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Abstract: Using the Barrow entropy and considering the timescale as IR cutoff, a new holographic
dark energy model named Barrow agegraphic dark energy (BADE) was proposed. We use phase
space analysis method to discuss the evolution of the universe in three different mode of BADE
(Q = 0; Q = 3αH(ρm + ρD); Q = H(αρm + βρD)). We find the attractor which represents the dark
energy-dominated era exists in all cases. In the case Q = 0 and Q = H(αρm + βρD) with β = 0,
the attractor can behave as the cosmological constant, and these models can used to mimic the
cosmological constant.
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1. Introduction

The cosmological observations [1–6] indicate that the present universe undergoes an
accelerating expansion. The dark energy theory is an extremely good representation of
cosmology for a host of situations of practical and astronomical interest. The simplest
candidate of dark energy is the cosmological constant Λ and the corresponding model is
called the ΛCDM model. It gives a detailed account of the evolution of the universe, and
of the nearly scale-invariant primordial power spectra that fit the results of cosmological
observations [7]. However, it is still confronted with some obstacles such as cosmic co-
incidence and fine-tuning issues [8,9]. Thus, in order to explain the present accelerating
expansion of the universe, lots of cosmological models had been introduced, for example,
holographic dark energy [10–13].

There are, of course, many compelling reasons to begin a study of dark energy with
a review of the infrared (IR) cutoff. As a candidate of dark energy, holographic dark
energy (HDE) arised from the holographic principle with an IR cutoff of Hubble horizon
scale [10–12] and attracted lots of researcher’s attention [14–30], and it also coincident with
the observational data [31–34]. Because it failed to describe the evolutionary history of the
universe [12,13], the physicists get motivated to study different IR cutoffs in HDE model.
Since the HDE models are based on the IR cutoff and the horizon entropy, different IR cutoff
and horizon entropy will lead to different HDE model. When the age of the universe was
considered as the IR cutoff, the agegraphic dark energy model (ADE) was introduced [35].
Although the causality problem can be avoided in this model and the accelerated expansion
is also realized, this model fails to describe a matter-dominated epoch in the very early
evolution era and mimic cosmological constants in late time. To solve this problem, a new
agegraphic dark energy model (NADE) was proposed by choosing the time scale as the
conformal time [36], in which the coincidence problem could be solved naturally [37]. In
addition, when a non-minimal coupling between the q-field and matter was introduced, the
dark energy density parameter of ADE can be adjusted to the present values [38]. However,
since the squared speeds of sound are negative, both ADE and NADE are classically
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unstable [39]. When the Tsallis entropy was introduced into ADE, Tsallis agegraphic dark
energy model (TADE) [40] and a new Tsallis agegraphic dark energy model (NTADE) [41]
were proposed. By analyzing the evolution of the squared speeds of sound, it was found
that TADE is stable at the classical level when there exists a mutual interaction between
dark matter and dark energy [40], while NTADE can be stable only in the future [41]. The
behaviour of the squared speeds of sound was also discussed in Kaniadakis agegraphic
dark energy model [42] and quantum loop-correction dark energy model [43], the first
model is stable only in the future, while the second one can be stable classically for the
interaction case.

Recently, Barrow showed that quantum gravitational effects may introduce intricate,
fractal features on the black hole structures [44]. This complex structure leads to finite
volume and infinite (or finite) area. Based on this modification, the entropy of the black
holes no longer obeys the area law and is modified as SB = (A/A0)

1+∆/2 which is named
as the Barrow entropy. The parameter A and A0 denote the standard horizon area and the
Planck area, respectively. ∆ is the deformation parameter, which represents the amount
of the quantum gravitational deformation effects on the horizon structure. The Beken-
stein–Kawking entropy can be recovered for ∆ = 0, and ∆ = 1 denotes the most intricate
fractal structure. When the Barrow entropy was introduced into HDE, a new HDE named
Barrow holographic dark energy (BHDE) [45,46] was proposed. Then, by choosing the age
of the universe and the conformal time as the IR cutoff, Barrow agegraphic dark energy
(BADE) was proposed in Ref. [47], in which the evolutions of the cosmological parameters
and the stability of these models were analyzed, and it was found that BADE with the
conformal time as IR cutoff can be stable in the past.

