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Abstract: In this review, we collect, for the first time, old and new research results, and present future
perspectives on how hadron production, in high-energy scattering processes, can experimentally
probe fundamental questions of quantum gravity. The key observations that ignited the link be-
tween the two arenas are the so-called “color-event horizon” of quantum chromodynamics, and
the (de)accelerations involved in such scattering processes. Both phenomena point to the Unruh
(and related Hawking)-type effects. After the first pioneering investigations, such research studies
continued, including studies of the horizon entropy and other “black-hole thermodynamical” behav-
iors, which incidentally are also part of the frontier of the analog gravity research itself. It has been
stressed that the trait d’union between the two phenomenologies is that in both hadron physics and
black hole physics, “thermal” behaviors are more easily understood, not as due to real thermalization
processes (sometimes just impossible, given the small number of particles involved), but rather to a
stochastic/quantum entanglement nature of such temperatures. Finally, other aspects, such as the
self-critical organizations of hadronic matter and of black holes, have been recently investigated. The
results of those investigations are also summarized and commented upon here. As a general remark,
this research line shows that we can probe quantum gravity theoretical constructions with analog
systems that are not confined to only the condensed matter arena.

Keywords: analogs; hadronic physics; quantum gravity

1. Introduction

Analogs have reached a level of maturity in theoretical modeling, e.g., [1], and exper-
imental modeling, e.g., [2], which might bring them to the forefront in the experimental
search for quantum gravity (QG) signatures, or, in general, in the theoretical research in
fundamental high-energy physics, see, e.g., the contribution [3] to this Issue.

There are two obstacles. First, there is the skepticism of a large part of the theoretical
community, which still do not trust analogs as a way to test the fundamental ideas; second,
the need for a new era in the analog enterprise, namely to reach dynamical effects, rather
than kinematical effects 1.

Here, we describe a line of research, initiated in [5,6], which addresses both problems.
We focus on a specific high-energy scenario, where the effects of a large acceleration are
evident; much of the subsequent work was carried out to understand the meaning of
entropy in this context and its relation to BH entropy, which is a typical dynamical issue
(e.g., recall that Wald’s formula relates entropy to the action [7]).

The reproduction of aspects of gravitational physics, both classical and quantum,
by means of analogs, is mainly based on condensed matter systems. Examples range
from lasers [8–12] (see also the contribution [13] to this issue) to water-waves [14], and
from Bose–Einstein condensates [2] to graphene [15–25], and more [1].

Universe 2022, 8, 482. https://doi.org/10.3390/universe8090482 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8090482
https://doi.org/10.3390/universe8090482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-5617-8102
https://orcid.org/0000-0002-1411-2404
https://orcid.org/0000-0003-3610-6328
https://doi.org/10.3390/universe8090482
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8090482?type=check_update&version=2


Universe 2022, 8, 482 2 of 22

In particular, the detection of some form of the Unruh phenomenon [26–28] has been
proposed in various set-ups [8–11,14,17,18,29–31]. However, in many of the proposed
analog systems, the Unruh temperature

TU =
h̄a

2πckB
(1)

is still too small [5] for a direct experimental verification, as one sees that 1 m/s2 →∼
4× 10−21 K. In (1), a is the uniform acceleration, and we explicitly kept the Planck constant,
the speed of light, and the Boltzmann constant to ease the unit conversion. In the following,
we shall set to one h̄,c and kB.

Some encouraging results come from femtosecond laser pulses that can produce an
acceleration a ' 1023 m/s2 [11], with the associated Unruh temperature TU ∼ 400 K. On the
other hand, the enormous accelerations (or decelerations) produced in relativistic heavy
ion collisions, a ' 4.6× 1032 m/s2, have associated Unruh temperatures many orders of
magnitude larger, TU ∼ 1.85× 1012 K. A simple unit conversion shows that this is nothing
else than the hadronization temperature Th

TU ∼ 160 MeV ∼ Th . (2)

This fact triggered the investigation of hadron production, in high-energy collisions, as a
manifestation of the Unruh phenomenon in quantum chromodynamics (QCD) [5,6].

Of the latter we discuss it in this paper, by reviewing why such an interpretation is
natural, commenting on the various ramifications, and speculating on the possible future
directions. In other words, we elaborate on which aspects of this QCD phenomenology can
be taken as viable analogs of specific aspects of QG.

The underlying idea behind the latter analogies is based on quark confinement as a
phenomenon where a “horizon” (sometimes called “color horizon”, see, e.g., [32,33]) hides
those degrees of freedom to any observer, and only quantum (tunneling) effects could
explain a radiation phenomenon [5]. This is a non-perturbative quantum phenomenon, re-
lated to the chromomagnetic properties of the QCD vacuum (see for example reference [34]),
producing the squeezing of the chromoelectric field in quark–antiquark strings, with a
constant energy density. Let us comment a bit more on this.

Quark confinement can be described as due to a potential that grows linearly at
large distances, V = σr. This corresponds to a constant acceleration; henceforth, the
Rindler spacetime is the appropriate framework for this phenomenon. As well known,
the Rindler metric is equivalent to the near-horizon approximation of the BH metric,
with the acceleration equal to the surface gravity, k. Therefore, the local correspondence
between a linear potential and the near-horizon dynamics of a BH is a strong analogy.

This is another perspective as to why quark confinement can be related to a “color
horizon” [32,33], which hides the color degrees of freedom and a Rindler horizon, and
is, in turn, associated with a specific BH (in [35], some proposals of specific BHs could
account for this specific scenario). On the other hand, the Hawking radiation is a quantum
phenomenon associated with tunneling and pair creation near the event horizon [36,37].
This is a clear dynamical correspondence to the string-breaking and quark–antiquark pair
creation in the final process of the mechanism leading from the color degrees of freedom
until the formation of hadrons.

Finally, another delicate dynamical issue involves the entropy associated with a “color
event horizon”. This is an entanglement entropy between the quantum field modes on
the two sides of the horizon. As well known, such an entropy follows an area law [38–40],
similar to the entropy of a BH [41,42], when logarithmic corrections are not included,
or the entropy of a Rindler horizon [43]. Even though it is still an open question whether
entanglement entropy alone could account for the whole BH entropy, this is yet another
argument that strengthens the analogy between the two systems. Furthermore, in such QCD
environments, the entropy is a quantity routinely considered, e.g., in (quantum) statistical
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models. Henceforth, we have measurable and natural candidates for quantities that can
play the role of a BH entropy. As mentioned earlier, this is a very important milestone to
move analogs to the next era; that is, the possibility to reproduce BH thermodynamics,
with its intriguing fundamental open questions, such as the information paradox. For the
sake of completeness, let us recall that the general Page approach (i.e., to the calculation
of the entanglement entropy of an evaporating BH [44]) has been successfully applied to
gluon shadowing in deep inelastic scattering [45], following the proposal in [46].

