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Abstract: Here, we considerably develop the methods of power geometry for a system of partial
differential equations and apply them to two different fluid dynamics problems: computing the
boundary layer on a needle in the first approximation and computing the asymptotic forms of
solutions to the problem of evolution of the turbulent flow. For each equation of the system, its
Newton polyhedron and its hyperfaces with their normals and truncated equations are calculated.
To simplify the truncated systems, power-logarithmic transformations are used and the truncated
systems are further extracted. Here, we propose algorithms for computing unimodular matrices of
power transformations for differential equations. Results: (1) the boundary layer on the needle is
absent in liquid, while in gas it is described in the first approximation; (2) the solutions to the problem
of evolution of turbulent flow have eight asymptotic forms, presented explicitly.

Keywords: asymptotic form of solutions; differential sum; polyhedron; normal; truncated system;
power transformation; logarithmic transformation; unimodular matrix

MSC: 35C20; 35Q15

1. Introduction

A universal asymptotic nonlinear analysis is formed, whose unified methods allow
finding asymptotic forms and expansions of solutions to nonlinear equations and systems
of different types:

• Algebraic;
• Ordinary differential equations (ODEs);
• Partial differential equations (PDEs).

This calculus contains two methods:

1. Transformation of coordinates, bringing equations to normal form;
2. Separating truncated equations.

Two kinds of coordinate changes can be used to analyze the resulting equations:

1. Power;
2. Logarithmic.

In this paper, we consider systems of nonlinear partial differential equations in
two variants:

1. With boundary conditions;
2. Without boundary conditions.

We show how to find asymptotic forms of their solutions using algorithms of power
geometry. In this case, by asymptotic form of solution, we mean a simple expression in
which each of the independent or dependent variables tends to zero or infinity.
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Here, we consider two fluids problems: (1) boundary layer and (2) turbulence flow by
methods of power geometry.

For problem (1), it was firstly given in [1] (Chapter 6, Section 6). The usual approach
was in papers [2] and [3]; see also [4,5]. For the new approach via power geometry, see [6],
and here in Section 3. A boundary layer on a needle has a stronger singularity than on a
plane, and it was first considered in [6]. We are not sure that it is possible with the usual
analysis. Our approach is, in some sense, opposite to the approach in [7].

For problem (2), we firstly make it here and we are not sure that it is possible with the
usual analysis. Our approach is, in a sense, opposite to the approach in [8].

The structure of the paper is as follows. Section 2 outlines the basics of power geometry
for partial differential equations. These are applied in Section 3 to calculate the boundary
layer on the needle. In Section 4, the theory and algorithms are further developed to apply
to variant 2 problems. In Sections 5–7, they are used to compute asymptotic forms of
evolution of turbulent flow. Section 8 contains a summary of the computed asymptotics in
the above sections.

2. Basics of Power Geometry

For more detail, see [1] (Chapters VI–VIII).
Let X = (x1, . . . , xm) ∈ Cm be independent and Y = (y1, . . . , yn) ∈ Cn be dependent

variables. Place Z = (X, Y) ∈ Cn+m. Differential monomial a(Z) is a product of an ordinary
monomial cZR = czr1

1 · · · z
rm+n
m+n, where c = const ∈ C, and a finite number of derivatives of

the form
∂lyj

∂xl1
1 · · · ∂lm xm

≡
∂lyj

∂XL , lj > 0,
m

∑
j=1

lj = l, L = (l1, . . . , lm). (1)

The differential monomial a(Z) corresponds to its vector exponent of degree Q(a) ∈
Rm+n, formed by the following rules:

Q
(

ZR
)
= R, Q

(
∂lyj/∂XL

)
= (−L, Ej), (2)

where Ej is the unit vector. The product of monomials corresponds to the sum of their
vector exponents of degree:

Q(ab) = Q(a) + Q(b).

Differential sum is the sum of differential monomials:

f (Z) = ∑ ak(Z). (3)

The set S( f ) of vector exponents Q(ak) is called support of sum f (Z). The closure of
the convex hull

Γ( f ) =
{

Q = ∑ λjQj, Qj ∈ S, λj > 0, ∑ λj = 1
}

of the support S( f ) is called the polyhedron of the sum f (Z). The boundary ∂Γ of the
polyhedron Γ( f ) consists of generalized faces Γ

(d)
j , where d = dim Γ

(d)
j , 0 6 d 6 m + n− 1.

Each face Γ
(d)
j corresponds to:

• Normal cone

U(d)
j =

{
P ∈ Rm+n

∗ :
〈

P, Q′
〉
=
〈

P, Q′′
〉
>
〈

P, Q′′′
〉
, where Q′, Q′′ ∈ Γ

(d)
j , Q′′′ ∈ Γ\Γ(d)

j

}
,

where the space Rm+n
∗ is conjugate to the space Rm+n, 〈·, ·〉 is a scalar product;

• Truncated sum

f̂ (d)j (Z) = ∑ ak(Z) over Q(ak) ∈ Γ
(d)
j

⋂
S.
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Consider a system of equations:

fi(X, Y) = 0, i = 1, . . . , n, (4)

where fi are differential sums. Each equation fi = 0 corresponds to:

• Its support S( fi);

• Its polyhedron Γ( fi) with a set of faces Γ
(di)
ij in the main space Rm+n;

• Set of their normal cones U(di)
ij in the dual space Rm+n

∗ ;

• Set of truncated equations f̂ (di)
ij (X, Y) = 0.

The set of truncated equations

f̂ (di)
iji

(X, Y) = 0, i = 1, . . . , n, (5)

is a truncated system if the intersection is not empty:

U(d1)
1ji
∩ · · · ∩U(dn)

njn . (6)

A truncated system is always a quasi-homogeneous system.
In the solution of the system (4),

yi = ϕi(X), i = 1, . . . , n, (7)

where ϕi are series in powers of xk and their logarithms, each ϕi corresponds to its support,
polyhedron, normal cones ui, and truncations. Here, the logarithm ln xi has a zero exponent
of degree on xi.

The set of truncated solutions yi = ϕ̂i, i = 1, . . . , n, corresponds to the intersection of
their normal cones:

u =
n⋂

i=1

ui ⊂ Rm+n
∗ .

If it is not empty, it corresponds to truncated solution:

yi = ϕ̂i, i = 1, . . . , n.

Theorem 1. If the normal cone u intersects the normal cone (6), then the truncation yi = ϕ̂(X),
i = 1, . . . , n, of this solution satisfies the truncated system (5).

Multiplying the differential sum (5) with the support S( f ) by the monomial ZR

gives the differential sum, g(Z) = ZR f (Z), with the support S(g) = R + S( f ). Thus,
the multiplication leads to a shift of supports. Multiplications by monomials form a group
of linear transformations of supports, and they can be used to simplify supports, differential
sums, and systems of equations.

Let S( f ) be the support of the differential sum f (Z) and Q ∈ S( f ). The set

S̃( f ) ≡ S( f )−Q

is called shifted support of the sum f (Z).
Each equation fi = 0 in the system (4) corresponds to a support S( fi) and a shifted

support S̃( fi). Let Γ̃ be the convex hull of their union

S̃( f1) ∪ · · · ∪ S̃( fn),

and d is the dimension of Γ̃. If d < m + n, then the system (4) is quasi-homogeneous.
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A similar technique is valid for systems of equations containing small or large parame-
ters. Here, the exponents of degrees of these parameters are taken into account in the same
way as the exponents of degrees of variables tending to zero or to infinity.

3. Boundary Layer on a Needle

The theory of the boundary layer on a plate for the flow of a viscous incompressible
fluid was developed by Prandtl ([2], 1904) and Blasius ([3], 1908) (see [1] (Chapter 6,
Section 6)). More developed their theory; see [4,5]. However, a similar theory for the
boundary layer on a needle was not available until recently, for the sticking conditions
on a needle correspond to a stronger singularity than on a plane. This theory has been
constructed using power geometry [6].

Let there be an axis x in three-dimensional space, r is the distance from it, and a
semi-infinite needle located on the semiaxis x > 0, r = 0. Stationary axisymmetric viscous
fluid flows were studied, which at x = −∞ have a constant velocity parallel to the axis x,
and on the needle satisfy the sticking conditions (Figure 1). Two variants were considered.

0

r

x

u∞

Figure 1. Streamline of a needle by the filling flow.