In order to analyze the evolution of the universe, we use the powerful tool called phase
space analysis method in BADE models, which was extensively used in the late-time stable
solution and the evolution of the universe. The field of application include f (R) gravity [48],
loop quantum gravity [49,50], and another modified gravitational theories [51–68]. In ADE,
by considering an interaction term between dark matter and dark energy, the results of
the phase space analysis show that the transient acceleration exists in this model, but
it can not describe the evolutionary history of the universe [69]. When the ADE was
introduced into Brans-Dicke cosmology, it also failed to describe the evolutionary history
of the universe [70]. After the phase space analysis method was applied to TADE, it was
found that TADE can describe the evolutionary history of the universe and mimic the
cosmological constant after introducing an interaction term between dark matter and dark
energy [68]. In this paper, we will apply the phase space analysis method to discuss whether
the evolutionary history of the universe can be described by BADE.

This paper is organized as follows. In Section 2, we briefly review BADE model. In
Section 3, we study the phase space behavior of BADE models. In Section 4, we discuss the
evolution of the Hubble parameter for BADE models. Our main conclusions are presented
in Section 5.

2. Background

The energy density of the Barrow holographic dark energy model is given by [45,46]

ρd = BL∆−2, (1)

where B is a parameter with dimensions [L]−2−∆ and L is the IR cutoff. Considering the
conformal time of the universe as the IR cutoff, one gets [47]

ρd = Bη∆−2, (2)

with
η =

∫ a

0

da
Ha2 , (3)
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where a is the scale factor with η being conformal time and dt = adη, and H is the
Hubble parameter.

The metric of a homogeneous and isotropic flat FLRW universe takes the form

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2θdφ2)

]
, (4)

and the Friedmann Equation is given as

H2 =
1

3m2
p
(ρr + ρm + ρD), (5)

where m2
p = 1

8πG , ρm, ρr and ρD corresponding to the energy density of three different
matter: pressureless matter, radiation and BADE. Then, the conservation equations are

ρ̇r + 4Hρr = 0, (6)

˙ρm + 3Hρm = Q, (7)

˙ρD + 3H(1 + ωD)ρD = −Q. (8)

Here, ωD = pD
ρD

is the equation of the state parameter of BADE, Q denotes an interac-
tion between the pressureless matter and BADE. For Q > 0, energy transfer from BADE to
pressureless matter, and energy transfer from pressureless matter to BADE for Q < 0.

By introducing dimensionless parameters of density

x = Ωm =
ρm

3m2
p H2 , y = Ωy =

ρD

3m2
pH2 , r = Ωr =

ρr

3m2
p H2 , σ =

Q
3m2

pH3 , z =
1

aHη
, (9)

the Friedmann Equation (5) can be written as

x + y + r = 1. (10)

Taking the time derivative of the energy density of BADE (2), we obtain the equation
of state of BADE

ωD = −1− σ

3y
− ∆− 2

3
z. (11)

Here, the conservation Equation (8) and the relation η̇ = 1/a is used.
Combining Equations (5)–(8) and (11), we get

Ḣ
H2 = −2 + 2y +

x
2
+

σ

2
+

∆− 2
2

yz. (12)

Furthermore, the deceleration parameter can be expressed as

q = −1− Ḣ
H2 . (13)

Defining’ = d/d(lna) and using Equations (7)–(9) and (12), we obtain the autonomous
dynamical system of BADE model

x′ = −3x + σ + 2x
(

2− 2y− x
2
− σ

2
− ∆− 2

2
yz
)

,

y′ = (∆− 2)yz + 2y
(

2− 2y− x
2
− σ

2
− ∆− 2

2
yz
)

,

z′ = −z− z2 + z
(

2− 2y− x
2
− σ

2
− ∆− 2

2
yz
)

, (14)
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3. Phase Space Analysis

In order to discuss the evolution of the universe in BADE model, we apply the phase
space analysis method to this model.