In this review paper, we collect, for the first time, the most important (old and new)
results of this line of research; we comment on and discuss them. The paper is organized as
follows. In Section 2, we recall the main features of the Unruh effect, and of the related BH
physics, using the descriptions of the effects that make the link with hadron physics (that we
want to disclose) easier; this Section is also important for setting the notation. In Section 3,
we recollect three well-known aspects of the phenomenology of hadrons, which will be
scrutinized using the analogies and links with gravitational physics in the Sections that
follow. The hadronic phenomena described in Section 3.1 are reinterpreted as gravity
analogs in Section 3.2; the hadronic phenomena described in Section 4 are reinterpreted as
gravity analogs in Section 4.2; finally, the hadronic phenomena described in Section 5 are
reinterpreted as gravity analogs in Section 5.2. We close the review with our conclusions in
Section 6.

2. Accelerated Observers and near BH Horizon Observers

In this Section, we recall the main features of the Unruh effect, and the related BH
physics, which will mostly be used in the realizations in hadronic physics, which we discuss
later. In particular, we first discuss the interplay between pair production, tunneling, and
the Unruh effect. We then mention the correspondence between the near-horizon BH metric
and Rindler metric, and the area law obeyed by BH entropy.

Let us begin by discussing the Unruh effect and its relation to tunneling and pair
production. For this part, we follow [5].

Consider the action, A, of a particle of mass m, subject to a constant force derived from
a potential ϕ(x):

A = −
∫

(m ds + ϕ dt) . (3)

For a constant force, the one-dimensional (1D) potential is ϕ = −σx modulo, an additive
constant, and the equations of motion of the particle are

dpx

dt
= σ,

dp⊥
dt

= 0 . (4)

Using ds2 = (1− v2(t)) dt2 and the equations of motion, one can evaluate action A [5]

A(τ) =
∫ τ

dt (−m
√

1 − v(t)2 + σx(t))

= − m
a

arcsinh(aτ) +
σ

2 a2 [a τ (
√

1 + a2 τ2 − 2) + arcsinh(a τ)] + const . (5)

In quantum theory, the particle has a finite probability to be found under the potential
barrier, σx, in the classically forbidden region. Mathematically, this comes about because
action A, being an analytic function of τ, has an imaginary part

A(τ) =
m π

a
− σπ

2 a2 =
π m2

2σ
, . (6)

which corresponds to the motion of a particle in Euclidean time, tE, with the Euclidean
trajectory

x(tE) = a−1
(√

1 − a2 t2
E − 1

)
, (7)
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bouncing between the two identical points xa = −a−1 at tE,a = −a−1 and xb = −a−1 at
tE,b = a−1, and the turning point xa = 0 at tE,a = 0.

In the quasi-classical approximation, the rate of tunneling under the potential barrier
is given by

Γvac→m ∼ e−2 ImA = e−
π m2

σ , (8)

which gives the probability to produce a particle and its antiparticle (each of mass m) out of
the vacuum, under the effects of a constant force σ. The ratio of the probabilities to produce
states of masses M and m is then

Γvac→M
Γvac→m

= e−
π (M2 −m2)

σ . (9)

The relation (9) had a double interpretation, in terms of both the Unruh and the
Schwinger effects, see, e.g., [47–49] and references therein. Indeed, consider a detector with
quantum levels m and M, moving with a constant acceleration. Each level is accelerated
differently; however, if the splitting is not large, M−m� m, we can introduce the average
acceleration of the detector

ā =
2σ

M + m
. (10)

Substituting (10) into (9), we arrive at

Γvac→M
Γvac→m

= e
2 π (M−m)

ā . (11)

This expression is reminiscent of the Boltzmann probabilistic weight in a heat bath, with an
effective temperature, T = ā/2π. This is the Unruh effect.

A similar study of the Unruh radiation (tunneling through a barrier by WKB-like
methods) was carried out in [50]. A more rigorous derivation of the Unruh effect can
be given by recalling that the uniformly accelerated detector in the Minkowski space is
equivalent to the inertial detector in the Rindler space. The vacuum in the Minkowski space
is related to the vacuum in the Rindler space by a nontrivial Bogoliubov transformation,
which shows that the Rindler vacuum is populated with thermal radiation of temperature
T = a/2π (for a review, see [28]).

We will now focus on another aspect of the Hawking–Unruh phenomenon that is
crucial for the analogy between quark confinement and the physics of curved spacetime
(which we shall discuss later)—the correspondence between the Rindler metric and the
near-horizon approximation of a BH metric.

The Schwarzschild metric for a BH of mass M, in radial coordinates, is given by

ds2 = f (r)dt2 − f (r)−1 dr2 − r2[dθ2 + sin2 θdφ2], (12)

with

f (r) =
(

1− 2GM
r

)
. (13)

The equation f (r) = 0 sets the Schwarzschild radius, RS, as the radius of the spherical
event horizon

RS = 2G M. (14)

This means that M(RS) = (2G)−1 RS, which is a linear law for the BH mass. This is
particularly interesting if one notices that an analogous behavior is enjoyed by the confining
potential of the strong interactions.

In Equation (12), the coordinate transformation [39] is

η =

√
f (r)
κ

, (15)
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where the surface gravity κ is given by

κ =
1
2

(
∂ f
∂r

)
r=RS

, (16)

one obtains, for r → RS, the BH metric in the near-horizon approximation

ds2 = η2κ2dt2 − dη2 − R2(dθ2 + sin2θdφ2) . (17)

To compare the previous result with the Rindler metric of a constantly accelerated
observer, let us recall the relations among Rindler coordinates, (ξ, τ) and the Minkowski
coordinates (x, t)

x = ξ cosh aτ , t = ξ sinh aτ, (18)

where a = σ/m denotes the acceleration in the instantaneous rest frame of m, and τ
is the proper time. With these, the metrics of such an accelerating system (in spherical
coordinates) are

ds2 = ξ2a2dτ2 − dξ2 − ξ2 cosh2 aτ(dθ2 + sin2 θdφ2) . (19)

Comparing Equations (19) and (17), it is evident that the system in uniform acceleration is
the same as a system near a spherical BH horizon, provided we identify the surface gravity
κ with the acceleration a.