The first variant: an incompressible fluid. For this, the Navier–Stokes equations in
independent variables x, r are equivalent to a system of two PDEs for the flow function ψ
and pressure p:

g1 ≡−
1
r

∂ψ

∂x
∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r

∂ψ

∂r
∂

∂x

(
1
r

∂ψ

∂r

)
+

1
ρ

∂p
∂x
− ν

(
1
r

∂

∂r

(
r

∂

∂r

(
1
r

∂ψ

∂r

))
+

∂2

∂x2

(
1
r

∂ψ

∂r

))
= 0,

g2 ≡
1
r

∂ψ

∂x
∂

∂r

(
1
r

∂ψ

∂x

)
− 1

r
∂ψ

∂r
∂

∂x

(
1
r

∂ψ

∂x

)
+

1
ρ

∂p
∂r

+ ν

(
∂

∂r

(
1
r

∂2ψ

∂x∂r

)
+

∂2

∂x2

(
1
r

∂ψ

∂x

))
= 0,

(8)

where density ρ and viscosity ν = const, with boundary conditions

ψ =
u∞

2
r2, p = p0 at x = −∞, u∞, p0 = const; (9)

∂ψ

∂x
=

∂ψ

∂r
=

∂2ψ

∂x∂r
=

∂2ψ

∂r2 = 0 in x > 0, r = 0. (10)

The system (8) has the form (4) with m = n = 2 and m + n = 4. Thus, supports
of Equation (8) should be considered in R4. It turns out that the polyhedra Γ(g1) and
Γ(g2) of the Equation (8) are three-dimensional tetrahedrons which can be placed into one
linear three-dimensional subspace by parallel transfer, which simplifies the separation of
truncated systems. Analyzing the solutions of the truncated systems and the results of their
jointing, it was possible to show that the system (8) has no solution with p > 0 satisfying
both boundary conditions (9) and (10).

The second variant: a compressible thermally conductive fluid and a nonthermally
conductive needle. For this variant, the Navier–Stokes equations in independent variables
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x, r are equivalent to a system of three PDEs for the flow function ψ, density ρ, and enthalpy
h (analog of temperature):

f1 ≡−
1
r

∂ψ

∂x
∂

∂r

(
1
ρr

∂ψ

∂x

)
+

1
r

∂ψ

∂r
∂

∂x

(
1
ρr

∂ψ

∂x

)
− A

∂

∂r
(ρh)+

+
2
3

Cν ∂

∂r

(
hν

r
∂

∂r

(
1
ρ

∂ψ

∂x

))
− 2

3
Cν ∂

∂r

(
hν

r
∂

∂x

(
1
ρ

∂ψ

∂r

))
−

− 2Cν

r
∂

∂r

(
hνr

∂

∂r

(
1
ρr

∂ψ

∂x

))
+ Cν ∂

∂x

(
hν ∂

∂r

(
1
ρr

∂ψ

∂r

))
−

− Cν ∂

∂x

(
hν ∂

∂x

(
1
ρr

∂ψ

∂x

))
+

2Cνhν

ρr3
∂ψ

∂x
= 0,

f2 ≡
1
r

∂ψ

∂x
∂

∂r

(
1
ρr

∂ψ

∂r

)
− 1

r
∂ψ

∂r
∂

∂x

(
1
ρr

∂ψ

∂r

)
− A

∂

∂x
(ρh)+

+
2
3

Cν ∂

∂x

(
hν

r
∂

∂r

(
1
ρ

∂ψ

∂x

))
− 2

3
Cν ∂

∂x

(
hν

r
∂

∂x

(
1
ρ

∂ψ

∂r

))
+

+
Cν

r
∂

∂r

(
hνr

∂

∂r

(
1
ρr

∂ψ

∂r

))
− Cν

r
∂

∂r

(
hνr

∂

∂x

(
1
ρr

∂ψ

∂x

))
+

+ 2Cν ∂

∂x

(
hν ∂

∂x

(
1
ρr

∂ψ

∂r

))
= 0, (11)

f3 ≡
1
r

∂ψ

∂x
∂h
∂r
− 1

r
∂ψ

∂r
∂h
∂x
− A

ρr
∂ψ

∂x
∂(ρh)

∂r
+

A
ρr

∂ψ

∂r
∂(ρh)

∂x
+

+ 2Cνhν

(
∂

∂r

(
1
ρr

∂ψ

∂x

))2
+ 2Cνhν

(
1

r2ρ

∂ψ

∂x

)2
+ 2Cνhν

(
∂

∂x

(
1
ρr

∂ψ

∂r

))2
+

+ Cνhν

(
∂

∂x

(
1
ρr

∂ψ

∂x

))2
− Cνhν ∂

∂x

(
1
ρr

∂ψ

∂x

)
∂

∂r

(
1
ρr

∂ψ

∂r

)
+

+ Cνhν

(
∂

∂r

(
1
ρr

∂ψ

∂r

))2
− 2

3
Cνhν

(
1
r

∂

∂r

(
1
ρ

∂ψ

∂x

))2
+

+
4Cνhν

3r
∂

∂r

(
1
ρ

∂ψ

∂x

)
∂

∂x

(
1
ρr

∂ψ

∂r

)
− 2

3
Cνhν

(
∂

∂x

(
1
ρr

∂ψ

∂r

))2
+

+
Cν

σr
∂

∂r

(
rhν ∂h

∂r

)
+

Cν

σ

∂

∂x

(
hν ∂h

∂x

)
= 0,

where the parameters A, C, σ > 0 and ν ∈ [0, 1], with boundary conditions

ψ = ψ0r2, ρ = ρ0, h = h0 at x = −∞, ψ0, ρ0, h0 = const (12)

and (10). Here, x1 = x, x2 = r, y1 = ψ, y2 = ρ, y3 = h, so m = 2, n = 3, m + n = 5. In the
space R5, all polyhedra Γ( f1), Γ( f2), Γ( f3) of equations (11) are three-dimensional and can
be shifted parallel in one linear three-dimensional subspace. In the coordinates

(
q̃′1, q̃′2, q̃′3

)
of this three-dimensional space, they are shown in Figures 2, 3 and 4, respectively.
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Figure 2. The polyhedron Γ( f1) of the first equation of the system (11). The boldface point corre-
sponds to the first equation of the truncated system (13).

Figure 3. The polyhedron Γ( f2) of the second equation of the system (11). The selected face corre-
sponds to the second equation of the truncated system (13).
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Figure 4. The polyhedron Γ( f3) of the third equation of the system (11). The selected face corresponds
to the third equation of the truncated system (13).

It follows from the boundary conditions (12) that the boundary layer corresponds to a
normal vector P = (2, 1, 2, 0, 0). Thus, the truncated system corresponding to the boundary
layer on the needle has the form:

f̂ (0)12 ≡− A
∂(ρh)

∂r
= 0 or

∂(ρh)
∂r

= 0,

f̂ (2)22 ≡
1
r

∂ψ

∂x
∂

∂r

(
1
ρr

∂ψ

∂r

)
− 1

r
∂ψ

∂r
∂

∂x

(
1
ρr

∂ψ

∂r

)
− A

∂(ρh)
∂x

+
Cν

r
∂

∂r

(
hνr

∂

∂r

(
1
ρr

∂ψ

∂r

))
= 0, (13)

f̂ (2)32 ≡
1
r

∂ψ

∂x
∂h
∂r
− 1

r
∂ψ

∂r
∂h
∂x
− A

ρr
∂ψ

∂x
∂(ρh)

∂r
+

A
ρr

∂ψ

∂r
∂(ρh)

∂x
+ Cνhν

(
∂

∂r

(
1
ρr

∂ψ

∂r

))2
+

+
Cν

σr
∂

∂r

(
rhν ∂h

∂r

)
= 0,

with self-similar variables

ψ = xG(ξ), ρ = P(ξ), h = H(ξ), ξ = r2/x, (14)

and the boundary conditions

ψ = ψ0r2, ρ = ρ0, h = h0; ψ0, ρ0, h0 = const, r → ∞ (15)

and (10). In Figures 2–4, the vertex and faces corresponding to the truncated system (13) are
boldfaced. According to Equations (13)–(15), the product P(ξ)H(ξ) = const = C0 ≡ ρ0h0.
Thus, P(ξ) = C0/H(ξ) and the system (13), for variables (14) is equivalent to a system of
two ODEs:

F2 ≡G
(
G′H

)′
+ 2Cν

[
ξHν

(
G′H

)′]′
= 0,

F3 ≡2GH′ + 16CνC−2
0 ξHν

((
G′H

)′)2
+ 4Cνσ−1(ξHνH′

)′
= 0,

(16)
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where ′ ≡ d/dξ, with boundary conditions

G =ψ0ξ, H = h0 for ξ → +∞, (17)

G =dG/dξ = 0for ξ = 0. (18)

The problem (16), (17) and (18) has an invariant manifold (G′H)′ = 0, on which it
reduces to one equation

∆ ≡ 2
(
ξHν H′

)′H − 2ξHνH′2 + (ξ + c2)H′ = 0,

where c2 is an arbitrary constant, with boundary conditions

H →1 at ξ → +∞,

H →+ ∞ at ξ → +0.

