of
the exact, large-time cancellation point where Q(t) ∼ 1. This is done by introducing an
expansion of the YM energy density around the asymptotic value of the exact solution,
where T0,U∗

0 = C/4, such that

T0,U
0 (t) ' C/4 + δε(t), δε� C . (122)
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Depending on the relation between the expansion parameter δε and the remaining
scale εCC, the time derivatives ȧ and Ṫ0,U

0 (t) take two different asymptotic forms. Firstly,
in the case of large δε(t)� εCC, these are

ȧ '
√

κ

3
a
√

δε, (123)

Ṫ0,U
0 '

√
κ

3
(

g(t)− 3
)(

δε
)3/2 ,

when keeping only the leading terms in δε(t)� C. Secondly, in the opposite case when
δε(t)� εCC, the same quantities instead become

ȧ '
√

κεCC

3
a

(
1 +

∞

∑
n=1

( 1
2
n

)(
δε

εCC

)n
)

, (124)

Ṫ0,U
0 '

√
κεCC

3
(

g(t)− 3
)
δε

(
1 +

∞

∑
n=1

( 1
2
n

)(
δε

εCC

)n
)

.

The difference between Equations (123) and (124) introduces only a very small correc-
tion to the period of g(t), and this correction can safely be neglected, as will be shown later
in this section.

It is now possible to study g in the vicinity of the asymptote (Equation (122)) and in
the two limits of δε(t) relative to εCC. First, solve Equations (113) and (114) for U, U̇ in
terms of T0,U

0 , Tµ,U
µ . Then, insert the expansion of the energy density from Equation (122)

in the resulting expressions as well as in Equation (115). Explicit expressions for U, U̇ in
terms of the EMT components and the scale factor allows for the formulation of

∂tU(t)− U̇ ≡ 0 . (125)

Explicit computation of the first term results in a differential equation for g(t) when the
expansions in Equation (123) are inserted. The final form of such a differential equation is

ġ4 −
8
(
ξΛQCD

)4

3e
(
1− g2)3

= 0 . (126)

Its implicit analytic solution can be found for the inverse function t(g) over half a
period of oscillation of g(t) as

t(g) = − (6e)1/4

2ξΛQCD

[
2F1

(
1
2

,
3
4

,
3
2

; g2
)

g− k
]

, 0 < t(g) < Tg/2 . (127)

The constant k ≈ 2.622 is defined through the above equation, and the initial condition
g(t0) = 1 is adopted for simplicity. These conditions determine g = g(t) as a periodic
quasi-harmonic function with unit amplitude. The period of oscillation may be found from
Equation (126) as

Tg =
2(6e)1/4

ξΛQCD

∫ 1

0

dg
(1− g2)3/4 =

2k(6e)1/4

ξΛQCD
. (128)
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Using instead the expansions in Equation (124), the above calculation can be repeated
for the case of δε(t)� εCC. The analogue of Equation (126), now with an additional term
proportional to α� 1, is

dg
dτ
± 2(1− g2)3/4 − α(1− g2) = 0, τ = t

ξΛQCD

(6e)3/4 , (129)

T′g = Tg

[
1 +

π

4k2 α2
]

,

α =
2(6e)1/4

ξΛQCD

√
κεCC

3
≈ 4.8× 10−24, for ΛQCD ∼ 210 MeV .

Hence, the additional term may safely be neglected.
Note that the function g(t) satisfies the following integral constraint

∫ t

0
dτ g(τ) = ± (6e)1/4

ξΛQCD
(1− g2)1/4 ,

nTg

2
< t <

(n + 1)Tg

2
, (130)

where the upper sign corresponds to even n and the lower corresponds to odd n. It should
be noted that this constraint can be used in Equations (119)–(121) in order to explicitly
express the general solutions for a(t), T0

0(t) and Tµ
µ(t) in terms of g. A very good analytic

approximation to the exact g(t) may be constructed when keeping only the first two
non-vanishing terms of the harmonic Fourier expansion s.t.

g(t) ≈ A cos
(

2πt
Tg

)
+ (1 + A) cos

(
6πt
Tg

)
. (131)

The amplitude A is found through

A =
2
k

∫ 1

0
dg

g
(1− g2)3/4 cos

(
π

2k

∫ 1

g

dx
(1− x2)3/4

)
≈ 1.14 . (132)

A comparison between this approximation and the exact solution g(t) is provided in
Figure 14 from which it is clear that the approximation is indeed capturing the universal
function to a very good accuracy. For a particular approximation to g(t) discussed above,
the physical observables have been plotted in Figure 15 for illustration.

−1

−0.5

0

0.5

1

0 1 2 3 4 5

g(
t)

ΛQCDt

Figure 14. The time dependence of the quasi-harmonic universal function g = g(t). The exact
solution in Equation (127) (solid line) has been extrapolated from the solution over a single period
Tg/2. A harmonic approximation in Equation (131) (dashed line) captures the behavior of g(t) well.
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Figure 15. Solutions for the total energy density T0
0(t) (left), the trace of the total QCD EMT Tµ

µ(t)
(middle) and the scale factor a(t) (right). The asymptotic values for which Q→ 1 are indicated by
horizontal lines in the left and middle panels, respectively. The initial conditions have been chosen as
U0 = 0, U̇0 = (ξΛQCD)

2/
√

3e, Q0 > 1, ξ = 4.0 ΛQCD = 332 MeV and κ = 10−7 MeV−2. The energy
density and the trace are plotted in dimensionless units, rescaled by Λ4

QCD and for illustrative
purposes, εCC was set to ∼ 0.5 % of ε̄. These results are compatible with the qualitative picture in
Ref. [66].

4.5. SU(N) and the Functional RG Approach

So far, we have addressed gluodynamics resorting to an all-order effective pertur-
bative approach. Nonetheless, we can extend our investigation so as to include non-
perturbative all-order analyses, resorting to the Functional Renormalization Group (FRG)
approach [357,366–375]. This latter is a Wilsonian momentum-shell-wise integration
method for the path integral, which was developed to delve into the dynamics of in-
teracting quantum field theories and statistical systems in a non-perturbative way when
couplings cannot be dealt with using perturbative techniques. A regulator function Rk is
taken into account so as to suppress quantum fluctuations at momenta lower than some
physical scale, i.e., at an IR cut-off scale k. This scale is in principle different to the one
defined in the subsections above, namely µ0. The former denotes the scale above which
all quantum fluctuations are integrated out, while the latter captures instead the one-loop
renormalization scale and may further be extended to all-loop accuracy. The regulator
function has been discussed by, e.g., Gies in Ref. [359]. A scale-dependent effective action
that flows with k is then recovered, i.e., Γk, which encodes quantum fluctuations effects at
momenta larger than the IR cut-off k. Varying k then allows to smoothly interpolate among
the microscopic/short-scale action and the full quantum effective action Γk→0.

