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Abstract: We propose a new class of cosmological unified dark sector models called “Generalized
Logotropic Models”. They depend on a free parameter n. The original logotropic model is a special
case of our generalized model corresponding to n = 1. The ΛCDM model is recovered for n = 0. In
our scenario, the Universe is filled with a single fluid, a generalized logotropic dark fluid (GLDF),
whose pressure P includes higher order logarithmic terms of the rest-mass density ρm. The total
energy density ε is the sum of the rest-mass energy density ρmc2 and the internal energy density
u which play the roles of dark matter energy density εm and dark energy density εde, respectively.
We investigate the cosmological behavior of the generalized logotropic models by focusing on the
evolution of the energy density, scale factor, equation of state parameter, deceleration parameter and
squared speed of sound. Low values of n ≤ 3 are favored. We also study the asymptotic behavior
of the generalized logotropic models. In particular, we show that the model presents a phantom
behavior and has three distinct ways of evolution depending on the value of n. For 0 < n ≤ 2, it
leads to a little rip and for n > 2 to a big rip. We predict the value of the big rip time as a function of
n without any free (undetermined) parameter.

Keywords: dark energy theory; dark matter theory; cosmology; unified dark sector; logotropic model

1. Introduction

Cosmological observations from various independent research teams show that the
current Universe is accelerating [1–5]. This accelerating expansion is due to an unknown
component called “dark energy” which works against gravity. The nature of the dark
sector is still unknown and several alternative models of dark matter (DM) and dark energy
(DE) have been proposed to account for the observation of the present cosmic acceleration.
The standard cold dark matter (ΛCDM) model is the simplest DE model and relies on a
cosmological constant to drive the current acceleration of the Universe and on the existence
of a pressureless DM to explain the observed properties of the large-scale structures of
the Universe [6,7]. However, the ΛCDM model suffers from the cosmological constant
problem [8,9], namely why the value of the cosmological constant is so tiny, and the cosmic
coincidence problem [10,11], namely why DM and DE are of similar magnitudes today
although they scale differently with the Universe’s expansion. The CDM model also faces
important problems at the scale of DM halos such as the core-cusp problem [12], the missing
satellite problem [13–15], and the “too big to fail” problem [16]. This leads to the so-called
small-scale crisis of CDM [17]. Among the wide range of alternative DE models that have
been proposed in the literature (quintessence, k-essence, Chaplygin gas, tachyons, phantom
fields, holography. . . ), an interesting class of dynamical DE models considers DM and DE
as different manifestations of a single-component underlying fluid, often assumed to be a
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perfect fluid. The unified dark matter and dark energy (UDM) models have the remarkable
feature of describing the dark sector of the Universe as a single component that behaves as
DM at early times and as DE at late times [18–38]. The cosmological aspects of these UDM
models have been studied recently in refs. [34,37–42]. In particular, the logotropic model is
a candidate for unifying DE and DM [30]. The logotropic model is able to account for the
transition between a DM era and a DE era and is indistinguishable from the ΛCDM model,
for what concerns the evolution of the cosmological background, up to 25 billion years
in the future when it becomes phantom [30,31,35,40]. Remarkably, the logotropic model
implies that DM halos should have a constant surface density and it predicts its universal
value Σth

0 = 0.01955c
√

Λ/G = 133 M�/pc2 [30,31,35,40] without adjustable parameter.
This theoretical value is in good agreement with the value Σobs

0 = 141+83
−52 M�/pc2 obtained

from the observations [43]. The logotropic model also predicts the values of the present
proportions of DM and DE Ωdm,0 = 1

1+e (1−Ωb,0) = 0.256 and Ωde,0 = e
1+e (1−Ωb,0) =

0.695 [35,44], in good agreement with the observed values Ωdm,0 = 0.259, Ωde,0 = 0.691
and Ωb,0 = 0.0486.

In this work, we introduce a new class of UDM models called “Generalized Logotropic
Models” characterized by a single fluid equation of state (EoS) of the form

P =
N

∑
i=0

Ai lni
(

ρm

ρP

)
, (1)

where P is the pressure, ρm is the rest-mass density, Ai are constants with the dimension
of an energy density and ρP is a constant with the dimension of a mass density. The
above EoS returns the standard ΛCDM model for N = 0 and the original logotropic
model [30] for N = 1. Following [30], we shall identify ρP with the Planck density
ρP = c5/(h̄G2) = 5.16× 1099 g m−3. The single fluid which obeys Equation (1) will be
called the generalized logotropic dark fluid (GLDF).

In this paper, we are interested in studying the dynamical evolution of various gener-
alized logotropic models. In particular, we examine in detail various forms of generalized
logotropic EoS and investigate how the Universe’s evolution is affected by the correspond-
ing EoS. In Section 2, we provide an approach to motivate the logotropic model. In Section 3,
we consider an isotropic, homogeneous and spatially flat Universe and introduce the main
equations characterizing generalized logotropic models. In Section 4, we consider a sub-
class of models with Ai = Anδi,n that are more easily tractable. In Section 5, we investigate
the cosmological behavior of the generalized logotropic models and focus on the evolution
of the energy density, scale factor, EoS parameter, deceleration parameter and squared
speed of sound. We also derive analytically the asymptotic behavior of the generalized
logotropic models and distinguish three types of evolution depending on the value of n.
Finally, Section 6 is devoted to remarks and conclusions. In Appendix A, we show that
the GLDF is asymptotically equivalent to a form of Modified Chaplygin Gas (MCG). In
Appendix B, we consider the two-fluid model associated with the GLDF and determine the
EoS of DE. In Appendix C, we derive the present proportions of DM and DE by taking into
account the presence of baryons.

2. Generalized Logotropic Equation of State

We consider the scenario where both DM and DE originate from a single dark fluid.
We first recall the justification of the standard logotropic equation of state given in [30].
In the Newtonian regime, the condition of hydrostatic equilibrium, which describes the
balance between the gravitational force and the pressure gradient, is given by

∇P + ρ∇Φ = 0. (2)
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Here, P and ρ denote the pressure and mass density of the fluid, respectively. Moreover, Φ
is the gravitational potential. We assume one of the simplest direct relations between the
mass density ρ and the pressure P of the fluid given by the polytropic EoS

P = Kργ, (3)

where γ is the polytropic index and K is a constant. Using the above equation, the condition
of hydrostatic equilibrium becomes

Kγργ−1∇ρ + ρ∇Φ = 0. (4)

Considering the limit γ→ 0, K → +∞ with A = Kγ fixed [30], we obtain

A
∇ρ

ρ
+ ρ∇Φ = 0. (5)

By comparing Equations (5) and (2), we find that the EoS of the logotropic gas reads [30]

P = A ln
(

ρ

ρ∗

)
, (6)

where ρ∗ is an integration constant. In this paper, we consider a generalization of this EoS
of the form

P =
N

∑
i=0

Ai lni
(

ρ

ρ∗

)
, (7)

where Ai are arbitrary constants. This generalized logotropic EoS is interesting in its own
right and, as we shall see, it possesses interesting properties. However, the above derivation
suggests that the standard logotropic EoS (6) plays a special role in the problem.