An analysis of the solutions of the last problem by methods of planar power geome-
try [9] shows that for ν ∈ (0, 1), it has solutions of the form

H ∼ c3|| ln ξ|1/ν, ξ → 0,

where c3 is an arbitrary constant.
Thus, at ν ∈ (0, 1) in the boundary layer r2/x < const at x → +∞ and ξ = r2/x → 0,

the asymptotic form of the flow is obtained:

ψ ∼ c1r2|ln ξ|−1/ν, ρ ∼ c2|ln ξ|−1/ν, h ∼ c3|ln ξ|1/ν

i.e., near the needle, the density decreases to zero and the temperature increases to infinity
as the distance from the tip of the needle tends to plus infinity.

4. Algorithms of Power Geometry
4.1. Euler’s Algorithm and a Generalization of Continued Fraction

A matrix α is called unimodular if all its elements are integer and det α = ±1.

Problem 1. Let n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find an n-dimensional
unimodular matrix α such that the vector Aα = C = (c1, . . . , cn) contains only one coordinate cn
different from zero.

To solve it, Euler [10] proposed the following algorithm. Firstly, let all coordinates of
the vector A be non-negative. Using the permutation Aα0 = (ã1, ã2, . . . , ãn), we order the
coordinates

ãj 6 ãj+1, j = 1, . . . , n− 1.

Here, α0 is a unimodular permutation matrix. Let ãk be the smallest of the numbers ãj
different from zero.

Let

bj =

[ ãj

ãk

]
, j = 1, . . . , n,

where [x] is the integer part of the number x. In this case, b1 = · · · = bk−1 = 0, bk = 1. Let
us perform the transformation

dj = ãj − bj ãk, 1 6 j 6 n, j 6= k, dk = α̃k. (19)

It corresponds to a unimodular matrix α1 that has ones on the diagonal, and in the kth
row are elements

0, 0, . . . , 0, 1,−bk+1, . . . ,−bn,
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i.e.,
Ãα1 = D = (d1, . . . , dn).

Now we order the components of the vector D using the unimodular permutation
matrix β0 such that Dβ0 = D̃ =

(
0, . . . , 0, d̃k, . . . , d̃n

)
, where d̃j 6 d̃j+1.

Let d̃l be the smallest of d̃j different from zero, and ej =
[
d̃j/d̃l

]
, j = 1, . . . , l. We

perform the transformation

f j = d̃j − ejd̃l , 1 6 j 6 n, j 6= l, fl = d̃l ,

and so on. At each step, the maximum of the coordinates of the vector decreases and is the
nth coordinate. Thus, after a finite number of steps we obtain a vector with one nonzero
coordinate which is the last one. Its value is the GCD of all initial coordinates a1, . . . , an.
Each step consists of a permutation matrix and a triangular matrix with a unit diagonal:

Aα0α1β0β1γ0γ1 . . . ω0ω1 = Aα = C = (0, . . . , 0, cn).

Matrix
α = α0α1β0β1γ0γ1 · · ·ω0ω1 (20)

is the solution to Problem 1.
If not all coordinates aj of the original vector A are of the same sign, then we first order

them by modulo ∣∣ãj
∣∣ 6 ∣∣ãj+1

∣∣
and suppose

bj = [
∣∣ãj
∣∣/|ãk|] sign ãj sign ãk.

Remark 1. By multiplying the matrix α on the right by a unimodular permutation matrix, we can
obtain a vector from vector C that has all but one coordinate equal to zero, and a single nonzero
coordinate located at any position.

4.2. Power Transformations

To simplify a truncated system (5) and any quasi-homogeneous system, it is convenient
to use a power transformation. Let α be a square real nondegenerate block matrix of
dimension m + n of the form

α =

(
α11 α12
0 α22

)
, (21)

where α11 and α22 are square matrices of sizes m and n, respectively. We denote ln Z =
(ln z1, . . . , ln zm+n), and by the asterisk ∗ we denote transposition.

Transformation of the variables

ln W = (ln Z)α (22)

is called power transformation.

Theorem 2 ([1]). The power transformation (22) changes a differential monomial a(Z) with
exponent of degree Q(a) into a differential sum b(W) with exponent of degree Q(b):

R = Q(b) = Q(a)α−1∗. (23)

Corollary 1. The power transformation (22) changes the differential sum (3) with support S( f )
into the differential sum g(W) with support

S(g) = S( f )α−1∗,
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i.e.,
S( f ) = S(g)α∗ (24)

Theorem 3 ([1]). If the system (4) is a quasi-homogeneous system and d = dim Γ̃, then there exist
a power transformation (22) and monomials ZTi , i = 1, . . . , n which change the system (4) into the
system

gi(W) ≡ ZTi fi(Z) = 0, i = 1, . . . , n,

where all gi(W) are differential sums, and all their supports S(gi) have m + n − d identical
coordinates qj equal to zero.

Usually, the supports of differential equations are integer. For them, it is desirable to
have power transformations that preserve the integrability of the supports. This property is
possessed by power transformations (22) with a unimodular matrix α in which all elements
are integers and det α = ±1. For a unimodular matrix α, its inverse α−1 and transpose α∗

matrices are also unimodular.
Let us compute the unimodular matrix (21) of the power transformation (22) in one

important case. Suppose that in the system (4) all supports S( f1), . . . , S( fn) are integers
and the normal to them is an integer vector N = (ν1, . . . , νm+n) 6= 0, i.e., for all Q ∈ S( fi)
we have 〈Q, N〉 = λi, i = 1, . . . , n. Split the vector N into two parts: N1 = (ν1, . . . , νm) and
N2 = (νm+1, . . . , νm+n), and perform the same for the vector Q = (Q1, Q2).

Consider three cases:

1. N1 = 0, N2 6= 0, then 〈Q2, N2〉 = λi;
2. N1 6= 0, N2 = 0, then 〈Q1, N1〉 = λi;
3. N1 6= 0, N2 6= 0.

Below, I is the unit matrix.

Lemma 1. In the case 1, there exists a unimodular matrix α22 of size n such that, after transforma-
tion (22) with α11 = I, α12 = 0 in each transformed differential sum gi(W), the coordinate wm+n
is contained only in a fixed degree λ̃i.

Proof of Lemma 1. Using the Euler algorithm from Section 4.1 for the vector N2, we find
such a unimodular matrix α22 of size n that

N2α22 = (0, . . . , 0, µ2),

and µ2 is GCD of numbers νm+1, . . . , νm+n. According to (23) and (24) for Q ∈ S( fi) we
have

λi = 〈N2, Q2〉 = 〈N2, R2α∗22〉 = 〈N2α22, R2〉 = µ2rm+n.

Then, λ̃i = λi/µ2. The proof is over.

Lemma 2. In the case 2, there exists a unimodular matrix α11 of size m such that after transfor-
mation (22) with α22 = I, α21 = 0 in each transformed differential sum gi(W), the coordinate wm
contains only a fixed degree λ̃i.

The proof is the same as the proof of Lemma 1.

Lemma 3. In the case 3, if gcd N2/ gcd N1 = ω is an integer, then there exists such a unimodular
matrix α of (21) that every differential sum gi(W) contains the coordinate wm only in a fixed degree λ̃i.

Proof of Lemma 3. Let
µi = gcd Ni, i = 1, 2.
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By Euler’s algorithm, we obtain the representations

Niβi = (0, . . . , 0, µi), i = 1, 2,

where βi are unimodular matrices of sizes m and n, respectively. In other words,

Nβ = (0, . . . , µ1, 0, . . . , µ2) ≡ M = µ1(0, . . . , 1, 0, . . . , ω),

where β is a block unimodular matrix

β =

(
β1 0
0 β2

)
Then, we have

M(I − γ) = (0, . . . , µ1, 0, . . . , 0),

where I is a unit matrix of size m+ n, and the matrix γ = (γij) has a single nonzero element
γm,m+n = ω. Then the matrix α = β(I − γ) is unimodular, has a block structure (21),
and each differential sum gi(W) contains the coordinate wm in degree λ̃ = λi/µ1. Reducing

each of them by the value of wλ̃i
m , we obtain a system in which the variable wm is contained

with zero-degree exponent. The proof is over.