The final topic of this Section will be entropy and its area law, a feature common to
BH and constantly accelerated systems.

The gravitational entropy is related to the existence of a horizon, which forbids an
observer to acquire knowledge (or what is happening beyond it). In a way, it could be seen
as a measure of the ignorance of the fate of matter (and space) degrees of freedom that
contribute to making the BH.

As well known, such entropy obeys the Bekenstein–Hawking area law [41,42]:

SBH =
1
4

A
`2

P
, (20)

where `P =
√

G is the Planck length, and, for Schwarzschild BH: A = 4πR2
S. Once more

the only parameter of interest is the mass of the BH: M ∼ RS.
On the other hand, it is also well known that access to the degrees of freedom describ-

ing an accelerated observer is also restricted by a horizon—the Rindler horizon. Therefore,
the entropy of the so-called Rindler wedge was evaluated (similar to the BH). The compu-
tation was performed a long time ago [43], and it turns out that S = (1/4) (Aa/`2

P), where
Aa is the area of a surface of the constant Rindler spatial coordinate, x, and the proper time,
τ. If yandz are the Minkowski coordinates (we suppose that the acceleration is along the
x-axis), the entropy is actually infinite; however, an entropy density, per unit area, can be
defined for this spacetime.

Finally, we recall another well-known result, namely that the entanglement (hence,
quantum) entropy of a bipartite system (which includes both the Rindler and the BH cases
just discussed, due to their event horizons) also obeys an area law. This has been shown in
various quantum field theoretical setups, see, e.g., [38–40].

In the following, we schematically recall those results of the phenomenological analysis
of high-energy collision data, which will then be reconsidered in light of the gravity analog,
in a separate dedicated Subsection.
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3. Hadron Production in High-Energy Collisions
3.1. Statistical Hadronization Model

There is abundant multihadron production in high-energy collisions, starting from the
electron-positron annihilation, and then in the proton–proton, proton–nucleus, and nucleus–
nucleus scattering processes. The relative rates of the secondaries produced are well
accounted for by ideal gases of all hadrons and hadronic resonances, at a fixed temperature
T and baryochemical potential µB. This is known as the statistical hadronization model
(SHM) [51–53]. There is one (well-known) caveat though. The strangeness production one
finds is reduced with respect to the rates predicted by the SHM. However, this suppression
can be taken into account by one further parameter, 0 < γs ≤ 1, if the predicted rate for a
hadron species containing ν = 1, 2, 3 strange quarks is suppressed by the factor γν

s [54].
To describe such a resonance gas, the basic tool one needs is the grand-canonical

partition function for an ideal gas at the temperature T in a spatial volume V

ln Z(T) = V ∑
i

diγ
νi
s

(2π)3 φ(mi, T) , (21)

with di specifying the degeneracy (spin, isospin) of the species i, and mi its mass. The sum
runs over all species. For simplicity, we assume for the moment µB = 0. Here,

φ(mi, T) =
∫

d3 p exp{
√

p2 + m2
i /T} ∼ exp(−mi/T) , (22)

is the Boltzmann factor for species i, so that the ratio of the production rates, Ni and Nj,
for hadrons of species i and j, is given by

Ni
Nj

=
diγ

νi
s φ(mi, T)

djγ
νj
s φ(mj, T)

, (23)

where νi = 0, 1, 2, 3 specifies the number of strange quarks in species i.
Both the temperature T and strangeness suppression factor γs were measured, at vari-

ous collision energies, and for different collision configurations. The resulting temperature
of the emerging resonance gas is found to have a universal value

Tc ' 160± 10 MeV , (24)

for all (high) collision energies, where µB ' 0 and all collision configurations, including
hadron production in the e+e− annihilation.

Moreover, in heavy ion collisions at lower energy, the finite baryon density has a
crucial role and the dynamics are dominated by Fermi statistics and baryon repulsion.
In the T− µB plane, the dependence of the hadronization temperature on µB defines the
chemical “freeze-out” curve, which can be described by specific (but poorly understood,
see next Section) criteria [55–59].

Indeed, a fixed ratio between the entropy density, s, and the hadronization temperature,
s/T3 ' 7, or the average energy per particle, < E > /N ' 1.08 GeV reproduces the curve
in the T − µB plane, as shown in Figure 1, where the percolation model result [55] is
also plotted.
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Figure 1. Freeze-out curve in the statistical hadronization model compared with the criteria discussed
in the text. The green squares without error bars are the QCD lattice simulation data.

The agreement of the SHM with data on the abundances of different hadronic species,
from e+e− annihilation to heavy ion collisions, is puzzling. In heavy ion collisions, it is pos-
sible to expect the emergence of statistical distributions as a result of intense reinteractions;
however, this seems very implausible in the e+e− annihilation at high energies because the
density of the produced hadron is small there.

Moreover, in e+e−, the jet structure, the angular distributions of the produced hadrons,
and the inter–jet correlations, point to the important role of QCD dynamics of gluon
radiation. Thus, the “phase space dominance” cannot be invoked. Indeed, in all high-
energy collisions, for

√
(s) ≥ 20 GeV, the hadronization temperature is essentially constant

and independent from the initial configurations.
The previous aspects call for some universal mechanism at the root of hadron produc-

tion, which has to be related to the way the QCD vacuum responds to color fields.

3.2. Analog Gravity Interpretation of the SHM and the QCD Hawking–Unruh Radiation

As mentioned in the introduction, the phenomenology of quark confinement can be
seen as the effect of a Rindler force due to the string tension, σ. Let us now describe this
phenomenon in more detail.

We recall in Section 2 that the basic mechanism of the Unruh radiation involves
tunneling through the confining event horizon. This is most simply illustrated by hadron
production through the e+e− annihilation into a q pair, see Figure 2.

γ

e−e+

*

qq

ee+ −

q q
q

1
q

1

Figure 2. Quark formation in the e+e− annihilation
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The first quark–antiquark pair, qq̄, initially tries to separate. The attempt stops when
both quarks hit the confinement horizon, i.e., when they both reach the end of the binding
string, where their separation is R. At that point, the attempt to separate can only continue
if a further quark–antiquark system is excited from the vacuum. Although the new pair,
q1q̄1, is at rest, in the overall center of mass system, each constituent has a transverse
momentum kT , determined by the uncertainty relation in terms of the transverse dimension
of the string flux tube. The string theory [60] for the basic thickness gives

rT =
√

2/πσ , (25)

leading to
kT =

√
πσ/2 . (26)

The maximum separation distance R is specified by

σR = 2
√

m2
q + k2

T = 2kT , (27)

where we take mq = 0 for the quark mass. From this, we obtain

R =
√

2π/σ , (28)

as the string-breaking distance. The departing quark q now pulls the newly formed q̄1
along, giving it an acceleration [6]

a =
√

2πσ . (29)

The q1q̄1 pair eventually suffers the same fate as the q pair: it is separated to its confinement
horizon, where it again excites a new pair, which is now emitted as the Unruh radiation of
temperature

Th = a/2π =
√

σ/2π , (30)

that is also the hadronization temperature, as we shall see in a moment. This process is
sequentially repeated until the energies of the initial “driving” quarks q and q̄ are exhausted.