Remark 1. The logotropic model was originally introduced with the following motivation [30].
The ΛCDM model can be viewed as a UDM model with a constant pressure P = −ρΛc2, where
ρΛ = Λ/(8πG) = 5.96× 10−24 g m−3 is the cosmological density. This corresponds to the
equation of state (3) with γ = 0 and K = −ρΛc2 < 0. The ΛCDM model works well at large
(cosmological) scales but experiences some problems at small (galactic) scales such as the core-cusp
problem and the missing satellite problem. The small-scale crisis of the ΛCDM model is related
to the fact that there is no pressure force (∇P = 0) to balance the gravitational attraction. The
idea is therefore to introduce a model that is as close as possible to the ΛCDM model but that has
∇P 6= 0. Such a model should have γ ' 0. An idea would be to take γ = η > 0 (with η � 1) and
a given value of K but we recover the drawbacks of the ΛCDM when η is sufficiently small. Another
possibility is to take γ → 0 and K → ∞ in such a way that A = Kγ is fixed. This leads to the
logotropic equation of state (6) which has ∇P 6= 0. A logarithm is the closest function to a constant
that has a gradient. Interestingly, the logotropic equation of state gives a mathematical meaning to
the self-gravitating polytrope of index n = −1 which is otherwise ill-defined [45]. Therefore, the
logotropic equation of state nicely completes the family of polytropic equations of state by filling the
gap at n = −1 [46]. Furthermore, it is the only equation of state that leads to DM halos with a
universal surface density, in agreement with the observations [30].

3. Generalized Logotropic Cosmology

In this section, we consider a flat homogeneous and isotropic Friedmann–Lemaître–
Robertson–Walker (FLRW) universe filled with a perfect single fluid, having an energy
density ε, rest-mass density ρm, and pressure P. The expansion dynamics are governed by
the Friedmann equations [47]

H2 =

(
ȧ
a

)2
=

8πG
3c2 ε, (8)
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Ḣ + H2 =
ä
a
= −4πG

3c2 (ε + 3P), (9)

where a(t) is the scale factor and H = ȧ/a is the Hubble parameter. Combining Equations
(8) and (9), we obtain the energy conservation equation

dε

dt
+ 3H(ε + P) = 0. (10)

For a relativistic fluid with an adiabatic evolution (or at T = 0), the first law of
thermodynamics reduces to

dε =
P + ε

ρm
dρm. (11)

By integrating this equation for a given EoS, P = P(ρm), a relation between the energy
density and the rest-mass density can be obtained as [30]

ε = ρmc2 + ρm

∫ ρm P(ρ′)
ρ′2

dρ′ = ρmc2 + u(ρm), (12)

where ρmc2 is the rest-mass energy density and u is the internal energy density. For our
generalized logotropic model with an EoS given by Equation (1), we obtain

ε = ρmc2 −
N

∑
i=0

Ai Ii(ρm) (13)

with the integral Ii(ρm) given by

Ii(ρm) = ρm

∫ +∞

ρm
lni
(

ρ′m
ρP

)
dρ′m
ρ′m

2 . (14)

With the change of variables y = ln(ρ′m/ρP), we obtain

Ii(ρm) =
ρm

ρP

∫ +∞

ln(ρm/ρP)
yie−y dy. (15)

In terms of the incomplete gamma function

Γ(α + 1, x) =
∫ +∞

x
yαe−y dy (16)

the integral Ii(ρm) can be rewritten as

Ii(ρm) =
ρm

ρP
Γ
[

i + 1, ln
(

ρm

ρP

)]
= i!

i

∑
k=0

1
k!

lnk
(

ρm

ρP

)
. (17)

To obtain the second equality, we have used the relation

Γ(n + 1, x) = n! e−x
n

∑
k=0

1
k!

xk, (18)

which can be obtained by computing ∂Γ(n + 1, x)/∂x from Equations (16) and (18). For
future purposes, we note the asymptotic behavior 1

Γ(n + 1, x) ∼ xne−x (x → ∞). (19)
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The energy density can then be written as

ε = ρmc2 −
N

∑
i=0

Ai
ρm

ρP
Γ
[

i + 1, ln
(

ρm

ρP

)]
. (20)

Equations (1) and (20) determine the EoS P(ε) in parametric form. By combining the energy
conservation Equation (10) with the first law of thermodynamics (11) one finds that the
rest-mass density evolves as [30]

dρm

dt
+ 3Hρm = 0 ⇒ ρm =

ρm,0

a3 , (21)

where ρm,0 = ρm(a0 = 1) is the present value of the rest-mass density and a0 = 1 is the
present value of the scale factor. Equation (21) expresses the conservation of the rest-mass.
On the other hand, the internal energy is given by

u = −
N

∑
i=0

Ai Ii(ρm) = −
N

∑
i=0

Ai Ii

(ρm,0

a3

)
. (22)

As argued in [30], the rest-mass energy density ρmc2 plays the role of pressureless DM
(εm = ρmc2) and the internal energy u plays the role of DE (εde = u) 2. The energy density
ε = εm + εde of the generalized logotropic model is therefore the sum of two terms where
the first term εm can be interpreted as the DM energy density given by

εm =
εm,0

a3 (23)

and the second term εde can be interpreted as the DE energy density given by

εde = −
e−1−1/B

a3

N

∑
i=0

Ai Γ
(

i + 1,−1− 1
B
− 3 ln a

)
, (24)

where, following [30], we have defined the dimensionless parameter B through the relation

ρP
ρm,0

= e1+1/B. (25)

The Friedmann Equation (8) can be written as

H2 = H2
0

(
εm

ε0
+

εde
ε0

)
, (26)

where ε0 = 3H2
0 c2/8πG is the critical energy density and H0 is the value of the Hubble

parameter at the present time.
The pressure and the energy density of the generalized logotropic model can be

expressed in terms of the scale factor as

P =
N

∑
i=0

Ai

(
−1− 1

B
− 3 ln a

)i
, (27)

ε =
Ωm,0ε0

a3 − e−1−1/B

a3

N

∑
i=0

Ai Γ
(

i + 1,−1− 1
B
− 3 ln a

)
. (28)

The present proportions of DM and DE, denoted Ωm,0 and Ωde,0, are given by

Ωm,0 =
εm,0

ε0
, (29)
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Ωde,0 =
εde,0

ε0
= − e−1−1/B

ε0

N

∑
i=0

Ai Γ
(

i + 1,−1− 1
B

)
= 1−Ωm,0. (30)

For given values of Ωm,0 and ε0 (through H0), which can be obtained from the observations,
Equation (25) determines B and Equation (30) provides a constraint on the coefficients
Ai. Using ρP = c5/(h̄G2) = 5.16× 1099 g m−3 and ρm,0 = Ωm,0ε0/c2 with Ωm,0 = 0.309
and ε0/c2 = 8.62× 10−24 g m−3, we obtain B = 3.53× 10−3. We have taken the values of
Ωm,0 and ε0 from the ΛCDM model but since B is defined by a logarithm, its value is very
insensitive to the precise values of Ωm,0 and ε0. Therefore, the value B = 3.53× 10−3 is
very robust [31].