This elucidates why this procedure looks to be tailored ad hoc for cosmological
applications, at the IR scale. The Wetterich equation for a non-zero background that fixes
the running dependence on the cut-off scale in the FRG approach reads [357,366]

∂tΓk =
1
2

STr
(
Γ(2)

k + Rk
)−1

∂tRk , (133)

where Γ(2)
k , a matrix in the field space, denotes the second functional variation of the effective

(running) action with respect to the field content of the theory7. Above, STr is the super-
trace, including a summation over all field components and discrete indices, as well as all the
eigenvalues of the Laplacian in the kinetic term. The FRG equation retains a dependence on the
full (field-dependent) non-perturbative regularized propagator [367], namely, (Γ(2)

k + Rk)
−1.

The FRG approach has been then adapted to YM SU(N) theories [358–360]. Specifi-
cally, in Ref. [360], a numerical extrapolation among low and high energy scales for the
full propagators was deployed in order to derive the gluon condensate. Refining these
results in Ref. [376], the FRG approach was extended, within a cosmological setting, to the
SU(2) case.

In Ref. [376], resorting to approximations that are necessary to solve the FRG equation,
which is otherwise too complicated to provide analytic results, the authors considered
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replacing Γk in Equation (133) with the bare action S, allowing for integration on both sides
of the FRG equation, namely,

Γk = −
∫

Leff =
∫

dk
1
2

STr(S(2) + Rk)
−1∂tRk =

1
2

STr log(S(2) + Rk) + const. . (134)

Setting the bare action to the standard expression S = 1
4

∫
dx Fa

µνFa µν, which here
corresponds to the UV limit of the effective theory, the integration constant can be fixed by
requiring that Γk vanishes for a vanishing field strength.

The inversion of the regularized propagator then requires the use of a harmonic
gauge fixing, entering the action Sgf and depending on the α-parameter, with associated
Faddeev-Popov ghosts, in Sgh, namely,

Sgf =
1

2α

∫
dx D̄µ āa

νD̄νaa
µ , Sgh =

∫
dx D̄µ c̄νDµcν , (135)

where the background methods have been deployed, and barred quantities are calculated
with respect to background fields. Then, in the Landau gauge where α→ 0, the super-trace
recasts along the transverse sector as

1
2

STr log(S(2) + Rk) =
1
2

Trtrans log
[
D̄µν

T + Rk(D̄µν
T )
]
− 1

2
Trgh log

[
D̄µν

gh + Rk(D̄µν
gh)
]

, (136)

where the differential operators can be expressed in terms of the SU(N) structure constant
f abc and the YM coupling constant gYM as

D̄µν
T = �̄ δcbδµν + gYM F̄a µν f abc , D̄µν

gh = ηµν�̄ . (137)

In order to disentangle the emergence of a condensate as a solution to the FRG equation,
one restricts the consideration to the case of SU(2). Although this could seem to be limiting
in the wider theoretical perspective, nonetheless, the restriction to SU(2) shall be considered
as a selection of a subgroup of SU(N).

Bearing the discussion above in mind, one may select a straightforward expression for
the regulator function in terms of a cut-off scale, Rk(D) = k2. The super-trace STr may then
be evaluated using the Schwinger formula

ln A ≡
∫ ∞

0

ds
s

[
e−sA − e−s

]
, A > 0 , (138)

and opting for a convenient choice of the background, the self-dual one, as investigated
in Ref. [360]. These choices allow for the evaluation of the super-trace as a sum over the
eigenvalues of the kinematic terms. In general, the eigenvalues of D̄T are not known for an
arbitrary background. However, those were found in the case of a self-dual background
considered in Ref. [360], and a general discussion on the trace technology used in this
approach can be found, e.g., in Refs. [358,359]. Applying the results of Ref. [360] in the case
of a self-dual background dominated by the color-magnetic field B, Ref. [376] obtained an
expression for the regularized effective action in the following form:

Leff =
g2

YMθ

4π2

∫ ∞

0

ds
s

[
e−As − e−s

]( 1
4 sinh2(s)

+ 1− 1
4s2

)
, A =

√
k4

g2
YMθ

, θ ≡ B2 > 0 . (139)

This expression can be recast in terms of the order parameter in the CM domain,
J = 2g2

YMθ > 0, which was introduced earlier and then analytically continued to the CE
branch J < 0 as follows [66],

Leff =
2J

16π2

∫ ∞

0

ds
s
[
e−sA[J ] − e−s][ 1

4 sinh2 s
− 1

4s2 + 1
]

, A =

√
λ4

J tanh(J /λ4ε)
, (140)
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for ε� 1. Indeed, due to

J tanh
(
J

ελ4

)∣∣∣
ε→0
→ |J | , (141)

the transition between Equation (139) and Equation (140) becomes apparent. Performing
the explicit expansion of the rightmost parenthesis above, the form matches that of the
one-loop effective Lagrangian in Equation (91) for SU(2).

The results of Appendix D, valid at one-loop order, may now be compared to the all-
loop order results. In Figure 16 (left), we show a direct comparison of the one-loop with the
all-loop effective Lagrangian for J > 0 (CE branch only). A unique non-trivial minimum
is found in the non-perturbative region, 0 < J ∗ < λ4, and it is therefore identified with
the CE condensate [66] whose values for one-loop and all-loop cases differ at a permille
level and thus express a remarkable consistency of the one-loop approximation. The all-
loop running coupling may be straightforwardly extracted from the all-loop effective
Lagrangian as

(
ḡ2)−1

=
2

4π2

∫ ∞

0

ds
s
[
e−sA[J ] − e−s][ 1

4 sinh2 s
− 1

4s2 + 1
]

, (142)

and this is shown in Figure 16 (middle) for the one-loop and all-loop cases. To find an
expression for the β-function, one may study the RG equation given by Equation (86).
Using

dḡ2

dJ = −
(

ḡ2)2 d
dJ

( 1
ḡ2

)
. (143)

We may express β as

β

ḡ2 = −2J d
dJ

( 1
ḡ2

)
= −2J 2

4π2

(
− dA

dJ

) ∫ ∞

0
ds e−sA[J ]