In the dynamical system, we can get the critical points by solving

x′ = y′ = z′ = 0. (15)

After the critical points are obtained, the stability of these points will be analyzed. Ac-
cording to the linear stability theory, the stability of critical points is determined by the
eigenvalues of the Jacobian matrix for the autonomous dynamical system. The critical
points can be divided into three types: (i) attractor with all eigenvalues negative, the state
is stable; (ii) repeller with all eigenvalues positive, corresponding to an unstable state; (iii)
saddle point with at least two eigenvalues signs are opposite.

3.1. Non-Interacting Q = 0

For the case Q = 0, we get σ = 0. By solving the equations x′ = y′ = z′ = 0, we list
six different points in Table 1.

Table 1. Critical points and the stability in BADE model with Q = 0.

Labels Critical Points(x, y, z) ωD q Eigenvalues Conditions Points

A1 (0, 0, 0) −1 1 (4, 1, 1) 0 < ∆ < 1 Unstable

A2 (0, 0, 1) −1− ∆−2
3 1 (−1, 1, 2 + ∆) 0 < ∆ < 1 Saddle

A3 (1, 0, 0) −1 1
2 (3,−1, 1

2 ) 0 < ∆ < 1 Saddle

A4 (1, 0, 1
2 ) −1 + 2−∆

6
1
2 (−1,− 1

2 , 4+∆
2 ) 0 < ∆ < 1 Saddle

A5 (0, 1, 0) −1 −1 (−4,−3,−1) 0 < ∆ < 1 Stable

A6 (0, 1,− 2
∆ ) −1 + 2(∆−2)

3∆ − 2
∆ (1,− 2(2+∆)

∆ ,− 4+∆
∆ ) 0 < ∆ < 1 Saddle

Points A1 and A2: Corresponding to decelerated phase in the radiation-dominated era,
since x = y = 0 and q = 1, the equation of state ωD for A1 and A2 are −1 and −1− 2−∆

3 ,
respectively.

Points A3 and A4: Since x = 1, y = 0 and q = 1
2 , they corresponds to decelerated

phase in the matter-dominated epoch, and the equations of state ωD are negative.
Point A5 and A6: Since x = 0 and y = 1, these points represent the dark energy-

dominated epoch with an accelerated phase. For point A5, since ωD = −1 and q = −1, it
can mimic the cosmological constant Λ.

Using the linear stability theory and after some tedious calculations. We give the
corresponding eigenvalues and stability conditions in Table 1. From this table, we can
see that the radiation-dominated point A1 is unstable, the dark energy-dominated point
A5 is stable, and the rest points are saddle points. According to this result, the universe
stems from the radiation-dominated era A1, followed by the matter-dominated era A3,
and eventually evolves into an accelerated expansion epoch A5. This evolutionary case is
shown in Figure 1 in which we have plotted the evolutionary trajectories of these points.
From this figure, we can see that point A5 behaves as an attractor, and the universe will
eventually evolve into an epoch depicted by the cosmological constant.
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Figure 1. Phase space trajectories for BADE with Q = 0. The left panel is plotted for B = 50,
∆ = 0.1, 0.2, 0.3. The right panel shows the phase diagram (Ωm, ΩD), the purple line in the right
panel is plotted for B = 50, ∆ = 0.3.