In the late Universe (a→ ∞ and ρm → 0), the DE dominates and, using Equation (19),
we obtain ε ∼ −AN(−3 ln a)N and P ∼ AN(−3 ln a)N , which implies that the EoS P(ε)
behaves asymptotically as P/ε→ −1. We note that in order to have ε > 0 when a→ +∞,
the parameter AN must be negative if N is even and positive if N is odd. Below we present
some interesting UDM models derived from the generalized logotropic model, focusing
on the EoS P(ε), the energy density ε and the cosmological implications of these models.
We also investigate the era of DE dominance that drives the accelerated expansion of
the Universe.

4. Particular Models
4.1. The Case Ai = An δi,n

This case focuses on just the n-th order term of the finite series leading to the EoS

P = An lnn
(

ρm

ρP

)
. (31)

The energy density is given by

ε = ρmc2 − An
ρm

ρP
Γ
[

n + 1, ln
(

ρm

ρP

)]
= ρmc2 + u = εm + εde, (32)

where the first term is the rest-mass energy density (DM) and the second term is the internal
energy density (DE). The pressure and total energy density as a function of the scale factor
reduces to

P = An

(
−1− 1

B
− 3 ln a

)n
, (33)

ε =
Ωm,0ε0

a3 − An
e−1−1/B

a3 Γ
(

n + 1,−1− 1
B
− 3 ln a

)
. (34)

At the present time (i.e., a = 1), the above equation leads to

An = − (1−Ωm,0)ε0e1+1/B

Γ
(

n + 1,−1− 1
B

) , (35)

which determines An as a function of the measured values of Ωm,0 and ε0. The dimension-
less constant B is also determined by the measured values of Ωm,0 and ε0 (see above). As a
result, there is no free parameter in this model 3. Note that

An

(1−Ωm,0)ε0
= − e1+1/B

Γ
(

n + 1,−1− 1
B

) (36)

is a dimensionless constant depending only on n and B. Furthermore, ρΛ ≡ (1−Ωm,0)ε0/c2 =
5.96× 10−24 g m−3 is the present value of the DE density (it is equal to the cosmological
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density ρΛ = Λ/(8πG) in the ΛCDM model). From Equation (36), we find that An < 0 for
n even and An > 0 for n odd.

On the other hand, from Equation (31), the pressure P vanishes when ρm = ρP. If n is
even, the pressure P is always negative. If n is odd, the pressure P is positive for ρm > ρP
and negative for ρm < ρP. In practice, we consider a regime where ρm � ρP because the
logotropic model does not describe the early inflation. In that case, the pressure is always
negative. The EoS P(ε) is given in the reversed form ε(P) by

ε = e∓|
P

An |
1/n

ρPc2 − Ane∓|
P

An |
1/n

Γ

(
n + 1,∓

∣∣∣∣ P
An

∣∣∣∣1/n
)

, (37)

where the upper sign corresponds to the most relevant case ρm < ρP and the lower sign
corresponds to ρm > ρP. Substituting Equation (35) into Equations (33) and (34), we obtain
after simple manipulations

P = − (1−Ωm,0)ε0

Γ
(

n + 1,−1− 1
B

) e1+1/B
(
−1− 1

B
− 3 ln a

)n
, (38)

ε =
Ωm,0ε0

a3 +
(1−Ωm,0)ε0

a3

Γ
(

n + 1,−1− 1
B − 3 ln a

)
Γ
(

n + 1,−1− 1
B

) . (39)

In the early Universe (a→ 0, ρm → +∞) the DM εm dominates and we have ε ∼ Ωm,0ε0/a3,
P ∼ An(−3 ln a)n such that P/ε → 0 whereas, in the late Universe (a → ∞, ρm → 0), the
DE εde dominates and we have ε ∼ −An(−3 ln a)n, P ∼ An(−3 ln a)n such that P/ε→ −1.
Furthermore, in order to have ε > 0 for a → +∞, the parameter An must be negative if
n is even and positive if n is odd. As we have seen, this is guaranteed by Equation (35).
Finally, it is worth mentioning that for B → 0 (corresponding to a form of semiclassical
limit ρP → +∞ or h̄→ 0), the ΛCDM model is recovered [31]. Indeed, using Equation (19),
we find that Equations (38) and (39) reduce to

P = −(1−Ωm,0)ε0, (40)

ε =
Ωm,0ε0

a3 + (1−Ωm,0)ε0. (41)

4.2. The Case Ai = A0 δi,0

For n = 0, we recover the ΛCDM model (interpreted as a UDM model) corresponding
to the EoS

P = A0. (42)

The energy density is given by
ε = ρmc2 − A0, (43)

where the first term is DM and the second term is DE. The total energy density as a function
of the scale factor reads

ε =
Ωm,0ε0

a3 − A0. (44)

At the present time (i.e., a = 1), Equation (44) leads to

A0 = −(1−Ωm,0)ε0. (45)

We note that A0 < 0. Numerically, A0/c2 = −ρΛ = −5.96 × 10−24 g m−3, where ρΛ
is the cosmological density. The pressure P and the energy density ε are then given by
Equations (40) and (41). The pressure P = −ρΛc2 is constant and negative. As the universe
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expands, starting from +∞, the energy density ε decreases and tends to a constant value
ρΛc2. The DE density εde = ρΛc2 is constant.

4.3. The Case Ai = A1 δi,1

For n = 1, we recover the original logotropic model [30] corresponding to the EoS

P = A ln
(

ρm

ρP

)
, (46)

where we have denoted A1 = A. The energy density is given by

ε = ρmc2 − A
[

1 + ln
(

ρm

ρP

)]
, (47)

where the first term is DM and the second term is DE. The EoS P(ε) is given in the reversed
form ε(P) by

ε = eP/AρPc2 − A− P. (48)

The pressure and total energy density as a function of the scale factor read

P = −A
(

1 +
1
B
+ 3 ln a

)
, (49)

ε =
Ωm,0ε0

a3 + A
(

1
B
+ 3 ln a

)
. (50)

At the present time (i.e., a = 1), Equation (50) leads to

A = B(1−Ωm,0)ε0. (51)

We note that A > 0. Numerically, A/c2 = BρΛ = 3.53× 10−3ρΛ = 2.10× 10−26 g m−3. The
pressure P and the energy density ε become

P = −(1−Ωm,0)ε0(B + 1 + 3B ln a), (52)

ε =
Ωm,0ε0

a3 + (1−Ωm,0)ε0(1 + 3B ln a). (53)

The pressure P is positive when ρm > ρP and negative when ρm < ρP. It vanishes at
ρm = ρP. As the universe expands, the pressure decreases from +∞ to −∞. Starting from
+∞, the energy density ε first decreases, reaches a minimum εmin = A ln(ρPc2/A) > 0
at ρm = A/c2, then increases to +∞. The DE density εde increases from −∞ to +∞. The
DE is negative when ρm > ρP/e and positive when ρm < ρP/e (its value at ρm = ρP is
εde = −A < 0). In the logotropic model, since the DE density corresponds to the internal
energy density u of the LDF, it can very well be negative as long as the total energy density
ε is positive. Note, however, that in the regime of interest ρm � ρP, the DE density εde
is positive.