[
1

4 sinh2 s
− 1

4s2 + 1
]

, (144)

where
dA
dJ = − 1

2J

√
λ4

J tanh(J /λ4ε)

(
1 +

J
λ2ε

1− tanh2(J /λ2ε)

tanh(J /λ2ε)

)
. (145)

The β over the running coupling at one-loop order compared to the corresponding
all-loop quantity for SU(2) is displayed in Figure 16 (right). It is clear from the figures that
the one-loop approximation accurately captures the main features of the pure YM theory
as the differences from the corresponding all-loop quantities are negligible.
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ḡ−
2

J /λ4

All-loop
One-loop 0.96

0.98

1

1.02

1.04

−1.5 −1 −0.5 0 0.5 1 1.5

β
1ḡ
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Figure 16. (Left) All- and one-loop effective Lagrangian of SU(2) as dependent on J /λ4. Plotted
here for the CE branch with J > 0, it is clear that the one-loop result captures the main features of
pure YM theory. In the non-perturbative regime shown (J < λ4), the two minima in the vicinity
of J∗ > 0 coincide. Here, ε = 0.01 has been used. (Middle) The inverse running coupling ḡ−2 of
SU(2). The (dashed) one-loop result captures well the overall behavior of the running coupling in
comparison to the all-loop coupling (solid). Here, ε = 0.01 has been used. (Right) β over the running
coupling at one-loop order compared to the all-loop quantity for SU(2). The ratio of the β-function to
the coupling coincides with the all-loop result at one-loop level for small J , while a discrepancy is
seen away from zero. Here, ε = 10−5 has been used.

As outlined in Ref. [376], when considering the formation of the non-perturbative CE
condensate as the YM system rolls down toward the minimum of the effective Lagrangian
depicted in Figure 16 (left), the equation that dictates the evolution of this system in
cosmological time is found from the continuity equation [376] (see also Ref. [377] for a more
recent discussion)

ρ̇YM + 3
ȧ
a
(
ρYM + pYM

)
= 0 . (146)

Accounting for only homogeneous CE YM fields (i.e., for θ = E2) in the EMT, for sim-
plicity, the expressions of the energy and pressure densities of the YM system ρYM, pYM
can be written as functionals of the effective action [376]:

ρYM = −Leff(θ) + 2θL′eff(θ) , pYM = Leff(θ)−
2
3

θL′eff(θ) , (147)

where prime denotes the functional variation with respect to θ. In this case, Equation (146)
transforms to

θ̇ (L′eff + 2θL′′eff) + 4
ȧ
a

θL′eff = 0 , (148)

in comoving coordinates. Equation (148) may be integrated, given that Leff(θ) is sufficiently
well behaved, such that √

θL′eff(θ) = C a−2 , (149)

where C denotes a coefficient of proportionality that is fixed by the initial conditions.
Equation (149) may be solved by inversion, providing the dynamics of a SU(2) YM con-
densate in cosmological time. Note that Equation (147) is only valid for the dominant
electric-field configurations. An analogical analysis of magnetic-field quantum config-
urations and their cosmological evolution in the effective Lagrangian approach at the
one-loop level has been performed in Ref. [377]. Note, generic YM configurations contain
both magnetic and electric components. We refer the reader to Section 4.4 above for a
thorough discussion of those more generic configurations and their cosmological (real-time)
dynamics.

5. Cosmological Implications of Gauge-Fields Driven Inflation

Gauge-fields driven inflation has been considered in several models, starting form
the paper by Ford [378], in which a hypercharge cosmological inflationary scenario was
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envisaged. The theory that was taken into account included, besides the Einstein-Hilbert
action, the action for a massive hypercharge field, individuated by the Lagrangian

L =
1
4

FµνFµν + V(Aα Aα) . (150)

Anisotropies that are naturally present in the Maxwell tensor impose to consider a
Bianchi type-I metric of the form

ds2 = dt2 − a2(t)(dx2 + dy2)− b2(t)dz2 . (151)

Provided the expression for the energy-momentum tensor of the massive vector field

Tµν = FµβF β
ν −

1
4

gµνFαβFαβ − gµνV + 2V′Aµ Aν , (152)

with prime denoting the functional derivative in Aα Aα, the Einstein equations were
recast as

2
ȧḃ
ab

+
ȧ2

a2 = 8πε , 2
ä
a
+

ȧ2

a2 = −8πpz , (153)

with ε as the energy density and pz as the pressure density component along the z-axis.
The conservation law, derived assuming that the pressure density components along the x
and y axes equal px = py, encodes

ε̇ +

(
2

ȧ
a
+

ḃ
b

)
ε + 2

ȧ
a

px +
ḃ
b

pz = 0 , (154)

and finally, the only non-vanishing component of the vector field fulfills the equation

Äz +

[
2

ȧ
a
− ḃ

b

]
Ȧz + 2V′Az = 0 . (155)

The solutions to this system of equations, Equations (153)–(155), immediately outlined
the impossibility to suppress anisotropies over the dynamical evolution of the background
and the vector field. Thus, already with the seminal attempt of Ref. [378], it was evident
that the over-production of anisotropies at the cosmological level would have provided a
main issue, eventually ruling out this class of models.

A possible way to overcome the abundance of anisotropies, severely constrained by
the CMB observations by WMAP and Planck, was imagined by Golovnev, Mukhanov
and Vanchurin [379], who considered a stochastic distribution of N ' 1012 vector fields,
randomly spanning the space directions. Each vector field was assumed to be massive
and regulated by the action

S =
∫

d4x
√
−g
(
− R

16π
− 1

4
FµνFµν +

1
2
(m2 +

R
6
)Aµ Aµ

)
, (156)

where m denotes the mass of the hypercharge vector field considered, such that
Fµν = ∇µ Aν −∇ν Aµ = ∂µ Aν − ∂ν Aµ.