The case of the e+e− annihilation corresponds to baryochemical potential, µB = 0.
Here, one finds the average value σ ' 0.19 ± 0.03 GeV2, see, e.g., [61], which with
Equation (30) then leads to

Th(µB = 0) =
√

σ/2π ' 175± 15 MeV . (31)

for the freeze-out temperature at µB = 0.
The fundamental mechanism in the Unruh scenario is quark (de)acceleration, leading

to the string-breaking with the resulting pair production, as specified by Equation (27).
As long as we assume a vanishing quark mass, the only dimensional parameter in the
entire formalism is the string tension σ.

Therefore, the Unruh hadronization temperature is “universal”; this explains the obser-
vation of thermal hadron production in high-energy collisions in e+e− and pp interactions.
In this respect, the emitted hadrons are “born in equilibrium” [62,63].

The previous analysis shows that the hadronization temperature corresponds to the
Unruh temperature related to the string-breaking in high-energy collisions, where µB ' 0.

As discussed, the dependence of the hadronization temperature on µB defines the
chemical “freeze-out” curve, which turns out to be in agreement (see Figure 1) with a fixed
ratio between the entropy density, s, the hadronization temperature, s/T3 ' 7, and/or the
average energy per particle, < E > /N ' 1.08 GeV, and/or n ' 0.12 fm−3, where n is the
number density.

Although the Unruh mechanism and the string-breaking provide theoretical bases for
the production of newly formed hadrons in high-energy collisions, they do not address the
roles of the nucleons already present in the initial state of the heavy ion collisions. However,
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the corresponding hadron formation gives clear meaning to the figures that characterize
the whole freeze-out curve.

Indeed, as discussed in [64], the energy of the pair produced by string-breaking, i.e., of
the newly formed hadron, is given by (cf Equations (26) and (27))

Eh = σR =
√

2πσ . (32)

In the central rapidity region of high-energy collisions, one has µB ' 0, so that Eh is, in
fact, the average energy 〈E〉 per hadron, with an average number 〈N〉 of newly produced
hadrons. Hence, one obtains

〈E〉
〈N〉 =

√
2πσ ' 1.09± 0.08 GeV , (33)

in accordance with the phenomenological fit obtained from the species abundances in
high-energy collisions [56,58].

Next, we turn to the number density. For a single string-breaking, the number density
is given by

nsb '
1

4πR3/3
, (34)

where R is the string-breaking distance, which turns out to be R = 1/Th for massless quarks.
For Th ' 160 MeV, consistent with our previous evaluation, one obtains nsb ' 0.129 fm−3.

Let us now consider the entropy. Since the event horizon is caused by color confine-
ment, such entropy is an entanglement entropy of quantum field modes on both sides of
the horizon (recall that, here, we have no real gravitational degrees of freedom). Its general
form is [39,40]

Sent = α
A
r2 , (35)

where A is the area of the event horizon, r the scale of the characteristic quantum fluctua-
tions, and α an undetermined numerical constant, which might as well be infinite. This
expression shares the holographic structure (holography of entanglement entropy is a
general result, see [38,65]) with the Bekenstein–Hawking entropy [41,42] for a BH given
in (20)

SBH =
1
4

A
`2

P
.

A relation similar to (20) also holds in the case of an accelerated observer [43]. Here,
we take it to be valid in our case, where gravity is not involved and the entire entropy must
be of the entanglement type. The scale of the characteristic quantum fluctuations is now
given by the transverse string thickness in Equation (25), rather than the Planck length, `P,
of the gravitational phenomena. One obtains

Sh =
1
4

Ah

r2
T

=
1
4

4πR2

r2
T

, (36)

for the entropy in the hadron production. The parameter R is given by Equation (28), and
inserting these expressions into Equation (36) for the entropy associated with the hadron pro-
duction gives

Sh = π3 , (37)

and the entropy density, s = Sh/V (here, V = 4/3πR3), divided by T3, turns out to be

s
T3 =

Sh
(4π/3)R3T3 =

3π2

4
' 7.4 , (38)
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as the freeze-out condition in terms of s(T) and T. This result is in accordance with the
value obtained for s/T3 from species abundance analyses in terms of the ideal resonance
gas model [58,59]. Moreover, within this picture, one can show [66] that QCD entropy,
evaluated by lattice simulations in the region Tc < T < 1.3Tc, is in reasonable agreement
with a melting color event horizon.

The analogy between the freeze-out temperature as a function of µB and the Hawking
temperature for charged BH is discussed in [6]; another interesting aspect is that it can
be translated to the temperature dependence on the collision energy

√
s, by considering

µB(
√

s) [67].
Since the Unruh temperature triggers the search for the gravitational BH, which in

its near-horizon approximation better simulates the hadronization phenomenon, one can
study which BH behind that Rindler horizon could reproduce the experimental behavior
of T(

√
s). Although the complete hadronization process is in 4D spacetime, the hadronic

Rindler spacetime should be better consider as the near-horizon approximation of the
effective two-dimensional (2D) BH analog for the following two reasons

• New particle creation is effectively 2D because it can be described in terms of the
evolution in time of the hadronic strings, which are one-dimensional objects [68].

• The near-horizon field dynamics are effectively 2D [36,69].