4.4. The Case Ai = A2 δi,2

For n = 2, we obtain the EoS

P = A2 ln2
(

ρm

ρP

)
. (54)

The energy density is given by

ε = ρmc2 − 2A2

[
1 + ln

(
ρm

ρP

)
+

1
2

ln2
(

ρm

ρP

)]
, (55)
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where the first term is DM and the second term is DE. The EoS P(ε) is given in the reversed
form ε(P) by

ε = e
∓
√

P
A2 ρPc2 − 2A2

(
1∓

√
P

A2
+

1
2

P
A2

)
, (56)

where the upper sign corresponds to the most relevant case ρm < ρP and the lower sign
corresponds to ρm > ρP. The pressure and total energy density as a function of the scale
factor read

P = A2

(
1 +

1
B
+ 3 ln a

)2
, (57)

ε =
Ωm,0ε0

a3 − 2A2

[
− 1

B
− 3 ln a +

1
2

(
1 +

1
B
+ 3 ln a

)2
]

. (58)

At the present time (i.e., a = 1), Equation (58) leads to

A2 = −1−Ωm,0

1 + 1
B2

ε0. (59)

We note that A2 < 0. Numerically, A2/c2 = −B2/(1 + B2)ρΛ = −1.25 × 10−5ρΛ =
7.43× 10−29 g m−3. The pressure P and the energy density ε become

P = − (1−Ωm,0)ε0

1 + B2 (1 + B + 3B ln a)2, (60)

ε =
Ωm,0ε0

a3 + (1−Ωm,0)ε0
1 + B2 + 6B ln a + 9B2 ln2 a

1 + B2 . (61)

The pressure P is always negative and vanishes at ρm = ρP. As the universe expands, start-
ing from−∞, the pressure first increases, vanishes at ρ = ρm, then decreases to−∞. Starting
from +∞, the energy density ε first decreases, reaches a minimum
εmin = −A2(ρmc2/2A2 − 1)2 > 0 at ρm solution of ρmc2 = 2A2[1 + ln(ρm/ρP)], then
increases to +∞. Starting from +∞, the DE density εde first decreases, reaches a min-
imum εmin

de = −A2 > 0 at ρm = ρP/e, then increases to +∞ (its value at ρm = ρP is
εde = −2A2 > 0).

Cases with n = 1, 2 are the simplest logotropic models. Since n is a free parameter,
cases with n > 2 lead to a collection of generalized logotropic models.

4.5. The Case N = 2

This generalized logotropic model is obtained by considering the first three terms A0,
A1 and A2. This leads to the EoS

P = A0 + A1 ln
(

ρm

ρP

)
+ A2 ln2

(
ρm

ρP

)
. (62)

The energy density is given by

ε = ρmc2 − A0 − A1

[
1 + ln

(
ρm

ρP

)]
− 2A2

[
1 + ln

(
ρm

ρP

)
+

1
2

ln2
(

ρm

ρP

)]
, (63)
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where the first term is DM and the other terms are DE. The EoS P(ε) can be obtained in the
reversed form ε(P) by eliminating ρm between Equations (62) and (63) 4. The pressure and
the energy density evolve with the scale factor as

P = A0 + A1

(
−1− 1

B
− 3 ln a

)
+ A2

(
−1− 1

B
− 3 ln a

)2
, (64)

ε =
Ωm,0ε0

a3 − A0 + A1

(
1
B
+ 3 ln a

)
− 2A2

[
− 1

B
− 3 ln a +

1
2

(
1 +

1
B
+ 3 ln a

)2
]

. (65)

At the present time (i.e., a = 1), the above equation gives

(1−Ωm,0) ε0 = −A0 +
A1

B
− A2

(
1 +

1
B2

)
, (66)

which constrains one of the three free parameters. As a result, the model has only two
free parameters. As expected, in the late Universe (a → ∞, ρm → 0), the DE density εde
dominates and we have P/ε→ −1. It is worth mentioning that in order to have ε > 0, A2
must be negative.

5. Evolution of the Generalized Logotropic Model

In the following we consider models with Ai = An δi,n. The evolution of the energy
density as a function of the scale factor [see Equation (39)] is plotted in Figure 1, where
we have used the best-fit values of the parameters Ωm,0 = 0.309 and B = 3.53× 10−3

obtained from the ΛCDM model (they are consistent with the cosmological analysis of
the original logotropic model [40,41]). The Universe starts at a = 0 with an infinite energy
density 5. The energy density ε first decreases with the increase in the scale factor a, reaches
a minimum, then increases with the scale factor characterizing a phantom Universe [48,49].

0 2 4 6 8 10
a

0

0.5

1

1.5

2

2.5

3

ε
/ε

0

Figure 1. Normalized energy density ε/ε0 as a function of the scale factor a for Ωm,0 = 0.309,
B = 3.53× 10−3 and various values of n: n = 0 (dashed black, ΛCDM model), n = 1 (blue, original
logotropic model), n = 2 (red), n = 3 (green), n = 5 (orange), n = 10 (indigo), n = 100 (maroon),
n = 1000 (black).

In the generalized logotropic model, the Friedmann Equation (26) takes the form

H =
ȧ
a
= H0

√√√√√Ωm,0

a3 +
1−Ωm,0

a3

Γ
(

n + 1,−1− 1
B − 3 ln a

)
Γ
(

n + 1,−1− 1
B

) . (67)
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The evolution of the scale factor as a function of the time is given by

H0t =
∫ a

0

da′

a′
√

Ωm,0
a′3 +

1−Ωm,0
a′3

Γ(n+1,−1− 1
B−3 ln a′)

Γ(n+1,−1− 1
B )

. (68)

The ΛCDM model is recovered from Equation (68) for n = 0 or B = 0. In that case,
Equation (68) can be integrated analytically yielding

a =

(
Ωm,0

1−Ωm,0

)1/3
sinh2/3

(
3
2

√
1−Ωm,0H0t

)
, (69)

ε

ε0
=

1−Ωm,0

tanh2( 3
2
√

1−Ωm,0H0t
) , (70)

whereas for B 6= 0 it can only be integrated numerically. Figure 2 shows the behavior of
the scale factor a as a function of t for n = 0, 1, 2, 3, 5, 10, 100, 1000. The age of the universe
(corresponding to a = 1) is given by

tage =
1

H0

∫ 1

0

da′

a′
√

Ωm,0
a′3 +

1−Ωm,0
a′3

Γ(n+1,−1− 1
B−3 ln a′)

Γ(n+1,−1− 1
B )

(71)

with H0 = 2.195× 10−18 s−1, i.e., H−1
0 = 14.4 Gyrs. For the ΛCDM model (n = 0) we

recover the well-known result tage = 0.956 H−1
0 = 13.8 Gyrs. A difference larger than 0.1 %

(the typical error bar on the age of the universe) occurs in models with n > 3 so these
models should be rejected 6. For example, we obtain tage = 0.966 H−1

0 = 13.9 Gyrs for
n = 20, tage = 0.998 H−1

0 = 14.4 Gyrs for n = 100, and tage = 1.12 H−1
0 = 16.1 Gyrs for

n = 1000.