Remark 2. If the relation ω is not integer, we can still perform a degree transformation of Lemma 3,
but the support of the transformed system will not be integer.

4.3. Logarithmic Transformation

Let zj be one of the coordinates xk or yl according to the beginning of Section 2.
Transformation:

ζ j = ln zj (25)

Let us call this logarithmic transformation.

Theorem 4 ([11]). Let f (Z) be such a differential sum that for all its monomials, jth component of
qj vector degree exponent Q = (q1, . . . , qm+n) is zero, then as a result of the logarithmic transfor-
mation (25), a differential sum f (Z) transforms into a differential sum from z1, . . . , ζ j, . . . , zn.

In the system
fi(X, Y) = 0, i = 1, . . . , n, (26)

let all fi be differential sums. Let some of its truncated system be

f̂i(X, Y) = 0, i = 1, . . . , n. (27)

It is quasi-homogeneous in dimension d < m + n. According to Theorem 3 there exists
a power transformation (22) which reduces the system (27) to the system

gi(W) = 0, i = 1, . . . , n, (28)

in which all supports of sums gi(W) have m + n − d zero coordinates. A logarithmic
transformation can be applied to these coordinates, which by theorem 4 will reduce the
system (28) to the form

hi
(
W̃
)
= 0, i = 1, . . . , n, (29)

where hi are differential sums, and w̃j = wj or ln wj, j = 1, . . . , m + n. In the system (29) we
can again select truncated systems and so on.

For zj → 0 or ∞, the coordinate ζ j = ln wj always tends to ±∞. If we are interested
only in those solutions (7) which have a normal cone u intersecting a given cone K, then
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the cone K is called the cone of problem. Thus, after the logarithmic transformation (25) for
the coordinate ζ j in the cone of the problem, we have pj > 0.

In the following, we will not consider all possible truncated systems (5), but only
those in which one of the equations has dimension di = m + n− 1. The calculations show
that in this case the above procedure will cover all the truncated systems. Finally, it is
convenient to combine the power and logarithmic transformations. Namely, the logarithmic
transformation is performed for the coordinate wm+n in the case 1 and for the coordinate
wm in the cases 2 and 3 of Section 4.2.

4.4. System of Notations

The original system is denoted by S, and its equations by E1S and E2S, respectively.
For the equations of the system S, the polyhedrons, normal cones, are calculated and the
corresponding shortened systems are found by them, which are denoted as S(1), S(2),
etc. For the truncated system S(k), a power and/or logarithmic transformation is applied,
the result of which is the system P(k). The corresponding truncations of the system P(k) are
denoted by S(k, 1), S(k, 2), etc., and the results of their power-logarithmic transformations
are denoted by P(k, 1), P(k, 2), etc. If new truncations are required, the corresponding
systems are denoted as S(k, l, m), and the results of the power-logarithmic transformations
are denoted as P(k, l, m). This branching procedure stops when one obtains a system that
is solvable explicitly. Each system S(m) has its cone of problem K[S(m)]. In the following
Sections 5–7, the vectors are denoted in square brackets [x1, . . . , xm], as is usual in Maple.

4.5. About the Computation of the Objects of Power Geometry

The computer algebra system Maple 2021 [12] was used for calculations in this work.
A library of procedures based on the PolyhedralSets CAS Maple package was developed
to implement the algorithms of power geometry. The library includes calculation procedures:

• Vector degree exponent Q of the differential monomial a(Z) for a given order of
independent and dependent variables.

• Of the support S of a partial differential equation written as a sum of differential
monomials.

• Newton’s polyhedron Γ in the form of a graph of generalized faces Γ
(d)
j of all dimen-

sions d for the given support of the equation (see below Figures 5 and 6); the number j
is given by the program; each generalized face has its own number j; each line of the
graph contains all generalized faces Γ

(d)
j of the same dimension d, the first line contains

the Newton’s polyhedron Γ, the next line contains all faces Γ
(m+n−1)
j of dimension

m + n− 1 and so on; the last line contains the empty set; if Γ
(d)
j ⊂ Γ

(d+1)
k , then they are

connected by an arrow. In ([1], Ch. 1, Section 1), “the structural diagram” was used
that is similar to the graph and differs from it in two properties: numeration of faces
Γ
(d)
j is independent for each dimension d and arrows are replaced by segments (see

also [13]).
• Of the normal vector Nj for the each generalized face Γ

(m+n−1)
j for the second line of

the graph;
• Of the truncated equation f̂ (d)j = 0 by the given number j of the generalized face.

• Of the truncated equation f̂ (d)j = 0 by a given normal vector Nj, if d = m + n− 1.

• Of the normal cone of the corresponding generalized face: if the face

Γ
(d)
j = Γ

(m+n−1)
i ∩ Γ

(m+n−1)
k ∩ · · · ∩ Γ

(m+n−1)
l ,

then the normal cone U(d)
j is the conic hull of the normals Ni, Nk, . . . , Nl .
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• To calculate the power or logarithmic transformation of the original variables by a
given normal N of the hyperface. For this purpose, the algorithms for constructing
the unimodular matrix described in Section 4.1 are used.

Figure 5. Graph of the polyhedron Γ(E1S) of Equation (48).

Figure 6. Graph of the polyhedron Γ(E2S) of Equation (49).



Universe 2023, 9, 35 14 of 27

5. The k–ε Model of Evolution of Turbulent Bursts

According to [14–17], the model is described by the system

kt =

(
k2

ε
kx

)
x
− ε,

εt =

(
k2

ε
εx

)
x
− γ

ε2

k
.

(30)

Here, time t and coordinate x are independent variables, the turbulent density k and
the dissipation rate ε are dependent variables, and γ is a real parameter. Here, m = n = 2,
m + n = 4 and x1 = t, x2 = x, y1 = k, y2 = ε.

The support of the first equation S1 of the system (30) consists of points

Q1 = [−1, 0, 1, 0], Q2 = [0,−2, 3,−1], Q3 = [0, 0, 0, 1].

The support of the second equation S2 of the system (30) consists of points

Q4 = [−1, 0, 0, 1], Q5 = [0,−2, 2, 0], Q6 = [0, 0,−1, 2].

The shifted supports S̃1 = S1 −Q3 and S̃2 = S2 −Q6 consist of three points:

R1 ≡ Q1 −Q3 = Q4 −Q6 = [−1, 0, 1,−1],

R2 ≡ Q2 −Q3 = Q5 −Q6 = [0,−2, 3,−2],

0 = Q3 −Q3 = Q6 −Q6.

Therefore, d = 2.
According to Theorem 3 let us introduce new dependent variables:

u = ZR1 = t−1kε−1, v = ZR2 = x−2k3ε−2.

Then

k =
x2v
t2u2 , ε =

x2v
t3u3 . (31)

This is a power transformation (22) with matrix (21), where

α11 =

(
1 0
0 1

)
, α12 =

(
−1 0
0 −2

)
, α22 =

(
1 3
−1 −2

)
.

This power transformation is constructed directly on the support of the system such
that it lies in the coordinate plane. The theory of Section 4.2 is not used here.