3.2. Interacting Q = 3αH(ρm + ρD)

In this subsection, we consider the case Q = 3αH(ρm + ρD) [47], which indicates
σ = 3α(Ωm + ΩD) = 3α(x + y). Here, α is a positive parameter and we choose 0 < α < 1.
Then, solving the equations x′ = y′ = z′ = 0 and using the linear stability theory, we
obtain six critical points and the corresponding stability conditions, which are shown in
Tables 2 and 3. The expression of E1,2 in Table 3 are

E1,2 =
∆(4 + ∆)[(9α− 2)∆− 8]±√χ

∆2(4 + ∆)2 , (16)

with

χ = −∆2(4 + ∆)2{[3α(∆ + 4)(∆2 + 4∆ + 12)− (∆ + 6)(∆2 + 6∆ + 16)− 81α2∆]∆− 64}. (17)

From Table 2 and Table 3, we can find these results:
Points B1 and B2: They represent decelerated phase in the radiation-dominated era,

the equation of state ωD is determined by the value of α and ∆. Point B1 is unstable while
B2 is a saddle point.

Points B3 and B4: These points represent the matter-dominated epoch. For 0 < α < 1
3 ,

they denote a decelerated phase, while they are an accelerated one for 1
3 < α < 1. Furthermore,

both of them are saddle points.
Point B5 and B6: These points are determined by α and ∆. For the small value of α,

they represent the dark energy-dominated era with an accelerated phase.

Table 2. Critical points of the autonomous system in BADE model with the interaction Q =

3αH(ρm + ρD).

Labels Critical Points(x, y, z) ωD q

B1 (0, 0, 0) −1− 2α 1

B2 (0, 0, 1) −1− 2α− ∆−2
3 1

B3 (1, 0, 0) − 1
2 (1− 3α)

B4 (1, 0, 1
2 (1− 3α)) − 1

2 (1− 3α)

B5 (α, 1− α, 0) −1− α
1−α −1

B6 ( 3α∆
4+α , 4+∆−3α∆

4+∆ ,− 2
∆ )

(4+∆)2

3∆[(3α−1)∆−4]
− 2

∆
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Table 3. Eigenvalues and the stability of critical points in BADE model with the interaction
Q = 3αH(ρm + ρD).

Labels Eigenvalues Conditions Points

B1 (4, 1, 1 + 3α) 0 < ∆ < 1, 0 < α < 1 Unstable

B2 (−1, 1 + 3α, 2 + ∆) 0 < ∆ < 1, 0 < α < 1 Saddle

B3 ( 1
2 (1− 3α), 3(1− α),−1− 3α) 0 < ∆ < 1, 0 < α < 1 Saddle

B4 ( 1
2 (3α− 1),−1− 3α, 1

2 (4 + ∆− 3α∆)) 0 < ∆ < 1, 0 < α < 1
3 or 1

3 < α < 1 Saddle

B5 (−4,−1,−3(1− α)) 0 < ∆ < 1, 0 < α < 1 Stable

B6 − 2(2+∆)
∆ , E1, E2 0 < ∆ < 1, 0 < α < 1 Saddle

According to these results, we can see that the universe evolves from the radiation-
dominated era B1 into the matter-dominated era B3, and eventually enters an accelerated
expansion epoch B5. Although point B5 is an attractor, it can not mimic the cosmological
constant. The evolutionary curves are depicted in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ωm

ΩD

B1 B3

B5

Current value

Figure 2. Phase space trajectories for BADE with Q = 3αH(ρm + ρD). In the left part, B = 80,
α = 0.05, ∆ = 0.1, 0.2, 0.3. The right panel shows the phase diagram (Ωm, ΩD), the purple line in the
right panel is plotted for B = 80, α = 0.05, ∆ = 0.1.

3.3. Interacting Q = H(αρm + βρD)

In the case Q = H(αρm + βρD) [71,72], we get σ = αΩm + βΩD = αx + βy in which
α and β are the interacting parameters and we consider 0 < α < 1 and 0 < β < 1. After
solving the equations x′ = y′ = z′ = 0 and considering the linear stability theory, we obtain
six critical points which are shown in Table 4, and the corresponding stability conditions
for these points are shown in Table 5.