0 10 20 30 40 50
t (Gyrs)

0

2

4

6

8

10
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t
BR
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Figure 2. Scale factor a as a function of the cosmic time t for Ωm,0 = 0.309, B = 3.53× 10−3 and
n = 0, 1, 2, 3, 5, 10, 100, 1000. This figure shows the big rip time tBR (for n = 1000 > 2) at which the
scale factor becomes infinite.
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The asymptotic behavior of the generalized logotropic model can be obtained analyt-
ically. For a → 0, we have a matter-dominated Universe which corresponds to Einstein-
deSitter (EdS) solution given by

a ∼
(

3
2

√
Ωm,0H0t

)2/3
, (72)

ε

ε0
∼ 4

9H2
0 t2

. (73)

For a→ +∞, the energy density behaves as

ε ∼ 3n|An|(ln a)n. (74)

In this asymptotic regime, the Friedmann equation can be written as

ȧ
a
=

√
8πG
3c2 ε ∼ Kn (ln a)n/2, (75)

where we define the constant Kn as

Kn = 3n/2H0

√√√√ (1−Ωm,0)e1+1/B

Γ
(

n + 1,−1− 1
B

) . (76)

The above equation can be integrated into

Kn t ∼
∫ a da′

a′(ln a′)n/2 ∼
∫ ln a ds

sn/2 , (77)

where we have made the change of variables s = ln a′ to obtain the second equality. It is
interesting to note that the asymptotic evolution of the scale factor as a function of time
depends mainly on the value of the parameter n. We can distinguish three relevant types
of evolution which correspond to n < 2, n = 2 and n > 2.

(i) For n < 2: this solution, which includes the original logotropic model [30,31,40],
describes a super de Sitter evolution of the form

a ∝ exp

{[
1
2
(2− n) Kn t

] 2
2−n
}

, ε ∝ t
2n

2−n , (78)

where the scale factor grows super exponentially rapidly with cosmic time causing an
algebraic divergence of the energy density. For n = 1 we recover the original logotropic
model where a ∼ et2

and ε ∼ t2 [30,31,40]. Since the scale factor and the energy density
increase indefinitely with time, this is called Little Rip [50]. For n = 0 we recover the
ΛCDM model presenting an exponential (de Sitter) expansion a ∼ et and a constant energy
density ε ∼ 1.

(ii) For n = 2: we obtain a double exponential evolution of the form

a ∝ exp[exp(K2 t)], ε ∝ exp(2K2t), (79)

where the scale factor grows hyper exponentially rapidly with cosmic time causing an
exponential divergence of the energy density (Little Rip).
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(iii) For n > 2: this case represents a situation in which the Universe ends up with a
finite-time future singularity. One finds

a ∝ exp

{[
1
2
(n− 2) Kn (ts − t)

]− 2
n−2
}

, ε ∝
[

1
2
(n− 2) Kn (ts − t)

]− 2n
n−2

. (80)

The singularity at t = ts corresponds to a Big Rip [49] characterized by the divergence
of the scale factor and energy density in finite time. The big rip time (corresponding to
a→ +∞) is given by

tBR =
1

H0

∫ +∞

0

da′

a′
√

Ωm,0
a′3 +

1−Ωm,0
a′3

Γ(n+1,−1− 1
B−3 ln a′)

Γ(n+1,−1− 1
B )

. (81)

For measured values of Ωm,0 and ε0 (hence H0), this is just a function of n. There is no
other free (undetermined) parameter in our model. We obtain tBR = 3240 Gyrs for n = 3,
tBR = 1650 Gyrs for n = 4, tBR = 422 Gyrs for n = 10, tBR = 47.1 Gyrs for n = 100, and
tBR = 19.2 Gyrs for n = 1000. However, we recall that the models with n > 3 are excluded
from the observations.

We note that the expansion of the Universe at late times is faster for higher n. In
particular, the big rip time (when n > 2) decreases with n. Still the age of the Universe
(calculated at a = 1) slightly increases with n. Therefore, for higher n, the Universe is older
than for the ΛCDM model, and not younger. This counterintuitive behavior is illustrated in
Figure 2. There is no paradox since it is only asymptotically (for a→ +∞) that the expansion
of the Universe is faster for higher n. For intermediate times (around a ∼ 1), it is slower.
We have plotted the age of the Universe and the big rip time as a function of n in Figure 3
to show their different evolutions.
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t
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Figure 3. Age of the Universe tage and big rip time tBR as a function of n.

Using Equations (38) and (39), the EoS parameter w = P/ε can be expressed in terms
of the scale factor as

w(a) =
−(1−Ωm,0)e1+1/Ba3

(
−1− 1

B − 3 ln a
)n

Ωm,0Γ
(

n + 1,−1− 1
B

)
+ (1−Ωm,0)Γ

(
n + 1,−1− 1

B − 3 ln a
) . (82)

For a = 1, we obtain

w0 = −
(1−Ωm,0)e1+1/B

(
−1− 1

B

)n

Γ
(

n + 1,−1− 1
B

) . (83)
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For the ΛCDM (n = 0) we recover the well-known value w0 = −(1−Ωm,0) = −0.691. We
obtain w0 = −0.693 for n = 1, w0 = −0.696 for n = 2, w0 = −0.698 for n = 3, w0 = −0.701
for n = 4, w0 = −0.715 for n = 10, w0 = −0.935 for n = 100, and w0 = −3.12 for n = 1000.
For n > 3 we are out of the error bars (typically 1 % for the value of w0) so these models
should be rejected. The behavior of the EoS parameter w(a) as a function of the scale factor
a is plotted in Figure 4. The GLDF behaves as a superposition of two non-interacting fluids
(i.e., DM and DE) whose total pressure and total energy density are given by the sums

P = Pm + Pde, ε = εm + εde. (84)

Their EoS parameters are

wm =
Pm

εm
= 0, wde =

Pde
εde

= −
e1+1/Ba3

(
−1− 1

B − 3 ln a
)n

Γ
(

n + 1,−1− 1
B − 3 ln a

) . (85)

In a flat Universe, the deceleration parameter q = −äa/ȧ2 = −Ḣ/H2 − 1 is related to
the EoS parameter by

q =
1 + 3w

2
. (86)

The Universe is undergoing a decelerating expansion if q > 0 (i.e., w > −1/3) and an
accelerating expansion if q < 0 (i.e., w < −1/3). In Figure 5, we show the behavior of q(a)
as a function of the scale factor for different values of n.

0 2 4 6 8 10
a

-1.5

-1

-0.5

0

w

Figure 4. EoS parameter w as a function the scale factor a for Ωm,0 = 0.309, B = 3.53× 10−3 and
n = 0, 1, 2, 3, 5, 10, 100.