Change of the variables (31) leads the system (30) to the form

ut(ln v)t − 2u− 2tut =v
(

6− 12U + 7V + 6U2 − 7UV + 2V2 − 2xUx + xVx

)
− 1,

ut(ln v)t − 3u− 3tut =v
(

6− 17U + 7V + 12U2 − 10UV + 2V2 − 3xUx + xVx

)
− γ,

(32)

where U = x(ln u)x, V = x(ln v)x.
Let us find the self-similar solutions of this system. Consider two cases.
The first case: u, v are constants. Then, the system (32) has the form

−2u = 6v− 1,

−3u = 6v− γ.
(33)

Its solution
u = γ− 1, v = (3− 2γ)/6 (34)
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has two critical values: γ = 1 and γ = 3/2.
The second case: Let ζ = tσx, where σ ∈ R. Now u and v are functions of ζ. In this

case, in the matrix (21), the submatrix

α11 =

(
1 σ
0 1

)
and the submatrices α21 and α22 are the same as before. For u(ζ) and v(ζ), the system (32)
after substitutions

∂

∂t
=

d
dζ

∂ζ

∂t
=

σζ

t
d

dζ
,

∂

∂x
=

d
dζ

∂ζ

∂x
=

ζ

x
d

dζ

generates a one-parameter by σ family of systems of two ODEs:

σuζ(ln v)ζ − 2u− 2uζuζ =v
(

6− 12U + 7V + 6U2 − 7UV + 2V2 − 2ζUζ + ζVζ

)
− 1,

σuζ(ln v)ζ − 3u− 3ζuζ =v
(

6− 17U + 7V + 12U2 − 10UV + 2V2 − 3ζUζ + ζVζ

)
− γ,

(35)

where U = ζ(ln u)ζ , V = ζ(ln v)ζ .
If u and v are functions only of t, then from (32) we obtain the system of ODES:

ut(ln v)t − 2u− 2tut = 6v− 1,

ut(ln v)t − 3u− 3tut = 6v− γ.
(36)

For its solutions
u = w/t (37)

and, if γ 6= 1, γ 6= 3/2, then

v =
2γ− 3

−6 + βw(3−2γ)/(γ−1)
, (38)

where w = (γ− 1)t + α and α, β are constants.
For γ = 1

v =
1

6 + β exp(t/α)
. (39)

For γ = 3/2

v =
1

β− 12 ln(α + t/2)
. (40)

Let γ 6= 1, γ 6= 3/2, and u = γ− 1 + α/t. Find solutions of the system (32) of the
form v(t, x) = vp(t)xp with p 6= 0. For them, U = 0, V = p, and Vx = 0 and equations (32)
reduce to one equation:

ut
(
ln vp

)
t = vpxp

(
6 + 7p + 2p2

)
+ 3− 2γ.

Here, the first and last terms are of order zero on x, and the middle term is of order
p 6= 0. Consequently, this equation has a solution only if the middle term is zero, i.e.,

6 + 7p + 2p2 = 0.

This equation has two roots: p = −2, p = −3/2. Moreover, for these values of p it is
possible to find a solution of the system (32) of the form

v(t, x) = v0(t) + vp(t)xp,
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where v0(t) is the solution (38) of the system (36). Here, for vp, we obtain the equation

ut
(
ln vp

)
t = −

(
7p + 3p2

)
v0 + 2γ− 3. (41)

Here, the coefficient

−
(

7p + 3p2
)
=

{
2, if p = −2,
15/4, if p = −3/2.

Thus, it is proven.

Theorem 5. The system (32) reduces to a finite dimensional ODE system in three cases:

1. To a one-parameter family of two Equations (35);
2. To a system of three Equations (36) and (41) with p = −2;
3. To the system of three Equations (36) and (41) with p = −3/2.

Up to now, only solutions to the case 2 at u = γ− 1 have been known, i.e., solutions
to the two-dimensional system of ODEs (see [15–18]).

Theorem 6. The system (32) has a one-parameter by α family of solutions:

u =
αxp

t
, p =

12γ− 17±
√

24γ + 1
12(γ− 2)

, v =
25 + 12γ∓ 7

√
24γ + 1

12
,

where α is an arbitrary constant.

Proof of Theorem 6. Here, vt = 0, u + tut = 0, U = p, V = 0, Ux = 0, Vx = 0. Thus,
the Equation (32) take the form

v
(

6− 12p + 6p2
)
= 6v(p− 1)2 = 1,

v
(

6− 17p + 12p2
)
= v(4p− 3)(3p− 2) = γ.

Substituting the specified values of p and v here, we obtain two identities.

If in (32) u and v are functions only of x, then they satisfy the system of ODEs:

−2u =v
(

6− 12U + 7V + 6U2 − 7UV + 2V2 − 2Uxx + Vxx
)
− 1,

−3u =v
(

6− 17U + 7V + 12U2 − 10UV + 2V2 − 3Uxx + Vxx
)
− γ.

(42)

This is a particular case of the family (35) at σ = 0.
Below, we assume that each intermediate variable is different from identical zero.

Thus, we can consider its logarithm.
After the logarithmic transformation,

τ = ln t, ξ = ln x (43)

the system (32) takes the form

u(ln v)τ − 2u− 2uτ = v
(

6− 12U + 7V + 6U2 − 7UV + 2V2 − 2Uξ + Vξ

)
− 1, (44)

u(ln v)τ − 3u− 3uτ = v
(

6− 17U + 7V + 12U2 − 10UV + 2V2 − 3Uξ + Vξ

)
− γ, (45)

where U = (ln u)ξ , V = (ln v)ξ .
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Below, all computations are performed for the system S consisting of a linear combina-
tion of the original equations:

1. Equation E1S is the difference of the Equations (44) and (45);
2. Equation E2S is the difference of the tripled Equation (44) and the doubled

Equation (45).

As a result, the S system takes the form

u + uτ = 5vU − 7vU2 + 3Uvξ + vUξ + γ− 1, (46)

u(ln v)τ = 6v− 2vU + 7vξ − 6vU2 + Uvξ + vξV + vξξ + 2γ− 3. (47)

To apply the Section 4.5 procedures, Equations (46) and (47) of the S system are
rewritten as a sum of differential monomials:

E1S ≡u3 + (uτ)u2 − γ u2 − 5v
(
uξ

)
u− v

(
uξ,ξ

)
u− 3

(
uξ

)(
vξ

)
u + 7v

(
uξ

)2
+ u2 = 0, (48)

E2S ≡u3(vτ)−
(
vξ,ξ
)
v u2 − 6v2u2 − 7

(
vξ

)
v u2 − 2γv u2 −

(
vξ

)2u2+

+ 2v2(uξ

)
u +

(
uξ

)(
vξ

)
vu + 6v2(uξ

)2
+ 3v u2 = 0. (49)

The supports of Equations (48) and (49) are

S(E1S) ={[−1, 0, 3, 0], [0,−2, 2, 1], [0,−1, 2, 1], [0, 0, 2, 0], [0, 0, 3, 0]}, (50)

S(E2S) ={[−1, 0, 3, 1], [0,−2, 2, 2], [0,−1, 2, 2], [0, 0, 2, 1], [0, 0, 2, 2]}. (51)

To perform computations with a convex polyhedron of large dimension n, it is con-
venient to represent the latter as an oriented graph, all vertices of which have a unique
number j (identifier) and correspond to a generalized face Γ

(d)
j of appropriate dimension d.

The top vertex of the graph contains the polyhedron Γ itself, the next level contains gen-
eralized faces Γ

(n−1)
k of dimension n− 1, below are generalized faces Γ

(n−2)
k of dimension

n− 2, and so on. The lowest vertex of the graph is an empty set. The segments connecting
vertices of the graph mean that the lower element (the generalized edge) lies in the upper
one (the generalized edge of higher dimension). The alternative sum of the number of
vertices of the graph in the lines is equal to zero.

The graph of the polyhedron Γ(E1S) computed by support (50) is shown in Figure 5.
The alternative sum of the numbers of elements in the rows is 1− 5 + 10− 10 + 5− 1 = 0.
The polyhedron Γ(E1S) is a four-dimensional simplex and has five three-dimensional faces
with identifiers 161, 215, 233, 239, 241, computed by the program. They correspond to the
external normals

N(3)
161 = [1, 0, 0, 0], N(3)

215 = [−1, 0,−1, 0], N(3)
233 = [0, 0, 1, 1],

N(3)
239 = [0, 1, 0, 1], N(3)

241 = [0,−1, 0,−2].

The graph of the polyhedron Γ(E2S) computed by support (51) is shown in Figure 6.
The polyhedron Γ(E2S) lies in a three-dimensional plane with the normal

N(3)
80 (E2S) = [1, 0, 1, 0]

and is a three-dimensional simplex, i.e., the Equation (49) is quasi-homogeneous.
Let us construct all truncations corresponding to the cone of problem K[S] = {p1, p2 > 0}

according to change (43). The normals N(3)
161, N(3)

233, N(3)
239, and N(3)

80 fall into the cone of
problem K[S]. For each of the mentioned normals, we compute the truncations of the
system (48), (49) and reject trivial, i.e., those consisting of a single algebraic monomial.

The truncation of Equation (49) corresponding to the normal N(3)
239 and the truncation of

Equation (48) corresponding to the normal N(3)
80 consist of one algebraic monomial −6u2v2
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and u3, respectively. There remain two nontrivial truncations, which we denote according
to the notation system of Section 4.4 by S(1) and S(2).