Provided certain natural assumptions hold, it has been shown [35] that the so-called
exact string BH in 2D dilaton gravity [68] turns out to be the best candidate, as it fits the
available data on T(

√
s), and that its limiting case, the Witten BH, is the unique candidate

to explain the constant T for all elementary scattering processes at large energies.
To conclude this Section, we now turn to the strange quark mass and the interpretation

alla Unruh of the strangeness enhancement.
At the beginning of this Section, we illustrated how the thermal hadron production

process is a Hawking–Unruh mechanism. In doing so, we neglected the effects of the quark
mass. If one includes them, the expression one obtains for acceleration is

aq =
σ

wq
=

σ√
m2

q + k2
q

, (39)

where wq =
√

m2
q + k2

q is the effective mass of the produced quark, with mq the bare quark
mass, and kq the quark momentum inside the hadronic system q1q̄1 or q2q̄2 (see Figure 3).
Since the string breaks [6] when it reaches a separation distance

xq '
2
σ

√
m2

q +
πσ

2
, (40)

the uncertainty relation gives us kq ' 1/xq

wq =
√

m2
q + [σ2/(4m2

q + 2πσ)] , (41)

for the effective mass of the quark. The resulting Unruh temperature depends on the quark
mass; thus it is given by

T(qq) ' σ

2πwq
. (42)

Here, it is assumed that the quark masses for q1 and q2 are equal. For mq ' 0, Equation (42)
reduces to T(00) '

√
σ/2π, as obtained in Equation (30).
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Figure 3. Sequential quark formation in the e+e− annihilation

If the produced hadron q̄1q2 consists of quarks of different masses, the resulting
temperature has to be calculated as an average of the different accelerations involved.
For one massless quark (mq ' 0) and one of strange quark of mass ms, the average
acceleration becomes

ā0s =
w0a0 + wsas

w0 + ws
=

2σ

w0 + ws
. (43)

From this, the Unruh temperature of a strange meson is given by T(0s) ' σ/π(w0 + ws)
with w0 '

√
1/2πσ and ws is given by Equation (4) with mq = ms. Similarly, we obtain

T(ss) ' σ/2πws for the temperature of a meson consisting of a strange quark–antiquark
pair (φ).

The scheme is readily generalized to baryons. The production pattern leads to an aver-
age of the accelerations of the quarks involved [70]. Thus, we have T(000) = T(0) ' σ/2πw0
for nucleons, T(00s) ' 3σ/2π(2w0 + ws) for Λ and Σ production, T(0ss) ' 3σ/2π(w0 + 2ws)
for Ξ production, and T(sss) = T(ss) ' σ/2πws for that of Ωs.

Thus, we obtain a resonance gas picture with five different hadronization temperatures,
as specified by the strangeness content of the hadron in question: T(00) = T(000), T(0s),
T(ss) = T(sss), T(00s), and T(0ss).

In other words, the event horizon of the color confinement leads to thermal behav-
ior, but the resulting temperature depends on the strange quark content of the produced
hadrons, causing a deviation from the full equilibrium and, hence, a suppression of strange
particle production, without the introduction of the γs parameter. The resulting formal-
ism was applied to the multihadron production in the e+e− annihilation over a wide
range of energies to make a comprehensive analysis of the data, in the conventional
(i.e., with γs) SHM and its modified Hawking–Unruh formulation [70,71]. The modified
SHM, with the different Unruh temperature, gives a better fit with respect to the standard
SHM formulation.

In the Hawking–Unruh formulation, the number of free parameters of the model does
not increase since all previous temperatures were completely determined by the string
tension and the strange quark mass. Apart from possible variations of the quantities of σ
and ms, the description is parameter-free.

In all cases, the temperature for a hadron carrying nonzero strangeness was lower
than that of non-strange hadrons and this led to an overall strangeness suppression in
elementary collisions, in good agreement with the data, without the introduction of the ad
hoc parameter γs. Figure 4 reports the comparison between the SHM with one temperature
and γs and the Hawking–Unruh-inspired approach.
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Figure 4. Comparison between the measured and fitted multiplicities of long-lived hadronic species
in e+e− collisions at

√
s = 91.25 GeV. (Left): statistical hadronization model with one temperature.

(Right): Hawking–Unruh radiation model. See [70].

On the other hand, in nucleus–nucleus (AA, “large systems”) collisions at
√

s ≥ 15 GeV,
the so-called strangeness enhancement with respect to e+e− and hadronic scattering (the
“small” systems) has been observed, which in the standard SHM is described by the con-
dition γs = 1 in AA with respect to γs ' 0.5− 0.6 in small systems. Moreover, the same
enhancement has been detected in proton–proton collisions at large energies and in large
multiplicity events [72].

The translation of alla Unruh (of the strangeness enhancement) requires that the differ-
ent temperature for various hadronic strangeness content disappear. Indeed, T(00), T(0s), . . .
are derived from the breaking of a single string with the corresponding average acceleration
and Unruh temperatures. On the other hand, as shown in reference [73], the universal-
ity among small and large systems is directly related to the initial parton density in the
transverse plane.

If the initial setting is different but the collision energy and the large multiplicity
cut produce initial states with similar entropy densities (i.e parton density in the trans-
verse plane), the hadron production and other coarse-grain dynamical signatures are the
same [73]. Therefore, for large parton density, there is a strong string overlap, as depicted
in Figure 5.

Let us outline, in a simplified model, the mechanism that washes out the strangeness
dependence of the Unruh temperature when, in a causally connected region, the parton
density in the transverse plane is large.

Assume two species only: one scalar meson and one electrically neutral meson; that is,
“pions” with mass mπ , and “kaons” with mass mk and strangeness s = 1.

Let us consider a high-density system of quarks and antiquarks in a causally connected
region for high-energy and high multiplicity events. Generalizing Equation (43), the average
acceleration is given by

ā =
Nlw0a0 + Nswsas

Nlw0 + Nsws
, (44)

where Nl >> 1, Ns >> 1 are, respectively, the number of light quarks and strange quarks.



Universe 2022, 8, 482 13 of 22

Figure 5. Left: Hadron production alla Unruh by a sequence of independent single string breakings.
Right: Hadron production due to the overlap of different color event horizons for large parton density.

By assuming Nl >> Ns, after simple algebra, the average temperature, T̄ = ā/2π,
turns out to be

T̄ = T(00)
[

1− Ns

Nl

w0 + ws

w0

(
1− T(0s)

T(00)

)]
+ O[(Ns/Nl)

2] , (45)

Now, in our “world of pions and kaons”, one has Nl = 2Nπ + Nk and Ns = Nk and,
therefore,

T̄ = T(00)
[

1− Nk
2Nπ

w0 + ws

w0

(
1− T(0s)

T(00)

)]
+ O[(Nk/Nπ)

2] . (46)

On the other hand, in the Hawking–Unruh-based statistical calculation, the kaon–pion
ratio, Nk/Nπ , depends on the equilibrium (average) temperature T̄; that is

Nk/Nπ =
m2

k
m2

π

K2(mk/T̄)
K2(mπ/T̄)

, (47)

where K2(x) denotes a Hankel function of a purely imaginary argument. Therefore, one
has to determine the temperature T̄ by self-consistency of Equation (46) with Equation (47).
This condition implies

2 [1− T̄/T(00)]w0

[1− T(0s)/T(00)](ws + w0)
=

m2
k

m2
π

K2(mk/T̄)
K2(mπ/T̄)

, (48)

which can be solved numerically. For σ = 0.17 Gev2, ms = 0.083 GeV (see Figure 4),
the solution gives T̄/T(00) ' 0.97.