From Equation (39), the transition scale factor at, corresponding to εm = εde, is
obtained by solving the transcendental equation

Γ
(

n + 1,−1− 1
B
− 3 ln at

)
=

Ωm,0

1−Ωm,0
Γ
(

n + 1,−1− 1
B

)
. (87)

Another parameter to study is the squared speed of sound c2
s which is a key ingredient

to investigate the stability of any model. In particular, the sign of c2
s plays a crucial role in

determining classical stability. It is defined by

c2
s =

dP
dε

c2 =
dP/dρm

dε/dρm
c2. (88)
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Differentiating Equations (1) and (13) with Ai = An δi,n, we obtain

c2
s

c2 =
n lnn−1

(
ρm
ρP

)
ρmc2

An
− n ρm

ρP
Γ
[
n, ln

(
ρm
ρP

)] . (89)

To obtain this expression, we have used the identities

Γ(n + 1, x) = nΓ(n, x) + xne−x (90)

and

∂Γ
∂x

(n + 1, x) = −xne−x. (91)

In Figure 6, we plot the squared speed of sound c2
s /c2 as a function of the scale factor for

different values of n. The causality and classical stability conditions are satisfied if the
speed of sound varies in the range 0 ≤ c2

s /c2 ≤ 1. One sees from Figure 6 that, in fact, there
are regions where the causality and classical stability conditions are satisfied but the extent
of these regions decreases as n increases 7.
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Figure 5. Deceleration parameter q as a function of the scale factor a for Ωm,0 = 0.309, B = 3.53× 10−3

and n = 0, 1, 2, 3, 5, 10, 100.
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Figure 6. Normalized squared speed of sound c2
s /c2 as a function of the scale factor a for Ωm,0 = 0.309,

B = 3.53× 10−3 and n = 0, 1, 2, 3, 5, 10, 100. It diverges and becomes negative when the Universe
becomes phantom.
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6. Conclusions

In this work, we have proposed a new class of cosmological unified dark sector
models “Generalized Logotropic Models”. These models are a generalization of the logotropic
model [30] by considering the pressure P as a sum of higher logarithmic terms of the
rest-mass density ρm. The pressure can naturally take negative values in these cosmological
models. In this scenario, the Universe is filled with a single fluid without the need for
a cosmological constant. Our generalized model depends on a set of free parameters
Ai with i = 1, 2, · · · , N. In particular, we have considered a special class of generalized
logotropic models where Ai = Anδin, which depends on two free parameters An and n.
The usual logotropic model [30] corresponds to n = 1 and A1. We have also presented the
model with N = 2, which contains the first two terms A1 and A2 of the series. We have
highlighted the most relevant properties of these generalized logotropic models. To fix
bounds on the free parameters of our models, we employed the best fit of the parameters
Ωm,0 and B obtained from the cosmological analysis carried on the original logotropic
model (i.e., n = 1) [40]. After fixing the free parameters, we investigated the cosmological
behavior of the generalized logotropic models by focusing on the evolution of the DE
density, scale factor, EoS parameter, deceleration parameter and squared speed of sound.
We showed the asymptotic behavior of these models and noticed three distinct ways of
evolution depending on the value of n. In all the analyzed cases, we established that
generalized logotropic models lead to realistic cosmological models in which the dark
sector is represented by a unique fluid. The deviation of the generalized models from
the standard ΛCDM model depends on the value of the parameter n. At later times,
higher values of n lead to higher deviations from ΛCDM. This implies that the generalized
logotropic models can be used as realistic background cosmological models to describe our
Universe with a free parameter n. We estimated that only models with n ≤ 3 are consistent
with the observations. To find out the most suitable values of n, it will be necessary to
perform a fitting procedure by using, for instance, the Monte Carlo method and a detailed
comparison with cosmological data such as SN, BAO, and CMB surveys. We expect to
perform this analysis in future works.

A further interesting generalization of the logotropic model is to consider a single
fluid described by the EoS

P = A lnα

(
ρm

ρP

)
, (92)

where A is a real number given by

A = − (1−Ωm,0)ε0e1+1/B

Γ
(

α + 1,−1− 1
B

) , (93)

and α is a real positive parameter that can be constrained by the cosmological data. There
are two ways to recover the ΛCDM, either by taking α = 0 or B = 0 which makes the
model rich and particularly more appealing in describing DE especially for 0 < α < 1.
Such a model interpolates between the ΛCDM for values of α close to zero and to the usual
logotropic model for values of α close to one.

In summary, single fluids with generalized logotropic EoS may have interesting
cosmological features and, thus, they represent a good candidate to describe the DE sector.
The investigation and analysis of these models will be carried out in detail in future works.

Finally, we would like to mention that the logotropic model and the generalization
presented in this work are not free of intrinsic problems, as all the cosmological models
known in the literature. In fact, the speed of sound in logotropic models has the unpleasant
property of increasing with the scale factor, leading, like for the Chaplygin gas model,
to oscillations in the mass power-spectrum that are not detected in observations at the
cosmological level [51]. However, there are several possibilities to solve this problem by
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considering additional effects such as non-linear and non-adiabatic perturbations, or higher
order derivatives in K-essence Lagrangians associated with braneworld models, among
others (see the discussion in Section XVI.G of [46]). These modifications could solve the
problems in the theory of perturbations for structure formation (e.g., by reducing the speed
of sound) without affecting the evolution of the cosmological background. In any case,
UDM models constitute a subject of intensive research as possible alternative scenarios to
the popular and generally accepted ΛCDM model. Our paper provides a class of models
exhibiting a transition between a normal behavior and a phantom behavior governed by
a single equation of state. In addition, depending on the value of the parameter n, we
can have different types of late evolution: no singularity (n = 0), little rip (n ≤ 2), big
rip (n > 2). It is very interesting to note that all these models are consistent with the
ΛCDM model up to the present time but will differ in the future. Therefore, it is possible
to construct models that agree with the observations but that deviate from each other at
late times. A virtue of our model is to show that it is very difficult to predict the future
evolution of the Universe based on present observations.
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Appendix A. Asymptotic Equation of State

In this Appendix, we establish the asymptotic EoS P(ε) of the GLDF and make the
connection with the MCG model [19,26–28].

For a→ +∞, using Equations (19) and (28), we find that the energy density evolves
with the scale factor as

ε ∼ |AN |
(

1 +
1
B
+ 3 ln a

)N
. (A1)

Let us determine the corresponding asymptotic EoS from the energy conservation Equa-
tion (10) which can be rewritten as

dε

da
+

3
a
(ε + P) = 0. (A2)

From Equations (A1) and (A2), we obtain

P = −ε− a
3

dε

da

= −ε− N|AN |
(

1 +
1
B
+ 3 ln a

)N−1

= −ε− N|AN |
(

ε

|AN |

)(N−1)/N

= −ε

[
1 + N

(
|AN |

ε

)1/N
]

. (A3)
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Therefore, the asymptotic EoS of the GLDF reads

P = −ε− N|AN |1/Nε1−1/N . (A4)

This is a particular case of the generalized polytropic EoS (or MCG model) [19,26–28]

P = αε + K
( ε

c2

)γ
(A5)

corresponding to α = −1, K = −N(|AN |c2)1/N and γ = 1− 1/N. Therefore, the GLDF is
asymptotically equivalent to the MCG with α = −1. Since w = P/ε < −1, the EoS (A4)
leads to a phantom behavior in agreement with the results of Section 5. For N = 1, the EoS
(A4) reduces to

P = −ε− A. (A6)

For N = 2, it reduces to

P = −ε− 2
√
|A2|ε1/2. (A7)

Let us check that we recover the asymptotic EoS (A4) directly from the generalized
logotropic EoS defined by Equations (27) and (28). For a→ +∞, we have

P ' AN xN + AN−1xN−1 + . . . , (A8)

ε ' −AN xN − AN NxN−1 − AN−1xN−1 + . . . , (A9)

where
x ≡ −1− 1

B
− 3 ln a→ −∞. (A10)

We stress that it is necessary to account for the first order correction to the leading term xN

in Equations (A8) and (A9). From

P ' AN xN
(

1 +
AN−1

AN

1
x

)
, (A11)

ε ' −AN xN
(

1 + N
1
x
+

AN−1

AN

1
x

)
, (A12)

we obtain

P
ε
' −

(
1 +

AN−1

AN

1
x

)(
1− N

1
x
− AN−1

AN

1
x

)
' −

(
1− N

x

)
= −

[
1 + N

(
|AN |

ε

)1/N
]

, (A13)

which returns Equation (A3).