The truncated system S(1) depends on the variables ξ, u, v and is the system of ODEs,
and cone of problem K[S(1)] = {p1 > 0}. The equations of the system have the form:

E1S(1) ≡u3 − γ u2 − 5v
(
uξ

)
u− v

(
uξ,ξ

)
u− 3

(
uξ

)(
vξ

)
u + 7v

(
uξ

)2
+ u2 = 0, (52)

E2S(1) ≡(3− 2γ)v u2 + 6v2(uξ

)2
+
(
uξ

)(
vξ

)
vu + 2v2(uξ

)
u−

−
(
vξ

)2u2 − 7
(
vξ

)
v u2 − 6v2u2 −

(
vξ,ξ
)
v u2 = 0. (53)

The truncated system of PDEs S(2) depends on the variables τ, ξ, u, v, and the cone of
problem K[S(2)] = {p1, p2 > 0}. The equations of the system have the form:

E1S(2) ≡(uτ)u2 + u3 − 5v
(
uξ

)
u− v

(
uξ,ξ

)
u− 3

(
uξ

)(
vξ

)
u + 7v

(
uξ

)2
= 0, (54)

E2S(2) ≡6v2(uξ

)2
+
(
uξ

)(
vξ

)
vu + 2v2(uξ

)
u−

(
vξ

)2u2 − 7
(
vξ

)
v u2−

− 6v2u2 −
(
vξ,ξ
)
v u2 + u3(vτ) = 0. (55)

6. Asymptotic Forms of Solutions to the System S(1)

Consider the computation of asymptotic forms of solutions to the system of ODEs S(1)
in which Equations (52) and (53) depend on variables ξ, u, v, i.e., all corresponding objects
of the power geometry are three-dimensional, and the cone of problem K[S(1)] = {p1 > 0}.

The supports of the Equations (52) and (53) are

S(E1S(1)) = {[−2, 2, 1], [−1, 2, 1], [0, 2, 0], [0, 3, 0]}, (56)

S(E2S(1)) = {[−2, 2, 2], [−1, 2, 2], [0, 2, 1], [0, 2, 2]}. (57)

The convex polyhedron Γ(E1S(1)) is a tetrahedron, i.e., a three-dimensional simplex
with normals to two-dimensional faces, computed by the program,

N(2)
53 = [0, 1, 1], N(2)

71 = [0,−1, 0], N(2)
77 = [1, 0, 1], N(2)

79 = [−1, 0,−2].

The convex polyhedron Γ(E2S(1)) is a two-dimensional simplex, i.e., the left-hand
side of the Equation (53) is a quasi-homogeneous differential sum. The corresponding
normals are

N(2)
71 = [0,−1, 0], N(2)

72 = [0, 1, 0].

Suitable normals are those with numbers 53, 71, 77, 72. The corresponding truncated
systems are S(1, 1), S(1, 2), S(1, 3), and S(1, 4).

The shortened system S(1, 3) contains the trivial shortened equation E2S(1, 3) ≡
−6u2v2 = 0, and the shortened system S(1, 4) contains the trivial equation E1S(1, 4) ≡
u3 = 0. Therefore, we do not consider these systems below.

6.1. Analysis of the Truncated System S(1, 1)

Making truncation for the normal vector N(2)
53 = [0, 1, 1], we obtain a system S(1, 1)

with equations

E1S(1, 1) ≡7v
(
uξ

)2 − 3
(
uξ

)(
vξ

)
u− v

(
uξ,ξ

)
u− 5v

(
uξ

)
u + u3 = 0, (58)

E2S(1, 1) ≡6v2(uξ

)2
+
(
uξ

)(
vξ

)
vu + 2v2(uξ

)
u−

(
vξ

)2u2 − 7
(
vξ

)
v u2−

− 6v2u2 −
(
vξ,ξ
)
v u2 = 0. (59)
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The normal vector N(2)
53 = [0, 1, 1] refers to the case 1 of Section 4.2 and by Lemma 1

defines a power-logarithmic substitution

u = rv, s = ln v, (60)

converting after reducing Equation (58) by v3 and Equation (59) by v4 of system S(1, 1) into
system P(1, 1) with respect to variables ξ, r, s with equations

E1P(1, 1) ≡3r2s2
ξ + r3 − 5r2sξ − r2sξ,ξ + 9rrξ sξ − 5rrξ − r− rξ,ξ + 7r2

ξ , (61)

E2P(1, 1) ≡5r2s2
ξ − 5r2sξ − r2sξ,ξ + 13rrξsξ − 6r2 + 2rrξ + 6r2

ξ (62)

with new cone of problem K[S(1, 1)] = {p1, p3 > 0}. The supports of Equations (61) and
(62) are

S(E1P(1, 1)) =
{
[−2, 2, 0], [−2, 2, 1], [−2, 2, 2], [−1, 2, 0], [−1, 2, 1], [0, 3, 0]

}
, (63)

S(E2P(1, 1)) =
{
[−2, 2, 0], [−2, 2, 1], [−2, 2, 2], [−1, 2, 0], [−1, 2, 1], [0, 2, 0]

}
. (64)

They differ only in the last point of the support.
The normals to the two-dimensional faces of the convex polyhedron Γ(E1P(1, 1)) of

the support (63) are:

N(2)
53 = [1,−1, 0], N(2)

107 = [−1, 2, 0], N(2)
233 = [0,−1, 0], N(2)

235 = [0, 0,−1], N(2)
237 = [1, 0, 1],

and the convex hull of the support (64) is a two-dimensional simplex with the normals:

N(2)
232 = [0, 1, 0], N(2)

233 = [0,−1, 0].

Only the normals N(2)
53 , N(2)

232, N(2)
233, and N(2)

237 are suitable, i.e., only they fall within the
cone of problem. We denote the corresponding truncated systems by S(1, 1, 1), S(1, 1, 2),
S(1, 1, 3), and S(1, 1, 4), respectively.

The truncated systems S(1, 1, 1) and S(1, 1, 2) are not considered below since they
contain trivial equations in the form of a single monomial.

6.1.1. Asymptotic Forms of Solutions to the System S(1, 1, 3)

The truncated ODE system S(1, 1, 3) has the form:

E1S(1, 1, 3) ≡7r2
ξ − rrξ,ξ − 5rrξ + 9rrξsξ − r2sξ,ξ − 5r2sξ + 3r2s2

ξ = 0, (65)

E2S(1, 1, 3) ≡5r2s2
ξ − 5r2sξ − r2sξ,ξ + 13rrξ sξ − 6r2 + 2rrξ + 6r2

ξ = 0. (66)

The normal vector N(2)
233 = [0,−1, 0] belongs to the case 1 of Section 4.2 and by Lemma 1

defines the logarithmic transformation

T = ln r, (67)

translating, after reducing the Equations (65) and (66) by r2 of the system S(1, 1, 3) into the
system P(1, 1, 3) with respect to the variables ξ, T, s with the equations

E1P(1, 1, 3) ≡− 6
(
Tξ

)2 − 9
(
Tξ

)
− 3
(
sξ

)2
+ 5Tξ + Tξ,ξ + 5sξ + sξ,ξ , (68)

E2P(1, 1, 3) ≡=− 6
(
Tξ

)2 − 13
(
Tξ

)
− 5
(
sξ

)2 − 2Tξ + 5sξ + sξ,ξ + 6, (69)

and with new cone of problem K[P(1, 1, 3)] = {p1, p2, p3 > 0}. The supports S of the
Equations (68) and (69) are
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S(E1P(1, 1)) ={[−2, 0, 1], [−2, 0, 2], [−2, 1, 0], [−2, 1, 1], [−2, 2, 0], [−1, 0, 1], [−1, 1, 0]}, (70)

S(E2P(1, 1)) ={[−2, 0, 1], [−2, 0, 2], [−2, 1, 1], [−2, 2, 0], [−1, 0, 1], [−1, 1, 0], [0, 0, 0]}. (71)

Consistently computing the convex polyhedra Γ(E1P(1, 1, 3)) and Γ(E2P(1, 1, 3)) by
supports (70) and (71), respectively, we find the corresponding external normals to their
two-dimensional faces Γ(E1P(1, 1, 3)) and Γ(E2P(1, 1, 3)), correspondingly:

N(2)
161 = [1, 1, 1], N(2)

185 = [0, 0− 1], N(2)
209 = [0,−1, 0], N(2)

233 = [0,−1,−1], N(2)
241 = [−1, 0, 0],

N(2)
161 = [1, 1, 1], N(2)

209 = [0,−1, 0], N(2)
77 = [−1,−1,−2], N(2)

241 = [−1, 0, 0].