The equations of motion for the gauge field, which in a covariant fashion recast

1√−g
∂

∂xµ

(√
−gFµν

)
+

(
m2 +

R
6

)
Aν = 0 , (157)

split into a temporal “0” component, implying A0 = 0, and into space components, which
finally provide the equation fro the “field strength” Bi ≡ Ai/a, i.e.,

B̈i + 3HBi + m2Bi = 0 , (158)
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having introduced comoving coordinates such that ds2 = dt2 − a2(t)d~x2, and these were
denoted with dot derivative with respect to the cosmological time, so that H = ȧ/a. For a
homogeneous vector field, it was then noticed that the energy-momentum tensor can be
expressed by

T0
0 =

1
2

(
Ḃ2

k + m2B2
k

)
,

Ti
j =

[
−5

6

(
Ḃ2

k −m2B2
k

)
− 2

3
HḂkBk −

1
3
(Ḣ + 3H2)B2

k

]
δi

j + Ḃi Ḃj + H(ḂiBj (159)

+ ḂjBi) + (Ḣ + 3H2 −m2)BiBj ,

where the summation over the index k is meant. Summing up now the contributions of
a triplet of mutually orthogonal fields B(a)

i with the same magnitude |B|, the total energy
momentum tensor is averaged to the quantity

T0
0 = ε =

3
2

(
Ḃ2

k −m2B2
k

)
, Ti

j = −pδi
j = −

3
2

(
Ḃ2

k −m2B2
k

)
δi

j , (160)

where Bk satisfies
B̈i + 3HḂi + m2Bi = 0 . (161)

These latter relations for the energy-momentum tensor can be proved by the fact that
for B(a)

i , it holds:

∑
i

B(a)
i B(b) i = |B|2δ

(a)
(b) →∑

a
B(a)

j B(a) i = |B|2δi
j . (162)

Summing up over a large amount of N triple of fields, the energy-momentum tensor
finally acquires the expression

T0
0 = ε ' N

2

(
Ḃ2

k + m2B2
k

)
Tij ∝

N

∑
a=1

B(a)
i B(a)

j '
N
3

B2δi
j + O(1)

√
NB2 . (163)

Within this scenario, anisotropies are then proven to fall off as 1/
√

N, hence justifying
consistency with the experimental data.

Finally, accounting for an inflationary slow-roll phase, with Ḃi ' 0, one finally finds
for the first Friedmann equation,

H2 =
8π

3
ε ' 4π

3
Nm2B2 . (164)

A different perspective was suggested by Maleknejad and Sheikh-Jabbari, who imag-
ined in Refs. [380–382] that it could become relevant at the level of cosmic perturbations,
while at the same time driving the inflationary background evolution of the universe.
Isotropy could be guaranteed here by aligning the internal indices (of the adjoint repre-
sentation) of a SU(2) subgroup of SU(N) to the space directions, namely, for the space
component of the connection A

Aa
i = ψ(t)ea

i = ψ(t)a(t)δa
i , ea = a(t)δa

i , (165)

where ψ(t) is a scalar field, ea
i denotes the triads, which recombine into the space metric

hij = ea
i ea

j and are expressed here in the comoving coordinates. For compactness of notation,
the authors reshuffled φ(t) = ψ(t)a(t).



Universe 2022, 8, 451 57 of 77

Specifically, the authors considered a YM action provided with the square of a Pontria-
gin term, i.e.,

S =
∫

d4x
√
−g
[
−R

2
− 1

4
Fa

µνFµν
a +

κ

384

(
εµνλσFa

µνFa
λσ

)2
]

, (166)

having set 8πG = 1, denoted with εµνλσ the totally antisymmetric tensor, and chosen the
real parameter κ to be positive.

Labeling with a subscript “YM” the contributions arising from the YM terms, and with
κ the ones related to the Pontriagin terms, it was found that

εYM =
3
2

(
φ̇2

a2 +
g2φ4

a4

)
, εκ =

3
2

κg2φ4φ̇2

a6 , (167)

where g is the YM coupling constant entering the definition of the field strength of the
SU(2) connection

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − gεabc Ab

µ Ac
ν , (168)

and where ε = εYM + εκ and p = 1
3 εYM − εκ . Having provided these definitions, it was

possible to show the emergence of a slow-roll phase of inflation, which was dominated by
the κ-term contribution εκ over the YM contribution εYM, namely εκ � εYM. Furthermore,
within the scenario introduced in Refs. [380–382], it was conceivable that sizable effects
could be turned on, so as to source primordial magnetic fields at the cosmic perturbation
level, with specific possible observational features on the CMB and primordial cosmic
magnetic fields outlined.

A novel framework with respect to the ones so far discussed was elaborated by Alexan-
der, Marcianò and Spergel in Ref. [383], in which the authors considered the interaction a
model of inflation with as a new ingredient the interaction of an Abelian gauge field with a
fermionic charge. This scenario then dramatically differs from only adopting gauge fields
in order to generate a realistic inflationary epoch. As a by-product of this approach, re-
searchers considered the possibility of generating the a net-lepton asymmetry. The Sakharov
conditions are realized in the model presented in Ref. [383] during the inflationary epoch,
due to a dynamical inter-change of the gauge field fluctuations into the lepton asymmetry
of the universe.

The action the authors moved from involved, as well as a U(1) hypercharge field Aµ,
also a massive scalar field θ, interacting with Aµ through a Chern-Simons term, i.e.,

S = SD +
∫

d4x
√
−g

[
M2

PLR
8π

− 1
2

∂µθ∂µθ − 1
4

FαβFαβ +
θ

4M∗
Fαβ F̃αβ

]
,

SD =
∫

d4x
√
−g
(
ıψ̄γµ∇µψ + cc. + Mψ̄ψ + qψ̄γµψAµ

)
, (169)

where MPL denotes the Planck mass, M∗ is the mass-scale of the pseudo-scalar decay
constant, regulating with theta the CP-violating Chern-Simons such as term, Fµν = ∂[µ Aν] is
the field strength of the U(1) connection A, F̃αβ = εαβλσ F̃λσ is the gravitational Hodge-dual,
and γµ = eµ

I γI , with γI Dirac matrices, eµ
I inverse tetrad and internal indices I = 0, . . . 3.

The model, which is then based on the interaction between a homogeneous and
isotropic configuration of a U(1) gauge field and a fermionic charge density J0, relies on the
regulated fermionic charge density as generated from a Bunch-Davies vacuum state, using
the procedure outlined by Koksma and Prokopec in Ref. [384]. In conformal coordinates,
this was found to redshift as 1/a(η). Then, within the scenario of Ref. [383], the time-like
component of the hypercharge gauge field was found to be sourced by the fermionic charge,
consistently with a growth in the gauge field proportional to the scale factor, namely,

A0(η) ∼ a(η) . (170)
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This motivates results with inflation dominated by the energy density stored within
the interaction among the gauge field and the fermionic charge, namely A0J0, which is
approximately constant over the inflationary epoch. The appealing feature of Ref. [383]
stands in the possibility to obtain an epoch of cosmic inflation involving the physical
description fields already existing in nature, specifically the time-like U(1) gauge field
interacting with a fermionic charge density. Nonetheless, the role of the scalar field cannot
be underestimated, retaining a certain relevance in producing baryogenesis, and providing
a graceful exit from inflation. Indeed, the mechanism that accounted for the graceful exit
is strictly interconnected to the one advocated for reproducing the baryogenesis, with the
right baryon asymmetry index. The Chern-Simons term, through the coupling to the
pseudo-scalar field, converts gauge field fluctuations into lepton number, while the rapid
oscillation of the pseudo-scalar field near its minimum allows achieving thermalization
of the gauge field and thus to end inflation. The relevance of the coupling between scalar
modes, there interpreted as axions, was further investigated in Ref. [385].