Appendix B. The Two-Fluid Model

In this Appendix, we determine the two-fluid model corresponding to the GLDF with
Ai = Anδi,n. In particular, we establish the EoS of the DE in the two-fluid model.

The GLDF is a one-fluid model (i.e., a UDM model) unifying DM and DE. The pressure
and the energy density are given by

P = An lnn
(

ρm

ρP

)
, (A14)
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ε = ρmc2 − An
ρm

ρP
Γ
[

n + 1, ln
(

ρm

ρP

)]
= ρmc2 + u = εm + εde. (A15)

Concerning the evolution of the homogeneous background, this one-fluid model is equiv-
alent 8 to a two-fluid model made of pressureless DM with an EoS Pm = 0 giving εm =
Ωm,0ε0/a3 and DE with an EoS Pde(εde) giving εde = u(a). Noting that P = Pm + Pde = Pde,
the EoS Pde(εde) of DE is determined in parametric form by the equations

Pde = An lnn
(

ρm

ρP

)
, (A16)

εde = −An
ρm

ρP
Γ
[

n + 1, ln
(

ρm

ρP

)]
. (A17)

Eliminating ρm between these two expressions we obtain the EoS of DE under the reversed
form εde(Pde) as

εde = −Ane∓
∣∣∣ Pde

An

∣∣∣1/n

Γ

[
n + 1,∓

∣∣∣∣Pde
An

∣∣∣∣1/n
]

, (A18)

where the upper sign corresponds to the most relevant case ρm < ρP and the lower sign
corresponds to ρm > ρP.

Let us check that the two-fluid model returns the results of the one-fluid model for the
homogeneous background. The evolution εde(a) of the DE density with the scale factor can
be obtained from the energy conservation equation

dεde
da

+
3
a
(εde + Pde) = 0 ⇔

∫ dεde
εde + Pde

= −3 ln a (A19)

with the EoS Pde(εde) defined by Equations (A16) and (A17). At this stage, ρm is just a
dummy variable. It is easy to establish that

ε′de(ρm) = −Ann
ρP

ρ2
m

Γ
[

n, ln
(

ρm

ρP

)]
(A20)

and

Pde(ρm) + εde(ρm) = −Ann
ρP
ρm

Γ
[

n, ln
(

ρm

ρP

)]
. (A21)

Therefore, we have the identity

Pde(ρm) + εde(ρm) = ρmε′de(ρm), (A22)

and the energy conservation Equation (A19) becomes

dρm

da
+

3
a

ρm = 0 ⇔
∫ dρm

ρm
= −3 ln a, (A23)

implying that ρm ∝ a−3. This leads to results consistent with those of Section 4. However,
we cannot establish that ρm is the rest-mass (or DM) density (they could differ by a mul-
tiplicative constant). This implies that we cannot determine An in the two-fluid model
contrary to the one-fluid model. More explicit results are given below.
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Appendix B.1. The Case n = 1

For n = 1, Equation (A18) reduces to the affine EoS

Pde = −εde − A (A24)

with A > 0. This is the EoS of DE corresponding to the original logotropic gas [40]. It
coincides with the asymptotic EoS (A6) of the LDF seen as a one-fluid (UDM) model. The
affine EoS (A24) was first introduced and studied in [28].

Let us check that the two-fluid model returns the results of the one-fluid model.
Integrating the energy conservation Equation (A19) for DE with the EoS (A24) we obtain

εde = 3A ln
(

a
a∗

)
, (A25)

where a∗ is a constant of integration. If we add the contribution of pressureless DM, we
find that the total energy density is given by

ε =
Ωm,0ε0

a3 + 3A ln
(

a
a∗

)
. (A26)

Using the condition (at a = 1)

ε0(1−Ωm,0) = −3A ln a∗, (A27)

we can rewrite Equation (A26) under the form

ε =
Ωm,0ε0

a3 + 3A ln a + ε0(1−Ωm,0). (A28)

This expression is consistent with Equation (53) of the one-fluid model if we set
A = Bε0(1 − Ωm,0). However, the two-fluid model does not determine the value of
the constant A, contrary to the one-fluid model. Indeed, the Planck scale ρP does not occur
in Equation (A24), unlike Equation (46). This is a huge advantage of the one-fluid model
with respect to the two-fluid model [30].

Appendix B.2. The Case n = 2

For n = 2, Equation (A18) reduces to

εde = −2A2

(
1∓

√
Pde
A2

+
Pde
2A2

)
(A29)

with A2 < 0. This yields a second degree equation for
√

Pde/A2 of the form

Pde
A2
∓ 2

√
Pde
A2

+ 2 +
εde
A2

= 0. (A30)

When ρm > ρP, Equation (A30) with the lower sign has just one solution√
− Pde
|A2|

= −1 +
√

εde
|A2|

− 1. (A31)

As ρm decreases from +∞ to ρP, the DE density εde decreases from +∞ to 2|A2| and the
pressure Pde increases from −∞ to 0 (see Section 4.4). This leads to the EoS

Pde = −|A2|
(
−1 +

√
εde
|A2|

− 1
)2

(A32)
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or, equivalently,

Pde = −εde + 2|A2|
√

εde
|A2|

− 1, (A33)

which is valid for εde ≥ 2|A2|. For εde → +∞, Equation (A33) reduces to

Pde ' −εde + 2|A2|1/2√εde. (A34)

When ρm < ρP, the solutions of Equation (A30) with the upper sign are√
− Pde
|A2|

= 1±
√

εde
|A2|

− 1. (A35)

As ρm goes from ρP to 0, the DE density εde first decreases from 2|A2| to |A2| then increases
to +∞ while the pressure Pde decreases from 0 to −∞ (see Section 4.4). Equation (A30) has
two solutions for |A2| ≤ εde ≤ 2|A2|, one solution (with the upper sign) for εde ≥ 2|A2|
and no solution for εde ≤ |A2|. This leads to the EoS

Pde = −|A2|
(

1±
√

εde
|A2|

− 1
)2

(A36)

or, equivalently,

Pde = −εde ∓ 2|A2|
√

εde
|A2|

− 1, (A37)

which is valid with the two signs for |A2| ≤ εde ≤ 2|A2| and with the upper sign for
εde ≥ 2|A2|. This is the EoS of DE corresponding to the GLDF in the case n = 2. For
εde → +∞, Equation (A37) reduces to

Pde ' −εde − 2|A2|1/2√εde, (A38)

which coincides with the asymptotic EoS (A7) of the GLDF seen as a one-fluid (UDM) model.
Let us check that the two-fluid model returns the results of the one-fluid model.