Only normal N(2)
161 is suitable, and its corresponding truncated system of ODEs has the

form

E1S(1, 1, 3) ≡−
(
Tξ + sξ

)(
6Tξ + 3sξ − 5

)
= 0,

E2S(1, 1, 3) ≡6 + 5sξ − 2Tξ − 5
(
sξ

)2 − 13
(
Tξ

)(
sξ

)
− 6
(
Tξ

)2
= 0.

This system is algebraic with respect to the quantities sξ and Tξ , and its solutions are
the following subsystems: {

sξ = −3
2

, Tξ =
3
2

}
, (72){

sξ = −2, Tξ = 2
}

, (73){
sξ = −1, Tξ =

4
3

}
. (74)

Using the substitutions (60) and (67), we obtain that System (72) defines the asymptotic
form

Asymp1S(1, 1, 3) :
{

u = C1, v = C2e−3ξ/2
}

, (75)

System (73) defines the asymptotic form

Asymp2S(1, 1, 3) :
{

u = C1, v = C2e−2ξ
}

, (76)

and System (74) defines asymptotic form

Asymp3S(1, 1, 3) :
{

u = C1eξ/3, v = C2e−ξ
}

, (77)

where C1 and C2 are arbitrary constants.

6.1.2. Asymptotic Forms of Solutions to the System S(1, 1, 4)

According to Equations (61)–(64), the truncated ODE system, corresponding to
N(2)

237 = [1, 0, 1], is the following:

r2(ξ)
(

3s2
ξ − 5sξ + r(ξ)

)
= 0,

r2(ξ)
(

5s2
ξ − 5sξ − 6

)
= 0.

(78)

The truncated ODE system S(1, 1, 4) after reduction by r2(ξ) has the form:

E1S(1, 1, 4) ≡3s2
ξ − 5sξ + r(ξ) = 0, (79)

E2S(1, 1, 4) ≡5s2
ξ − 5sξ − 6 = 0. (80)
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This system is algebraic with respect to the quantities r, sξ , and its solutions are the
following subsystems:

r =a1, sξ = b1, (81)

r =a2, sξ = b2, (82)

where

a1,2 = −13±
√

145
5

, b1,2 =
5∓
√

145
10

. (83)

Using the substitution (60), we obtain that the system (81) defines the asymptotic form

Asymp1S(1, 1, 4) :
{

u = C1a1eb1ξ , v = C1eb1ξ
}

, (84)

and the system (82) defines the asymptotic form

Asymp2S(1, 1, 4) :
{

u = C1a2eb2ξ , v = C1eb2ξ
}

. (85)

6.2. Analysis of the Truncated System S(1, 2)

Now consider the truncated system S(1, 2) for the normal N(2)
71 = [0,−1, 0] from the

system S(1) with equations:

E1S(1, 2) ≡− γu2 − 5v
(
uξ

)
u− v

(
uξ,ξ

)
u− 3

(
uξ

)(
vξ

)
u + 7v

(
uξ

)2
+ u2, (86a)

E2S(1, 2) ≡3v u2 + 6v2(uξ

)2
+
(
uξ

)(
vξ

)
vu + 2v2(uξ

)
u−

(
vξ

)2u2−
−
(
vξ,ξ
)
v u2 − 2γv u2 − 7

(
vξ

)
v u2 − 6v2u2. (86b)

The normal vector N(2)
71 belongs to the case 1 of Section 4.2 and by Lemma 1 defines

the logarithmic transformation
r = ln u, (87)

which, after reducing the Equations (86a) and (86b) of the system S(1, 2) by the factor u2 to
the system P(1, 2) with the equations

E1P(1, 2) ≡6
(
rξ

)2v− 5
(
rξ

)
v−

(
rξ,ξ
)
v− 3

(
rξ

)(
vξ

)
− γ + 1 = 0,

E2P(1, 2) ≡6v2(rξ

)2
+ 2v2(rξ

)
+ v
(
rξ

)(
vξ

)
− 6v2 − 7

(
vξ

)
v−

− 2vγ− v
(
vξ,ξ
)
−
(
vξ

)2
+ 3v = 0.

We calculate the supports of the equations of the system P(1, 2)

S(E1P(1, 2)) = {[−2, 2, 1], [−1, 1, 1], [−2, 1, 1], [0, 0, 0]},
S(E2P(1, 2)) = {[−2, 2, 2], [−1, 1, 2], [−2, 1, 2], [0, 0, 2], [−1, 0, 2], [0, 0, 1], [−2, 0, 2]}

their polyhedra Γ(E1P(1, 2)), Γ(E2P(1, 2)) and the normals to the two-dimensional faces:

for Γ(E1P(1, 2)) :N(2)
53 = [1, 1, 0], N(2)

71 = [0,−1, 1], N(2)
77 = [0, 0, 1], N79 = [−1, 0,−2],

for Γ(E2P(1, 2)) :N(2)
53 = [1, 1, 0], N(2)

72 = [0,−1, 0], N(2)
77 = [0, 0, 1], N79 = [−1, 0,−2].

In cone of problem K[P(1, 2)] = {p1, p2 > 0} only two normals, N(2)
53 = [1, 1, 0] and

N(2)
77 = [0, 0, 1], fall in.



Universe 2023, 9, 35 22 of 27

6.2.1. Asymptotic Forms of Solutions to the System S(1, 2, 1)

The truncation corresponding to the normal N(2)
53 = [1, 1, 0] gives the system S(1, 2, 1)

with the equations:

E1S(1, 2, 1) ≡1− γ− 5
(
rξ

)
v + 6

(
rξ

)2v = 0,

E2S(1, 2, 1) ≡3v− 2vγ− 6v2 + 2v2(rξ

)
+ 6v2(rξ

)2
= 0,

which we solve as an algebraic system with respect to the functions rξ and v:

Sol1S(1, 2, 1) :
{

rξ = a1, v = b1
}

,

Sol2S(1, 2, 1) :
{

rξ = a2, v = b2,
}

where

a1,2 =
12γ− 17±

√
24γ + 1

12γ− 24
, b1,2 = γ± 7

√
24γ + 1
12

+
25
12

. (88)

Returning to the original variables by (87) and (60), we obtain the asymptotic forms of
the solutions

Asymp1(1, 2, 1) :
{

u = C1ea1ξ , v = b1

}
,

Asymp2(1, 2, 1) :
{

u = C1ea2ξ , v = b2

}
.

6.2.2. Asymptotic Forms of Solutions to the System S(1, 2, 2)

The truncation corresponding to the normal N(2)
77 = [0, 0, 1] gives the system S(1, 2, 2)

with equations:

E1S(1, 2, 2) ≡− 5
(
rξ

)
v− 3

(
vξ

)(
rξ

)
−
(
rξ,ξ
)
v + 6

(
rξ

)2v = 0, (89)

E2S(1, 2, 2) ≡− 6v2 − 7
(
vξ

)
v−

(
vξ

)2 −
(
vξ,ξ
)
v + 2

(
rξ

)
v2+

+
(
vξ

)(
rξ

)
v + 6

(
rξ

)2v2 = 0. (90)

The normal vector N(2)
77 belongs to the case 1 of Section 4.2; hence, by Lemma 1 we

have a logarithmic transformation
T = ln r, (91)

which, after reducing Equation (89) by v and Equation (90) by v2 leads to the system
P(1, 2, 2) with cone of problem K[P(1, 2, 2)] = {p1, p2, p3 > 0}:

E1P(1, 2, 2) ≡− 3
(
rξ

)(
Tξ

)
− 5rξ − rξ,ξ + 6

(
rξ

)2,

E2P(1, 2, 2) ≡− 2
(
Tξ

)2 − 7Tξ − 6− Tξ,ξ +
(
rξ

)(
Tξ

)
+ 2rξ + 6

(
rξ

)2

The supports of these equations of the system P(1, 2, 2) are

S(E1P(1, 2, 2)) = {[−2, 1, 1], [−1, 1, 0], [−2, 1, 0], [−2, 2, 0]},
S(E2P(1, 2, 2)) = {[−2, 0, 2], [−1, 0, 1], [0, 0, 0], [−2, 0, 1], [−2, 1, 1], [−1, 1, 0], [−2, 2, 0]}.