An improvement of the scheme first addressed in Ref. [383] was provided in Ref. [386],
where the authors analyzed the consistency of the model via the Stückelberg mecha-
nism [387]. This provided an incorporation of the longitudinal scalar DoFs into the hy-
percharge field, which is now massive. This could be thought again as a further step-
forward, toward the realization of an inflationary mechanism relying on the YM dynamics,
the hypercharge sector being eventually recognized as an Abelian subgroup of the SU(N)
gauge sector.

The action of the theory was then considered to be

S =
∫

d4x
√
−g

[
M2

PLR
8π

− 1
4

GαβGαβ − 1
2

m2CµCµ + CµJ µ + LD

]
LD = −ıψ̄γµ∇µψ + c.c. + Mψ̄ψ , (171)

having introduced the massive Stückelberg field Cµ = Aµ − 1
m ∂µθ and its field strength

Gµν = ∂[µCν] = ∂[µ Aν] = Fµν, and the fermionic vector current J µ = qψ̄γµψ. Gauge
invariance is ensured in this framework by the transformations

Aµ → A′µ = Aµ + ∂µΛ , θ → θ′ = θ + mΛ . (172)

Within this framework, the authors could prove the existence and the stability of
dynamical attractor solutions for the cosmological inflation epoch, which is again driven
by the coupling among the fermions and a (massive) gauge field. Numerical analyses
then showed that stability is attained for a large basin of the initial conditions, making this
inflationary scenario almost independent on these latter: inflation arises without fine tuning
and without the need of postulating any effective potential or any non-standard coupling.

An alternative scenario featuring a coupling between an axion-like field and an SU(2)
gauge field is known as the chromo-natural inflation [388]. The rotationally invariant
homogeneous condensate of the gauge field satisfies an attractor solution that enables it to
drive cosmic inflation for the axion decay constant having a natural value at a sub-Planckian
scale. Interestingly enough, this scenario features a possibility for termination of inflation
as soon as the axion potential vanishes, simultaneously providing a small tensor-to-scalar
perturbation ratio.

An inflationary scenario, taking into account non-trivial topological features deployed
in Refs. [389–391], was extended in Ref. [392] so as to account, over the universe expansion,
for a sector of a strongly coupled QCD-like gauge theory. The idea at the base of investi-
gations in Refs. [389–391] is to perform a periodic (between the Σ and Σ′ surfaces) path
integral over Euclidean geometries,

e−Γ =
∫

g,φ|Σ=g,φΣ′
D[g, φ]e−SEg,φ , (173)
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with g and φ, respectively, representing the metric and matter field and SE denoting the
Euclidean action, so as to extract the ‘density matrix’ of the universe,

ρ[ϕ, ϕ′] = eΓ
∫

g,φ|Σ,Σ′
D[g, φ]e−SE [g,φ] , (174)

which describes a microcanonical ensemble, ϕ denoting field configurations that encode
both gravitational and matter variables.

The uniform distribution over the Euclidean spaces actually corresponds, over Lorentzian
spaces, to a distribution that is peaked about complex saddle points of the path integral.
The latter can be then represented by cosmological instantons, entailing a bounded range
values for the cosmological constant.

On the other hand, inflationary cosmologies can be engendered by the very same
instantonic solutions [389–391]. The low energy of the accelerated expansion can be then at-
tained at its late stage, resorting to the dynamical evolution of extra dimensions specifically
postulated in string theory framework [391]. This results in a bounded range for the very
early (inflationary) cosmological constant, which provides a constraint on the available
landscape of the string vacua. Finally, the same mechanism can be advocated to give rise to
a possible DE candidate, accounting for the quasi-equilibrium decay of the microcanonical
state of the universe. Within this scenario, Barvinsky and Zhitnitsky promoted a new
picture for the emergence of an inflationary spacetime [392], resorting to considerations
developed in Refs. [14,393,394] on the generation, in a strongly coupled QCD-like gauge
theory, of the vacuum energy from non-trivial topological features.

The limits of the usual semi-classical expansion were overcome by the dominant con-
tribution of the numerous conformal modes. Integration over the modes then provides the
quantum effective action of the conformal field theory ΓCFT[gµν], which can be calculated
with methods similar to those ones implemented in determining the conformal anomaly.
Starting from the FLRW background, accounting for a periodic factor a(τ)—this is due
to the fact that functions of the Euclidean time are supported to the circle S1—and finally
using a local conformal transformation to the static Einstein universe and the very same
well-known trace anomaly, one finds

gµν =
δΓCFT

δgµν
=

1
4(4π)2 g1/2

(
α�R + βEγC2

µνρσ

)
, (175)

where we introduced the Gauss-Bonnet term E = R2
µναγ − 4R2

µν + R2 and the Weyl tensor
Cµνρσ.

Considering a spacetime with topology S3 × S1, and moving from the expression of
the energy of the gauge field holonomy, winding across the compactified coordinate of the
length T , Barvinsky and Zhitnitsky found that

ρ = ρvac[S3 × S1]− ρvac[R4] =
c̄T Λ3

QCD

T , (176)

with ΛQCD being the scale of the QCD-like gauge theory, c̄T being a dimensionless constant
of order one, and similarly, the full period of the proper Euclidean time on these periodic
m-fold garland instantons is given by the analogous integral,

T =
∮
S1

dτ , (177)

which in an FLRW metric background reduces to the 2m-multiple result

T = 2m
∫ a+

a−

da
a

, (178)
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where the integral is between the two neighboring turning points of a(τ) such that
ȧ(τ±) = 0.