In other words, this toy model shows that the non-equilibrium condition, with species-
dependent temperatures, converges to an equilibrated system, with the average tempera-
ture, T̄ ' T(00), for large parton density in a causally connected region.

4. Thermal Component in the Transverse Momentum Spectra
4.1. High-Energy Hadronic Processes

The transverse momentum, pT , and spectra of hadrons produced in high-energy
collisions, can be decomposed into two components: the exponential (or “soft”) component
and the power (or “hard”) component. Their relative strengths, in deep inelastic scattering
(DIS), depend drastically on the global structure of the event. Namely, the exponential
component is absent in the diffractive events characterized by a rapidity gap [74,75].

The hard component is well understood, resulting from the high-momentum transfer
scattering of quarks and gluons and their subsequent fragmentations. The “soft” component
is ubiquitous in high-energy collisions and appears as a thermal spectrum. In nuclear
collisions, given the high number of participants involved, one may expect thermalization
to take place; however, it is hard to believe that this might occur in processes such as DIS or
e+e− annihilation.
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In [76], it was found that the following parametrization well describes the hadron
transverse momentum distribution, both in hadronic collisions and in deep-inelastic scattering

dσ

pTdpT
= Atherm e−mT/Tth + Ahard

(
1 +

m2
T

n T2
th

)−n

. (49)

This clearly defines the soft/thermal components and the hard component parameterized

by Tth. Here, mT =
√

m2 + p2
T .

4.2. Analog Gravity Interpretation of the Origin of the Thermal Component in the Transverse
Momentum Spectra

The strength of the chromoelectric field, in a single string-breaking, is determined by
the string tension, and it describes the yields of the different hadronic species. However,
to discuss the transverse momentum spectra of the produced hadrons (see Section 4),
one has to take into account the increasing number of gluons in the wave functions of
the colliding hadrons. This can be done by the parton saturation [77], or color glass
condensate [78,79] picture. In this approach, the density of partons in the transverse
plane is parameterized by the saturation momentum Qs(s, η), which depends on the c.m.s.
collision energy-squared s and (pseudo-)rapidity η.

The temperature of the radiation from the resulting Rindler event horizon is given
by [5]

TU = Tth = c
Qs

2π
, (50)

where c is a constant [80]. Tth is related to the deceleration of partons in the transverse plane;
moreover, Qs = T in the parametrization of the hard component in Equation (22) [74].
Therefore, one predicts a proportionality between the Tth and T, which has been
verified [74,75].

The established proportionality of the parameters describing the thermal and hard
components of the transverse momentum spectra supports the theoretical picture in which
the soft hadron production is a consequence of the quantum evaporation from the event
horizon formed by the deceleration in longitudinal color fields. The absence of the thermal
component in diffractive interactions lends further support to this interpretation.

5. Self-Organization and Self-Similarity
5.1. Hadronic Spectrum

The typical illustration of self-organized criticality (SOC), proposed in the pioneering
work [81], is the ’avalanche dynamics’ of sandpiles. There, the number N(s) of avalanches
of size s observed over a long period was found to vary as a power of s, N(s) = αs−p. This
means that the phenomenon is scale-free, so the same structure is found, again and again,
at all scales. This phenomenon is often referred to as self-similarity: the system resembles
itself at all scales.

Another example of self-similarity is found when partitioning naturals. Given a
natural number, N ∈ N, we can decompose it (in mathematical jargon) into the natural,
whose sum gives N = ∑i Ni, with no distinction of the order of Nis entering the sum,
e.g., 3 = 2 + 1 and 3 = 1 + 2 would count the same as a decomposition of 3. On the other
hand, we also have compositions of N, which are decompositions of N in which the order
of the terms matters. In the following, according to the ’abuse’ of language in the physics
literature, we shall call the decompositions “unordered partitions of the integer” (UPIs)
and the compositions “ordered partitions of the integer” (OPIs).

The number of OPIs of N, say O(N), can be easily computed as

O(N) = 2N−1 . (51)
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In other words, the self-similarity pattern can be phrased as “large integers consist of
smaller integers, which in turn consist of still smaller integers, and so on...”.

Starting with the integer N, we need to know the number n(N, k) that specifies how
often a given integer k occurs in the set of all OPIs of N, e.g., considering N = 3, we have
n(3, 3) = 1, n(3, 2) = 2, and n(3, 1) = 5. To apply the formalism of SOC, we associate
a weight s(k) to each integer. The natural choice is s(k) = O(k) = 2k−1 and the number
n(N, k) we are looking for, in a scale-free scenario, is given by

n(N, k) = α(N)[s(k)]−p . (52)

For small values of N, n(N, k) is readily obtained explicitly and one finds that the critical
exponent is p ' 1.26.

The previous example is immediately reminiscent of the statistical bootstrap model of
Hagedorn [62,82–84]. There, we have “fireballs composed of fireballs, which in turn are
composed of smaller fireballs, and so on”. Indeed, its general pattern is shown to be due to
an underlying structure related to the OPIs [85].

More precisely, Hagedorn’s bootstrap approach proposes that a hadronic colorless
state, with overall mass m, can be partitioned into structurally similar colorless states.
Then, those component colorless states can be partitioned into structurally similar colorless
states, and so on. If the states were at rest, the situation would be identical to the OPI just
discussed. Since the constituent fireballs, though, have intrinsic motions, the number of
states, ρ(m), corresponding to a given mass m, is determined by the bootstrap equation,
which can be asymptotically solved [83]. This gives ρ(m) ∼ m−a exp(m/TH), and TH is the
solution of (

2
3π

)(
TH
m0

)
K2(m0/TH) = 2 ln 2− 1, (53)

with m0 denoting the lowest possible mass and K2(x) denoting a Hankel function of pure
imaginary argument. For m0 = mπ ' 130 Mev, this leads to the Hagedorn temperature

TH ' 150MeV , (54)

that is, approximately, the critical hadronization temperature found in statistical QCD.
The cited solution gives a = 3, but other exponents could also be considered.