The expression of F1,2 in Table 5 are

F1,2 =
16 + [4− 8α + 2β + (α− 1)(α− β)∆]∆±

√
ξ

2∆[(α− β− 1)∆− 4]
(18)

with

ξ = (α− 1)[(α− 2)2(α− 1)− 2(α− 4)(α− 1)β + (α− 5)β2]∆4

−4[2(α− 2)(α− 1)(2α− 3)− (α− 1)(5α− 18)β + (α− 5)β2]∆3

+4[52 + 24α2 + (44 + β)β− 8α(9 + 2β)]∆2 + 64(6− 4α + β)∆ + 256. (19)
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Table 4. Critical points of the autonomous system in BADE model with the interaction term
Q = H(αρm + βρD).

Labels Critical Points(x, y, z) ωD q

C1 (0, 0, 0) −1− α+β
3 1

C2 (0, 0, 1) −1− α+β
3 −

∆−2
3 1

C3 (1, 0, 0) − 1
2 (1− α)

C4 (1, 0, 1
2 (1− α)) − 1

2 (1− α)

C5 (
β

3−α+β , 3−α
3−α+β , 0) −1 + β

α−3 −1

C6 (
β∆

4+∆(1−α+β)
, 4+∆(1−α)

4+∆(1−α+β)
,− 2

∆ ) − (∆+4)[(α−β−1)∆−4]
3∆[(α−1)∆−4] − 2

∆

Table 5. Eigenvalues and the stability of critical points in BADE model with the interaction term
Q = H(αρm + βρD).

Labels Eigenvalues Conditions Points

C1 (4, 1, 1 + α) 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Unstable

C2 (−1, 1 + α, 2 + ∆) 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Saddle

C3 ( 1
2 (1− α), 3− α,−1− α) 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Saddle

C4 ( 1
2 (α− 1),−1− α, 1

2 [4 + ∆(1− α)]) 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Saddle

C5 (−4,−1,−3 + α) 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Stable

C6 − 2(2+∆)
∆ , F1, F2 0 < ∆ < 1, 0 < α < 1, 0 < β < 1 Saddle

Tables 4 and 5 show these results:
Points C1 and C2: Since x = y = 0 and q = 1, they correspond to decelerated phase in

the radiation-dominated era. The equation of state ωD of these points are fully determined
by the value of α, β and ∆. Point C1 is an unstable point while C2 is a saddle one.

Points C3 and C4: These points represent the matter-dominated epoch with a deceler-
ated phase. Furthermore, both of them are saddle points.

Points C5 and C6: For these points, they are determined by the value of α, β and ∆. For
the small value of α and β, both of these points indicate the dark energy-dominated epoch
with an accelerated phase. For point C5 with β = 0, we obtain x = 0, y = 1, and q = −1,
which denotes the evolutionary epoch depicted by the cosmological constant. Thus, for
β = 0, point C5 can mimic the cosmological constant, and the universe will eventually
evolve into the epoch depicted by the cosmological constant since point C5 is an attractor.

In Figures 3 and 4, we have plotted the evolutionary curves of the universe in BADE
model with the interaction term Q = H(αρm + βρD). In Figure 4, the value of parameter β
is zero. We can see that the universe stems from the point C1, enters into C3, and eventually
evolves into C5 which represents the epoch depicted by the cosmological constant.
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Figure 3. Phase space trajectories for BADE with Q = H(αρm + βρD). The left panel is plotted for
B = 80, α = 0.1, β = 0.2, ∆ = 0.1, 0.2, 0.3. The right panel shows the phase diagram (Ωm, ΩD), the
purple line in the right panel is plotted for B = 80, α = 0.1, β = 0.2, ∆ = 0.3.
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Figure 4. Phase space trajectories for BADE with Q = H(αρm + βρD). The left panel is plotted for
B = 80, α = 0.1, β = 0, ∆ = 0.1, 0.2, 0.3. The right panel shows the phase diagram (Ωm, ΩD), the
purple line in the right panel is plotted for B = 80, α = 0.1, β = 0, ∆ = 0.3.