6. Summary

In this review, we have made a brief outlook of the current status of confined and
de-confined QCD dynamics in the early universe as well as the key methodology for
studies QCD in the strongly coupled regime relevant for cosmological evolution. The cov-
ered research areas are broadly inter-disciplinary, and our discussion may not be fully
exhaustive. Still, we have identified a few quite unexpected and intriguing connections
between currently pursued research in particle physics and possible dynamics of the early
universe. Such fundamental questions as the gauge-fields-driven inflation, cyclic universe,
particle production mechanisms, non-perturbative real-time dynamics of the QCD ground
state, a rather challenging problem of dynamical generation of cosmological DE and DM,
the structure of the QCD vacuum, the QCD phase transitions and the role of QCD matter in
late-time universe evolution are among the key points of this review. Such a wide breadth
of topics, with deep roots into QCD or, more generically, quantum YM field theories, ex-
hibits enormous and critical significance of microscopic dynamics of particle physics and
confined field theories for understanding of the macroscopic cosmic evolution. The picture
is far from its final shape though, and many more pillars of such connections and possible
interplay are yet to be established. We believe that our review can be useful for both young
researchers and for more senior experts specialized in both particle physics and cosmology
research areas.
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Appendix A. Elements of Relativistic Hydrodynamics

Equations of relativistic hydrodynamics are based on conservation of the energy-
momentum and the current

∂µTµν = 0 , ∂µ jµ
i = 0 , (A1)

where jµ
i , i = B, Q, L, . . . denotes the conserved currents corresponding to baryon number B,

electric charge Q, lepton number L, etc. Both Tµν and jµi can be decomposed into time-like
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and space-like components using natural projection operators, the local flow four-velocity
uµ, and the second-rank tensor perpendicular to it ∆µν = gµν − uµuν [11,25,395,396]:

Tµν = εuµuν − p∆µν + Wµuν + Wνuµ + πµν , (A2)

jµ
i = niuµ + Vµ

i , (A3)

where ε = uµTµνuν is the energy density, p ≡ ps + Π = − 1
3 ∆µνTµν is the total (hydrostatic

ps + bulk Π) pressure, Wµ = ∆µ
α Tαβuβ is the energy (or heat) current, ni = uµ jµ

i is the
charge density, Vµ

i = ∆µ
ν jνi is the charge current, and πµν = 〈Tµν〉 is the shear stress tensor.

The angular brackets in the definition of the shear stress tensor πµν stand for the following
operation:

〈Aµν〉 =
[

1
2
(∆µ

α ∆ν
β + ∆µ

β∆ν
α)−

1
3

∆µν∆αβ

]
Aαβ . (A4)

To further simplify our discussion, we restrict ourselves in the following to only the
one conserved charge, the baryon number B, and denote the corresponding baryon current
as jµ ≡ jµ

B. The various terms appearing in the decompositions (A2) and (A3) can then be
grouped into ideal and dissipative parts as follows

Tµν = Tµν
id + Tµν

dis = [εuµuν − ps∆µν]id + [−Π∆µν + Wµuν + Wνuµ + πµν]dis (A5)

jµ = jµ
id + Nµ

dis = [nuµ]id + [Vµ]dis . (A6)

Neglecting the dissipative parts, the energy-momentum conservation and the current
conservation (A1) define ideal hydrodynamics. In this case (and for a single conserved
charge), a solution of the hydrodynamical Equation (A1) for a given initial condition
describes the spacetime evolution of the six variables—three state variables ε(x), p(x),
n(x), and three space components of the flow velocity uµ. However, since (A1) constitutes
only five independent equations, the sixth equation relating p and ε, the EoS p(ε), has to
be added by hand in order to solve them.

Two definitions of flow can be found in the literature, see e.g., Refs. [11,395]; one
related to the flow of conserved charge (Eckart):

uµ
E =

jµ√
jν jν

, (A7)

the other related to the flow of energy (Landau):

uµ
L =

Tµ
νuν

L√
uα

LT β
α Tβγuγ

L

=
1
e

Tµ
νuν

L . (A8)

Let us note that Wµ = 0 (Vµ = 0) in the Landau (Eckart) frame. In the case of vanishing
dissipative currents, both definitions represent a common flow. The Landau definition is
more suitable when describing the evolution of matter at zero chemical potential, such as
in the case of the mid-rapidity particle production in ultra-relativistic HIC at the LHC and
at the top RHIC energy, or in the early universe. In this case, all momentum density is due
to the flow of energy density, uµTµν

id = εuν and uµTµν
dis = 0, i.e., the heat conduction effects

can be neglected.

Appendix B. Hydrodynamical Description of Dissipative Effects

In its modern formulation, relativistic fluid dynamics provides an effective description
of a system that is in local thermal equilibrium, and it can be derived from the underlying
kinetic description through Taylor expansion of the entropy four-current Sµ = suµ in
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gradients of the local thermodynamic variables [25]. In zeroth order in gradients, one
obtains ideal fluid dynamics

∂µSµ = ∂µ(suµ) = uµ∂µs + s∂µuµ = 0 , (A9)

and the evolution of the scale factor of the universe is driven solely by the entropy conserva-
tion s(t)a3(t) = const. The higher orders describe effects due to irreversible thermodynamic
processes such as the frictional energy dissipation between the fluid elements that are in
relative motion or their heat exchange with its surroundings on its way to approach thermal
equilibrium with the whole fluid.

When solving the hydrodynamic equations with the dissipative terms, it is cus-
tomary to introduce the following two phenomenological definitions (so-called consti-
tutive equations) for the shear stress tensor πµν and the bulk pressure Π appearing in
Equation (A5) [395],

πµν = 2η〈∇µuν〉 , Π = −ζ∂µuµ = −ζ∇µuµ , (A10)

where the angular brackets 〈. . .〉 are defined in Equation (A4) and ∇µ = ∆µν∂ν. Neglecting
the charge current Vµ in Equation (A6), the first-order expansion of Sµ is completely
determined by the shear viscosity η and bulk viscosity ζ coefficients [395]:

T∂µSµ = πµν〈∇µuν〉 −Π∂µuµ =
πµνπµν

η
+

Π2

ζ
= 2η〈∇µuν〉2 + ζ(−∂µuµ)2 ≥ 0 . (A11)

A well-known example of the flow involving both coefficients η and ζ is provided
by boost-invariant one-dimensional expansion with the velocity in the z direction, vz,
proportional to z co-ordinate [397]

uµ
BJ =

xµ

τ
=

t
τ

(
1, 0, 0,

z
t

)
, τ =

√
t2 − z2 . (A12)

After inserting this solution into the constitutive Equation (A10), we arrive at the
equation of motion [395]:

dε

dτ
= − ε + ps

τ

(
1− 4

3τT
η

s
− 1

τT
ζ

s

)
. (A13)