The previous expression of ρ(m) is an asymptotic solution of the bootstrap equation,
which diverges for m→ 0; hence, it cannot hold for small masses. Using for ρ(m) a result
similar to the one obtained in the dual resonance model, Hagedorn proposed

ρ(m) = const.(1 + (m/µ0))
−a exp(m/TH) , (55)

where µ0 ' 1− 2 GeV is a normalization constant.
We should emphasize that the form of ρ(m) is entirely due to the self-organized nature

of the system. That is in no way a result of thermal behavior. We expressed the slope
coefficient of m in terms of the Hagedorn “temperature” only because we have the analog
gravity scenarios in mind, which will soon be discussed; however, by itself, this coefficient
is exclusively of combinatorial origin.

5.2. Analog Gravity Interpretation of the Partitions of Integers for BH Self-Similarity

The celebrated self-similarity at work in the hadronic spectrum, recalled in Section 5,
is typical of many physical setups that enjoy scale invariance, such as fractals, phase
transitions at the critical point, etc. [86]. Among those, BH self-similarity [87–89] is surely
one of the most interesting, if one wants to probe fundamental ideas of QG.

Some aspects of BH self-similarity are understood if one recalls that the Hawking
temperature, TH , of a Planck-sized BH (TH ≈ l−1

P , where lP is the Planck length) could be
viewed as the Hagedorn temperature in string theory [90–92]. At that temperature, BH
evaporation stops and a phase transition is expected to occur, in analogy to what hap-
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pens at the phase transition between the hadrons and the quark–gluon–plasma phase [93].
Nonetheless, to properly speak of self-similarity, one would need to make sense of state-
ments, such as, “large BHs could be viewed as formed by smaller BHs, formed in turn of
even smaller BHs, and so on...”

In the work [94], some steps were moved in that direction, and a link was established,
in simple terms, between the spaces of BH configurations and the OPI. This, in turn, shed
new light on BH self-similarity, in the plain terms of the statement quoted above. In what
follows, let us comment on this.

First, the model we refer to is the so-called “quantum BH” of Mukhanov and Beken-
stein [95–97]. In that approach, the area of the BH event horizon is quantized

A = α N l2
P , (56)

where N ∈ N and the “it from bit” [98] choice for the proportionality factor, α = 4 ln 2,
allows for a two-level spin-1/2 system description, ↑ or ↓, per given Planck cell. With these,
BH entropy, SBH , can be written as

SBH =
A

4 l2
P

= N ln 2 , (57)

which is the entropy of a quantum system living in a Hilbert (configuration) space of
dimension dimH = 2N , where each 2N configuration has the same statistical weight, e.g.,
see [99] for this and other approaches.

Thus, on the one hand, the number of OPIs of N, O(N) = 2N−1, whereas the number
of configurations of the quantum BH is given by C(N) = 2N . Therefore, if we want to
relate the two ways of counting configurations, one needs to find a 2-to-1 map from the
latter to the former.

In [94], this is achieved by distinguishing between BH configurations, differing not
only by how many spins are up and how many are down, as in other approaches [99],
but also by the position of the spin. The “spin-flip map”, there introduced, does the job
of halving the number of BH configurations in a consistent way (to associate spin states,
on the one hand, and with the OPI of N, on the other hand).

The 2-to-1 map works as follows: For any one given OPI of N, it associates the
two BH states that are obtained (one from the other) when all the spins that identify the
given configuration are flipped, ↑↔↓. Then, the rule that relates a given pair of BH (spin)
configurations to a given OPI is the following (for details see [94]):

When a spin is next to an opposite spin, i.e., when ↑ is next to ↓ or when ↓ is next to ↑, in the
OPI this corresponds to 1 + 1, e.g., (↑, ↓, ↑, . . .), and the spin-flips (↓, ↑, ↓, . . .) both correspond in
the OPI to the partition 1 + 1 + . . .. When the spin is likewise, it contributes with an integer that is
the sum of how many times the spin does not flip, e.g., (↑, ↑, ↓, . . .) and (↓, ↓, ↑, . . .) correspond in
the OPI to the partition 2 + . . ..

With these, one takes into account all possibilities; hence, the wanted 2-to-1 map from
the BH configurations to the OPI (the “spin-flip map”) is obtained. Having established
that, we want to see how the self-similarity patterns of the OPI can be imported into the
self-similarity of BHs.

To avoid overcounting some configurations or missing others, in [94], the authors
constructed an operation, +̂, which allowed obtaining the configuration space of the
given BH only once, for any given partition. If we indicate with N such 2N-dimensional
configuration space, and N1 + N2 + · · · = N is a given OPI of N, such an operation must
give N1+̂N2+̂ · · · = N. Doing so, we establish a one-to-one correspondence between the
OPI of N, and the way to combine the subspaces of N, corresponding to the OPI. We report
here the actual definition of such an operation:

Take each partition of N, say N1 + N2 = N, and write the spin configuration space associated
with the first number of the sum, N1. Then, take the tensor product of each representative with all
of the spin configurations of N2, explicitly including all spin-flipped configurations. The result of
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such an operation, N1+̂N2, is all of the spin configurations of N, with no redundant or missed
configuration. The operation gives the same result for each OPI of N, including those with more
than two terms. For the latter, one must start from the first term on the left, act with the second (as
described), and the result needs to be acted upon with the next term, and so on, until the end.

The trivial example is N = N, where no composition is performed. The first non-trivial
operation is 1 +̂ 1, which originates from the partition 1 + 1 = 2, so it must give 2:

1+̂1 =↑ ⊗ ↑↓ =
↑ ↑
↑ ↓ = 2 . (58)

Indeed, in the second-last term, the first line is one spin representative of 2, (↑, ↑), while the
second line is one spin representative of 1 + 1, (↑, ↓). The four-dimensional (2N = 22), full
configuration space, 2, is obtained when we spin-flip each final configuration: (↑, ↑),(↓, ↓)
and (↑, ↓),(↓, ↑). Notice that this is a general feature of this operation: one can consider
even just one single representative per each spin-flipped pair of the first term, perform
the operation as described earlier, and then to obtain all configurations at the end of the
procedure—apply the spin-flip.

We are now where we want to be. When N is the configuration space of a Mukhanov–
Bekenstein quantum BH, we have found the BH self-similarity; in plain terms, we were
searching for:

The configuration space, N, of a BH is made of the configuration spaces of smaller BHs, which
are made of configuration spaces of even smaller BHs, and again and again, until we reach N copies
of 1, the configuration space of the tiniest (elementary) BH.