4. Hubble Diagram

In order to discuss the difference of cosmological evolution between BADE and
ΛCDM, we have plotted the evolutionary curves of Hubble parameter for these models
in Figures 5–7. The error bars in these figures denote the observational Hubble parameter
data [73,74]. In Figure 5, we have plotted the evolutionary curves of the Hubble parameter
for the non-interacting case Q = 0. The left panel shows the evolutionary curves of the
Hubble parameter in BADE, and the curves approach the one in ΛCDM with a small ∆. In
the right panel, for a large value of B, these curves in BADE overlap with the one in ΛCDM.
For the interacting case Q = 3αH(ρm + ρD), the evolutionary curves deviate from the one
in ΛCDM in the future which is shown in both the left and right panel of Figure 6. The
evolutionary curves of Hubble parameter for the interacting case Q = H(αρm + βρD) are
plotted in Figure 7. The left panel of Figure 7 shows that the value of α has a slight influence
on the evolutionary curves of the Hubble parameter. The right panel of Figure 7 shows
the same results as the right panel of Figure 5. Thus, for the non-interacting case Q = 0
and the interacting case Q = H(αρm + βρD) with β = 0, BADE can mimic the cosmological
constant in the late-time evolution epoch.
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Figure 5. Evolutionary curves of H for non-interacting Q = 0. The left panel is plotted for B = 50,
while the right one is for ∆ = 0.3.
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Figure 6. Evolutionary curves of H for interacting Q = 3αH(ρm + ρD). The left panel is plotted for
B = 80, ∆ = 0.1, while the right one is for α = 0.05, ∆ = 0.1.
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Figure 7. Evolutionary curves of H for interacting Q = H(αρm + βρD). The left panel is plotted for
B = 80, β = 0, ∆ = 0.1, while the right one is for α = 0.1, β = 0, ∆ = 0.1.

5. Conclusions

Using the Barrow entropy and considering the timescale as IR cutoff, a new holo-
graphic dark energy model named Barrow agegraphic dark energy was proposed.
In this paper, by choosing the conformal time as the IR cutoff, we study the evolution
of the universe in BADE model. In this model, we analyze three different cases: (i) Q = 0;
(ii) Q = 3αH(ρm + ρD); (iii) Q = H(αρm + βρD). Through the method of phase space
and stability analysis, we conclude that the attractor which represents the dark energy-
dominated era exists in all cases and both of them can describe the expansion history
of the universe. For the case Q = 0, there exists six critical points, point A1 is unstable
and denotes the radiation-dominated era, and point A5 is stable and represents the dark
energy-dominated era. Since ωD = −1 and q = −1, point A5 can mimic the cosmolog-
ical constant. The behaviour of phase space shows that the universe can stem from the
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radiation-dominated era A1, pass through the matter-dominated era A3, and then enter
into the dark energy-dominated era A5. So, the evolutionary history of the universe can
be described by this model. For the case Q = 3αH(ρm + ρD), there also exists six critical
points. Although point B5 is stable and can represent the dark energy-dominated era for
the small value of α, it can not mimic the cosmological constant since α 6= 0. For the case
Q = H(αρm + βρD), there is six critical points. Point C5 is a stable point, and it can mimic
the cosmological constant. The evolutionary history of the universe can be described by
this case with β = 0.

Since BADE can mimic the cosmological constant, we depict the evolutionary curves of
the Hubble parameter to compare BADE with ΛCDM. The results show that the evolution-
ary curves of Hubble parameter in BADE overlap with ΛCDM at the late-time evolution
epoch in the cases Q = 0 and Q = H(αρm + βρD) with β = 0.
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