The last two terms on the right-hand side in Equation (A13) describe a compression of
the energy density due to viscous corrections. Two dimensionless coefficients in the viscous
correction, η/s and ζ/s, where s is the entropy density, reflect the intrinsic properties
of the fluids. It is worth mentioning that neglecting η and ζ in Equation (A13), i.e., for
the ideal fluid EoS with ps = 1

3 ε, one obtains the celebrated Bjorken solution of ideal
hydrodynamics [397]

dε

dτ
= − ε + ps

τ
= −4

3
ε

τ
⇒ ε = τ−4/3 , (A14)

frequently used to discuss the salient features of the ultra-relativistic HICs.
The one-dimensional character of the Bjorken flow (A12) makes it possible to replace

the z co-ordinate with the radial one r. Radial flow in the transverse direction, i.e., when
r⊥ =

√
x2 + y2, was studied in Ref. [398]. For this case and the constant sound velocity

cs, analytic solutions of relativistic viscous hydrodynamics describing expanding fireballs
were developed in Ref. [399]. In a three-dimensional case, a new class of exact fireball
solutions of relativistic dissipative hydrodynamics for arbitrary shear and bulk viscosities,
as well as for other dissipative coefficients, was studied in Ref. [400]. The common property
of these solutions is the presence of the relativistic Hubble flow.
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However, the analogy between the solutions describing HICs and expansion of the
early universe must not be pushed too far, since in the latter case form of the energy-
momentum tensor Tµν and particle four-current jµ of the matter, cf. Equations (A5) and (A6)
is strongly constrained by the symmetries of the FLRW metric (38). In particular, due to
the local momentum isotropy, the term 〈∇µuν〉 appearing in the viscous shear-stress
tensor πµν, cf. Equation (A10), vanishes [401]. Consequently, the term proportional to
η in Equation (A13) disappears. The shear viscosity η also disappears in the theories
with scalar perturbations of the metric tensor gµν [84,270]. There, the fluctuations of
energy density destroy the homogeneity but not the isotropy of the early universe FLRW
metrics. Hence, in the following discussion, we will consider mainly the bulk viscosity—the
property of expanding matter arising typically in mixtures. They can be either of different
species, as in a radiative fluid, or of the same species but with different energies, as in a
Maxwell–Boltzmann gas. In each of these instances, the bulk viscosity provides the internal
‘friction’ that sets in due to the different cooling rates in the expanding mixture [401].

The relativistic Navier-Stokes description given by Equation (A10) accounts only for
terms that are linear in velocity gradient. This leads, unfortunately, to severe problems.
In particular, when the thermodynamic force 〈∇µuν〉 or∇µuµ is suddenly switched off/on,
the corresponding thermodynamic flux πµν or Π which is a purely local function of the
velocity gradient also instantaneously vanishes/appears [402]. The linear proportion-
ality between dissipative fluxes and forces causes an instantaneous (acausal) influence
on the dissipative currents, leading to numerical instabilities [403]. The solution of this
problem requires the inclusion of terms that are second order in gradients [404]. The re-
sulting equations for the dissipative fluxes πµν and Π then become the relaxation-type
equations [395,405]. The latter encode the time delay between the appearance of ther-
modynamic gradients that drive the system out of local equilibrium and the associated
build-up of dissipative flows in response to these gradients, thereby restoring causal-
ity [405]. Accounting for non-zero relaxation times at all stages of the evolution constrains
departures from local equilibrium, thereby both stabilizing the theory and improving its
quantitative precision.

Let us provide a few examples of this approach. The 2nd-order theory version of
boost-invariant one-dimensional flow, cf. Equation (A13), can be found in Ref. [395]. Due
to its length, we do not reproduce it here and refer the interested reader to the original
publication. The second example can be found in Ref. [406], where the relaxation time
τπ proportional to the shear viscosity parameter η was used to study the evolution of the
universe filled with QGP with nonzero shear viscosity. The authors argue that in general
relativity, the following modification of the shear-stress tensor

πµν → πµν + τπ

[
uαπ

µν
;α +

4
3

πµν∇αuα

]
= 2η〈∇µuν〉 , π

µν
;α ≡ ∂απµν + Γµ

αβπβν + Γν
αβπµβ , (A15)

where π
µν
;α is a covariant derivative of πµν and Γµ

αβ are the Christoffel symbols, makes the
resulting Navier-Stokes equations causal. Using the FLRW metric and taking into account
that the compatibility with the isotropy and homogeneity of the universe demands πµν to
be diagonal, the solution of Equation (A15) reads [406]

π00(t) = π00(t0)

[
a(t0)

a(t)

]4

e−
t−t0
τπ , πij(t) = πij(t0)

[
a(t0)

a(t)

]6

e−
t−t0
τπ δij . (A16)

In the Friedmann equations, the effect of the traceless viscosity tensor shows up in the
modification of the initial energy density ε(t0) and in the behavior of the energy density at
times t . t0 + τπ , which at later times goes over to the standard expression [406]

ε(t) =
[
ε(t0) + π00(t0)

][ a(t0)

a(t)

]4

− π00(t0)

[
a(t0)

a(t)

]4

e−
t−t0
τπ . (A17)
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The third example is provided in Ref. [407] where causal general relativistic viscous
fluid theory with the inclusion of all dissipative contributions (shear viscosity η, bulk
viscosity ζ, and heat flow Wµ) and the effects from nonzero baryon number are discussed.
According to the authors, the applicability of this theory ranges from the modeling of
viscous effects in neutron star mergers to low-energy HICs.

Appendix C. YM Equations of Motion in the Effective Action Approach

This section provides a short summary on the derivation of the YM equations of
motion by means of variational methods with respect to the connections Aa

µ when applied
to the effective Lagrangian of Equation (84), as was performed in Ref. [66].