Integrating the energy conservation Equation (A19) for DE with the EoS (A33) or (A37)
we obtain

εde
|A2|

= 1 + 9 ln2
(

a
a∗

)
, (A39)

where a∗ is a constant of integration. If we add the contribution of pressureless DM, we
find that the total energy density is given by

ε =
Ωm,0ε0

a3 + |A2|
[

1 + 9 ln2
(

a
a∗

)]
. (A40)

Using the condition (at a = 1)

ε0(1−Ωm,0) = |A2|
(

1 + 9 ln2 a∗
)

, (A41)

we can rewrite Equation (A40) under the form

ε =
Ωm,0ε0

a3 + ε0(1−Ωm,0)

[
1 +

9|A2| ln2 a
ε0(1−Ωm,0)

+
6|A2| ln a

ε0(1−Ωm,0)

√
ε0(1−Ωm,0)

|A2|
− 1

]
. (A42)



Universe 2022, 8, 468 22 of 25

This expression is consistent with Equation (61) of the one-fluid model if we set |A2|/[ε0(1−
Ωm,0)] = B2/(1 + B2). However, the two-fluid model does not determine the value of the
constant A2, contrary to the one-fluid model. This is a huge advantage of the one-fluid
model with respect to the two-fluid model [30].

Appendix C. Present Proportions of Dark Matter and Dark Energy

In this Appendix we recall the argument of [35] leading to a prediction of the present
proportions of DM and DE in the universe and take into account the presence of baryons
(see also [44]).

The original logotropic model [30,31,35,40] is based on the EoS

P = A ln
(

ρdm
ρP

)
, (A43)

where ρdm is the rest-mass density of the LDF, A is a new fundamental constant of physics
(superseding the cosmological constant Λ) and ρP is the Planck density. This EoS provides
a unification of DM and DE. It is very interesting that the Planck density appears in this EoS
in order to make the variable in the logarithm dimensionless. This implies that quantum
effects play a certain role in the late universe where the logotropic model applies. The
rest-mass density evolves as (see Equation (21))

ρdm =
Ωdm,0ε0/c2

a3 , (A44)

and it plays the role of DM. As a result Ωdm,0 is interpreted as the present proportion of
DM in the universe. The energy density of the LDF is (see Equation (47))

εd f = ρdmc2 − A
[

1 + ln
(

ρdm
ρP

)]
= εdm + εde, (A45)

where the first term (rest-mass) is interpreted as DM and the second term (internal energy)
as DE. We must also include the contribution of baryons which form a pressureless gas
(Pb = 0). Their energy density evolves as

εb =
Ωb,0ε0

a3 , (A46)

where Ωb,0 is the present proportion of baryons in the universe. The total energy density
is therefore

ε = ρdmc2 − A
[

1 + ln
(

ρdm
ρP

)]
+ εb. (A47)

Substituting Equation (A44) into Equation (A47), we obtain

ε =
Ωdm,0ε0

a3 − A
[

1 + ln
(

Ωdm,0ε0

ρPc2a3

)]
+

Ωb,0ε0

a3 . (A48)

Applying this relation at the present time (a = 1) and introducing the present proportion of
DE in the universe Ωde,0 = 1−Ωdm,0 −Ωb,0 we get

A =
Ωde,0ε0

ln
(

ρPc2

Ωdm,0ε0

)
− 1

. (A49)
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Introducing the present DE density ρΛ ≡ Ωde,0ε0/c2, we can rewrite the foregoing equa-
tion as

A =
ρΛc2

ln
(

ρP
ρΛ

)
+ ln

(
Ωde,0

1−Ωde,0−Ωb,0

)
− 1

. (A50)

We now postulate that [35,44]

A =
ρΛc2

ln
(

ρP
ρΛ

) (A51)

or, equivalently, that B = 1/ ln(ρP/ρΛ), i.e., ρP/ρΛ = e1/B. This implies

Ωde,0

1−Ωde,0 −Ωb,0
= e, (A52)

determining the present proportions of DM and DE [35,44]

Ωth
de,0 =

e
1 + e

(1−Ωb,0), Ωth
dm,0 =

1
1 + e

(1−Ωb,0). (A53)

If we neglect baryonic matter Ωb,0 = 0 we obtain the pure numbers Ωth
de,0 = e

1+e =

0.731059 . . . and Ωth
dm,0 = 1

1+e = 0.268941 . . . which give the correct proportions 70% and
25% of DE and DM [35]. If we take baryonic matter into account and use the measured value
of Ωb,0 = 0.0486± 0.0010, we obtain Ωth

de,0 = 0.6955± 0.0007 and Ωth
dm,0 = 0.2559± 0.0003

which are very close to the observed values Ωde,0 = 0.6911± 0.0062 and Ωdm,0 = 0.2589±
0.0057 within the error bars [44]. The present ratio of DE and DM [see Equation (A52)]
is predicted to be equal to the Euler number: Ωth

de,0/Ωth
dm,0 = e = 2.71828 . . . [44] in

good agreement with the empirical value Ωde,0/Ωdm,0 = 2.669 ± 0.08. The postulate
from Equation (A51) means that the fundamental constant A is equal to the present DE
energy density (more precisely ρΛc2/ ln(ρP/ρΛ)). This can be viewed as a strong cosmic
coincidence [35,44] giving to our epoch a central place in the history of the universe.

Notes
1 We have assumed that n is an integer. However, it can be shown that this asymptotic behavior remains valid when n is a

real number.
2 The notation ρm stands either for pressureless DM density or for rest-mass density.
3 More precisely, our model has the same number of parameters as the ΛCDM model. In principle, these parameters should be

determined from the observations for each value of n. For convenience, we shall use the values of Ωm,0 and ε0 obtained from the
ΛCDM model taken as a reference. In that case, there is no undetermined parameter in our model except, of course, the value
of n.

4 We can note that Equation (62) is a second degree equation in ln(ρm/ρP).
5 We recall that the logotropic model is not aimed at describing the early inflation.
6 Some concerns could arise regarding the procedure we use to find out the constraint on the parameter n. Indeed, we first fix the

values of Ωm,0 and H0 by following the ΛCDM model, and then, by evaluating the age of the Universe in the logotropic model,
we conclude that models with n > 3 are excluded. A better procedure would be to evaluate all the parameters of the logotropic
model directly from observational data to determine the age of the Universe. However, this procedure would imply determining
the values of the observables in terms of n, which is a long and arduous process. This, however, would not change the main
conclusion regarding the constraint on n because the predicted values of the observables are very similar in both models (for not
too large values of n). Therefore, we can use the ΛCDM values as a reference to determine the values of the observables in the
logotropic model (see footnote 3).

7 The speed of sound is real in the normal regime dε/dρm > 0 and imaginary in the phantom regime dε/dρm < 0. It becomes
infinite (before becoming imaginary) when we enter into the phantom regime, i.e., when dε/dρm = 0.

8 The equivalence between the one-fluid model and the two-fluid model is lost when we consider the theory of perturbations and
the formation of structures.
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