To any of the 2N−1 OPIs of N, we can associate one of the 2N−1 OPIs of N

∑
i

Ni = N → ˆ∑iNi = N , ∑
j

Mj = N → ˆ∑jMj = N , . . . , (59)

where ∑̂iNi = N1+̂N2+̂ · · · , whatever pattern we find in the OPI of N, it is found in the
configuration space N of the BH, and then repeated for the smaller numbers, until we reach
the “quantum” of the BH space, 1.

A suggestive pattern is given by

N = 1+̂(N− 1) = 1+̂(1+̂(N− 2)) = 1+̂(1+̂(1+̂(N− 3))) = · · · = ˆ∑
N

i=11 . (60)

Here, one can say that when the configuration space of the tiniest BH, 1, is isolated from
the rest, this can be repeated until the complete splitting.

As wanted, in this picture, self-similarity does not require any change of description of
the degrees of freedom (e.g., from the evaporating BH to the long string [92], see also [90]).
What one does there is finds patterns within the configuration space of a given fixed BH.
We are not considering either BH evaporation or BH merging [100].

Let us conclude this part by saying that the constructions of [94] may solve the problem
we started with. On the other hand, they lack any dynamical consideration whatsoever,
as only kinematics was the concern there. No configuration is preferred to any other,
by virtue of the dynamical properties of the system. In other words, all configurations
were treated equally and this can only give back the entropy of (57), which, with a strong
abuse of the language, since we are in a quantum BH model, is sometimes referred to as
“classical entropy”.

This is likely something that will be fully amended only by the long-sought-for final
QG theory, see, e.g., [101], which will tell us how these fundamental (fermionic) degrees
of freedom (see, e.g., [102–104]) interact, and some, O(ln N), “quantum corrections” have
been put forward based on perturbative quantum considerations [105–110].

On the other hand, the simple (simplistic) approach of [94] has two advantages.
First, it is based on a non-interacting (free) spin model that some authors also consider
to be a viable candidate [102–104]. Second, in order to use an information–theoretical
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approach, the selection of specific configurations over others is not appropriate. In fact, if a
(quantum) BH has to be used as the ultimate (quantum) computer [111], then one expects
all configurations to be treated equally. The actual evolution of the quantum states should
not be fixed by a given spin model, but rather be governed by a specific Hamiltonian that
“implements” the given “computation”.

6. Conclusions

The interpretation of quark confinement as the effect of an (event) horizon for color
degrees of freedom naturally leads to the view of hadronization as ’quantum tunnel-
ing’ through such a horizon. With this view, hadron formation is the result of an Un-
ruh phenomenon, related to the string-breaking/string formation mechanism. This is
because the large-distance QCD potential generates a constant and large acceleration,
a ' 3.2 × 1033 m/s2, which is precisely what we need for a measurable Unruh effect,
TU ∼ 4× 1011K ∼ 170 MeV.

This opens up the way for a clear explanation of the thermal behaviors of both arenas—
hadron physics and BH physics. For instance, this immediately explains why the hadroniza-
tion temperature, Th, is universal when seen as a TU . Indeed, Th is found to be the same for
small and large initial collision settings, whereas TU is fixed, once and for all, by the value
of the acceleration, a. This also explains why hadrons are born in equilibrium.

In fact, the Hawking–Unruh radiation is an example of a stochastic rather than kinetic
equilibrium. The reason behind the randomization is not repeated (as well as casual
collisions among particles), but rather the quantum entanglement between the degrees
of freedom on the two sides of the barrier to the information transfer, which is the event
horizon. The temperature is then determined by the strength of the “confining” field.

In the chromodynamics counterpart of this phenomenon, described in this review,
the ensemble of all produced hadrons, averaged over all events, leads to the same equi-
librium distribution as obtained in the hadronic matter by kinetic equilibration. For a
very high-energy collision, with a high average multiplicity, even one event alone can
provide such equilibrium. The destruction of memory, which in kinetic equilibration
is achieved through many successive collisions, is here automatically provided by the
tunneling process.

The above are the physical fundamental aspects common to both types of phenomena.
On this, the analogy can be solidly established, and many results can be obtained, i.e.,
the string-breaking and BH entropy analogies, which reproduce the “magic numbers”
characterizing the freeze-out curve; the strangeness production, at low parton density,
which is due to different Unruh temperatures in the single string-breaking; at high-energy
and multiplicity, the large parton density, in the transverse plane, which removes the
different temperatures by string (or color event horizon) overlap, giving the strangeness
enhancement; or self-similar behavior, characteristic of the hadronic production, which has
driven research into the self-similarity of BH configurations.

Let us then close on an optimistic note, by stating that this new and original analog
system of QG has many other results to grasp.

In particular, Unruh radiation should exhibit both spatial and temporal coherence,
reflecting its quantum origin. In our case, the spatial coherence should be observable by
probing the phase correlation between particle jets. This correlation exists in the gravita-
tional case, although it cannot be detected since one particle of the pair remains trapped
inside the event horizon. Indeed, in the condensed matter analog of the Unruh effect, this
correlation has been observed [112].

Another interesting aspect concerns the relation between ’de-confinement’ and restora-
tion of the chiral symmetry. The Rindler metric corresponds to the near-horizon approxima-
tion of a black-hole metric. On the other hand, in the near-horizon approximation, the field
theory becomes conformal and effectively two-dimensional. Therefore, there is no way,
in the near-horizon approximation, to maintain a physical scale generated by symmetry
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breaking. From this point of view, the Unruh hadronization temperature and the critical
temperature of the restoration of chiral symmetry are deeply related.
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Note
1 In fact, different physical systems, governed by different Hamiltonians, Lagrangians, and equations of motion (dynamics) may

exhibit analog features, such as the emergence of some sort of horizon, as with the vast majority of cases used to probe the
Hawking–Unruh phenomenon [1]. This is similar to taking a snapshot of the evolution of the analog system, precisely when
this “looks like” the target system (or, we believe it should “look like” the target system). With this, we can study the behavior
of the target system using the analog system at that particular stage of the evolution. It is much more important though to be
able to keep going, even just a little bit. Namely, it is important that the evolution of the analog system is similar to the one of
the target system, at least in certain conditions and within a limited range. When this happens, we have a much better analog
that can furnish much more information on the target system (these are the analogs introduced in the famous Feynman lecture
of electrostatics [4]). This is particularly important when one wants to face issues, such as black-hole (BH) evaporation, which
is a phenomenon intimately associated with the dynamics of the gravitational field and something impossible to capture in a
single “snapshot”.
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