When varying the effective action with respect to Aa
µ and ∂νAa

µ, one arrives at the
Euler-Lagrange equations of motion:

∂Leff
∂Aa

µ
−∇ν

∂Leff
∂(∂νAa

µ)
= 0, ∇ν

∂Leff
∂(∂νAa

µ)
=

1√−g
∂ν

[√
−g

∂Leff
∂(∂νAa

µ)

]
. (A18)

It is straightforward to compute the derivatives of the effective Lagrangian:

∂Leff
∂Aa

µ
=

1
4ḡ2

[
∂J
∂Aa

µ
− J

ḡ2
∂ḡ2

∂Aa
µ

]
,

∂J
∂Aa

µ
=

4 f abcF b µνAc
ν√−g

,
J
ḡ2

∂ḡ2

∂Aa
µ
=
J
ḡ2

∂ḡ2

∂J
∂J
∂Aa

µ
, (A19)

⇒ ∂Leff
∂Aa

µ
=

1
ḡ2

f abcF b µνAc
ν√−g

[
1− β

2

]
, (A20)

∂Leff
∂(∂νAa

µ)
=

4F a µν

√−g
, (A21)

⇒ ∇ν
∂Leff

∂(∂νAa
µ)

=
1√−g

∂ν

(√
−g

1
ḡ2
F a µν

√−g

[
1− β

2

])
, (A22)

where the RG equation for the exact β-function that conveniently recasts Equation (86) as

J
ḡ2

∂ḡ2

∂J ≡
β

2
=

d ln|ḡ2|
d ln|J |/µ4

0
, β = β(ḡ2), (A23)

has been inserted. If β is known to all-loop order, the running of the coupling and hence
the solutions to the equations of motion may be found to all-loop order accuracy. In the
expression above, an arbitrary dimensionful renormalisation parameter µ0 has been explic-
itly introduced as a reference scale. The natural boundary condition is ḡ(J )→ gYM when
|J | → µ4

0.
Inserting Equations (A20) and (A22) into Equation (A18), the resulting equations of

motion is

1
ḡ2

f abcF b µνAc
ν√−g

[
1− β

2

]
− 1√−g

∂ν

(√
−g

1
ḡ2
F a µν

√−g

[
1− β

2

])
= 0 . (A24)

This can be rewritten on the operator form

D̂ab
ν

[
F b µν

ḡ2√−g

(
1− β

2

)]
= 0 , (A25)

where the differential operator D̂ is given by

D̂ab
ν ≡ δab ∂ν

√−g√−g
− f abcAc

ν. (A26)
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The action of this differential operator on a function h(x) is defined as follows:

[
D̂h(x)

]ab
ν
≡ δab ∂ν

[√−gh(x)
]

√−g
− f abcAc

νh(x) . (A27)

Appendix D. One-Loop Effective YM Lagrangian

Let us briefly discuss the effective YM theory at the one-loop order. The usefulness
of studying the one-loop case is further motivated by a comparison of the one-loop and
all-loop order expansion in Section 4.5. The standard one-loop SU(N) β-function reads (see,
e.g., Ref. [408])

β1 ≡ −B1 ḡ2
1 , B1 =

bN
48π2 , b = 11 , (A28)

and the corresponding solution of the RG equation (Equation (A23)) is given by

ḡ2(J ) =
ḡ2

1(µ
4
0)

1 + B1
2 ḡ2

1(µ
4
0) ln

(
|J |/µ4

0
) . (A29)

Substituting this expression into the effective all-order Lagrangian in Equation (84),
we obtain

L(1)eff =
J

4ḡ2
1(µ

4
0)

[
1 +

B1

2
ḡ2

1(µ
4
0) ln

(
|J |
µ4

0

)]
. (A30)

Making trivial substitutions,

J → −4ḡ2
1(µ

4
0)F , µ4

0 → 2eµ4 , ḡ2
1(µ

4
0)→ g2

YM , (A31)

one arrives at another form of the one-loop effective Lagrangian frequently used in the
literature (e.g., Ref. [345] and references therein),

L(1)eff = −F − bN
96π2 g2

YMF
[

ln
(

2|g2
YMF|
µ4

)
− 1
]

. (A32)

The compact form of the all-order effective Lagrangian used earlier in Equation (84)
straightforwardly produces the standard representation of the one-loop effective La-
grangian upon the redefinitions of Equation (A31), which is reassuring. The usual covariant
renormalization condition on the effective Lagrangian [345]

∂Leff
∂F

∣∣∣
t=0

= −1 , t ≡ 1
2

ln
(

2|g2
YMF|
µ4

)
, (A33)

is apparently satisfied for Equation (A32). Indeed,

∂L(1)eff
∂F = −1− bN

96π2 g2
YM ln

(
2|g2

YMF|
µ4

)
→ −1 for ln

(
2|g2

YMF|
µ4

)
→ 0 . (A34)

This condition has been originally employed in Refs. [326,344] to derive the generic
form of the one-loop effective Lagrangian in Equation (A32) (see Ref. [345] and references
therein, for a more elaborate review). In a compact notation of Equation (84), the latter
condition reads

∂Leff
∂J

∣∣∣
t=0

=
1

4ḡ2
1(µ

4
0)

, t ≡ 1
2

ln
(

e|J |
µ4

0

)
. (A35)

Notes
1 The light cone four-vectors are related to Minkowski four-vectors in a standard way k = (k0, k⊥, kz) = [k−, k⊥, k+] where

k± = k0 ± kz. The Minkowski dot product in light-cone coordinates is k · p = 1
2 (k

+p− + k−p+)− k⊥ · p⊥.
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2 In the early universe with ε ∼ T4 ∼ a−4, the saturation scale Q2
s (x) ∼ αS(T)RA(T) ∼ [T ln T]−1 was extremely small.

3 Let us recall that at the temperatures T � TQCD
c , most of the gluons are forming the condensate and are thus in the equilibrium

but do not participate in two-particle scatterings.
4 It is worth mentioning that even though a fluid filling a FLRW universe (38) homogeneously is static in the comoving frame

uµ = (1, 0, 0, 0), the expanding geometry induces a nonzero fluid expansion rate ∂µ(
√−g)uµ/

√−g = 3H(t), where g = −a6(t)
is the determinant of the FLRW metric tensor gµν with k = 0.

5 One of the authors (M.Š.) would like to thank Petr Jizba for pointing out this analogy.
6 By means of the following ansatz: a(t) = a∗ exp

[
f (t)

]
, the equation for the scale factor can be rewritten as

f̈ − h̃(t)( ḟ )2 + Ah̃(t) = 0,

with h̃(t) = 1
2
(

g(t)− 3
)

and A = κεCC
3 . The introduction of m(t) ≡ ḟ , results in a first-order equation that may be solved. It is

explicitly
ṁ− h̃(t)m2(t) + Ah̃(t) = 0 .

The scale factor is therefore found in terms of the integral of the solution for m(t) as

a(t) = a∗ exp
[∫ t

t0

dt m(t)
]

.

7 For the case of the simple background considered in Section 4.4, Aµ = Āµ + aµ , then Γ(n,m)
k

[
Ā, a

]
= δn

(δĀ)n
δm

(δa)m Γk
[
Ā, a

]
.
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