Both supports have the following normals:

N(2)
53 = [1, 1, 1], N(2)

71 = [0, 0,−1], N(2)
77 = [0,−1, 0], N(2)

79 = [−1, 0, 0],

of which the only normal N(2)
53 is suitable. The corresponding truncated ODE system has

the form
6
(
rξ

)2 − 5rξ − 3
(
rξ

)(
Tξ

)
= 0,

6
(
rξ

)2 − 6− 7Tξ − 2
(
Tξ

)2
+ 2rξ +

(
rξ

)(
Tξ

)
= 0.
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We obtain an algebraic system with respect to the functions rξ , Tξ , which has the
following solutions:

Sol1S(1, 2, 2) :
{

rξ = 0, Tξ = −2
}

,

Sol2S(1, 2, 2) :
{

rξ = 0, Tξ = −3/2
}

,

Sol3S(1, 2, 2) :
{

rξ = 1/3, Tξ = −1
}

.

According to (91), (87), and (60), these solutions correspond to asymptotic forms:

Asymp1S(1, 2, 2) :
{

u =C1, v = C2e−2ξ
}

,

Asymp2S(1, 2, 2) :
{

u =C1, v = C2e−3ξ/2},

Asymp3S(1, 2, 2) :
{

u =C1eξ/3, v = C2e−ξ
}

.

It is not difficult to see that they correspond to the previously found asymptotic forms
in Section 6.1.1.

7. Asymptotic Forms of Solutions to the System S(2)

Now consider the computation of the asymptotic forms of the solutions to the PDE
system S(2), in which Equations (54) and (55) depend on variables τ, ξ, u, v, and cone of
problem K[S(2)] = {p1, p2 > 0}.

The normal vector N(3)
233(E1S) = [0, 0, 1, 1] refers to the case 1 of Section 4.2 and by

Lemma 1 defines the power-logarithmic transformation

u = rv, s = ln v, (92)

reducing the system S(2) to the system P(2) with respect to the variables τ, ξ, r, and s with
equations:

E1P(2) ≡r3(sτ) + 3r2(sξ

)2
+ r3 + r2(rτ)− 5r2(sξ

)
− r2(sξ,ξ

)
+

+ 9r
(
rξ

)
− 5r

(
rξ

)
− r
(
rξ,ξ
)
+ 7
(
rξ

)2
= 0, (93)

E2P(2) ≡r3(sτ) + 5r2(sξ

)2 − 5r2(sξ

)
− r2(sξ,ξ

)
+ 13r

(
rξ

)(
sξ

)
− 6r2+

+ 2r
(
rξ

)
+ 6
(
rξ

)2
= 0. (94)

The cone of problem of the system P(2) is K = {p1, p2, p4 > 0}.
The supports of Equations (93) and (94) of the system P(2) are:

S(E1P(2)) = {[−1, 0, 3, 0], [−1, 0, 3, 1], [0,−2, 2, 0], [0,−2, 2, 1], [0,−2, 2, 2],

[0,−1, 2, 0], [0,−1, 2, 1], [0, 0, 3, 0]},
S(E2P(2)) = {[−1, 0, 3, 1], [0,−2, 2, 0], [0,−2, 2, 1], [0,−2, 2, 2], [0,−1, 2, 0],

[0,−1, 2, 1], [0, 0, 2, 0]}

The normals to the three-dimensional faces of the convex polyhedron Γ(E1P(2)) are

N(3)
485 = [0,−1, 2, 0], N(3)

647 = [0, 1,−1, 0], N(3)
701 = [−1, 0,−1, 0],

N(3)
707 = [0, 0, 0,−1], N(3)

713 = [1, 1, 0, 1], N(3)
727 = [1, 0, 0, 0].

The convex polyhedron Γ(E2P(2)) is a three-dimensional simplex, i.e., the support of
the equation E2P(2) lies in the hyperplane with normals N(3)

700 = [1, 0, 1, 0] and N(3)
701.

The normals with numbers 647, 700, 713, and 727 are suitable, and we denote the
corresponding systems by S(2, 1), S(2, 2), S(2, 3), and S(2, 4).
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The shortened system S(2, 1) contains the trivial shortened equation E2S(2, 1) ≡
−6r2 = 0, and the shortened system S(2, 2) contains the trivial equation E1S(2, 2) ≡ r3 = 0.
Therefore, we do not consider these systems below.

7.1. Analysis of the Truncated System S(2, 3)

The PDE system S(2, 3) corresponding to the normal N(3)
713 = [1, 1, 0, 1] consists of

equations:

E1S(2, 3) ≡ (sτ)r + 3
(
sξ

)2 − 5sξ + r = 0, (95)

E2S(2, 3) ≡ (sτ)r + 5
(
sξ

)2 − 5sξ − 6 = 0, (96)

derived from the corresponding equations of the system P(2) after reduction by the mul-
tiplier r2. Excluding the function r from E2S(2, 3) and substituting it into E1S(2, 3), we
obtain the equation:

E1S(2, 3)′ ≡ −2
(
sξ

)2
(sτ)− 5

(
sξ

)2
+ 5sξ + 6sτ + 6 = 0, (97)

which we consider as one PDE. It can be solved by the method of separation of variables,
considering the required function s(τ, ξ) in the form of

s(τ, ξ) = s1(τ) + s2(ξ).

Then, after substitution, it turns out that Equation (97) can be considered as the
equation of an algebraic curve of genus 0 with respect to the derivatives (s1)τ and (s2)ξ .
This curve allows a rational parametrization

(s1)τ = −
5C2

1 − 5C1 − 6
2(C2

1 − 3)
, (s2)ξ = C1,

where C1 is an arbitrary constant. Hence, the solution of the system S(2, 3) is the following:

SolS(2, 3) :

{
r(τ, ξ) = 2(C2

1 − 3), s(τ, ξ) =

(
5C2

1 − 5C1 − 6
)
τ

−2(C2
1 − 3)

+ C1 + C2ξ

}
(98)

which, according to (92), in the u, v variables is written as

u = 2C2

(
C2

1 − 3
)

ew, v = C2ew, (99)

where w =

(
5C2

1 − 5C1 − 6
)

−2(C2
1 − 3)

τ + C1ξ, and C2 is an arbitrary constant.

7.2. Analysis of the Truncated System S(2, 4)

The truncated ODE system S(2, 4) is

E1S(2, 4) ≡7
(
rξ

)2 − r
(
rξ,ξ
)
− 5r

(
rξ

)
+ 9r

(
rξ

)(
sξ

)
− r2(sξ,ξ

)
− 5r2(sξ

)
+ r3 + 3r2(sξ

)2
= 0, (100)

E2S(2, 4) ≡6
(
rξ

)2
+ 2r

(
rξ

)
− 6r2 + 13r

(
rξ

)(
sξ

)
− r2(sξ,ξ

)
− 5r2(sξ

)
+ 5r2(sξ

)2
= 0. (101)

Note that Equation (100) differs from Equation (65) of system S(1, 1, 3) only by mono-
mial r3, and Equation (101) is exactly the same as Equation (66). Moreover, the variable
derivatives τ of the functions r(τ, ξ) and s(τ, ξ) are not included in the system S(2, 4),
which allows us to consider the latter as a ODE system of functions r(ξ) and s(ξ) that
depend on one variable, ξ. Consequently, the objects of power geometry related to the
system S(2, 4) become three-dimensional in this case. The cone of problem corresponding
to the system S(2, 4) is K[S(2, 4)] = {p1, p3 > 0}.
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The supports of Equations (100) and (101) are

S(E1S(2, 4)) = {[−2, 2, 0], [−2, 2, 1], [−2, 2, 2], [−1, 2, 0], [−1, 2, 1], [0, 3, 0]},
S(E2S(2, 4)) = {[−2, 2, 0], [−2, 2, 1], [−2, 2, 2], [−1, 2, 0], [−1, 2, 1], [0, 2, 0]},

and the corresponding vectors of external normals are

N(2)
53 = [1,−1, 0], N(2)

107 = [−1, 2, 0], N(2)
233 = [0,−1, 0],

N(2)
234 = [0, 1, 0], N(2)

235 = [0, 0,−1], N(2)
237 = [1, 0, 1].

Only the normals with numbers 53, 233, 234, and 237 are suitable.
The truncations corresponding to the first and the third normals are trivial systems.
The truncated system corresponding to the normal N(2)

233 differs only by the sign from
the system P(1, 1, 3) with Equations (68) and (69) from Section 6.1.1. Hence, it defines the
same asymptotic forms of the solutions given by the Formulas (75)–(77).

A similar match takes place for the truncated system corresponding to the normal
N(2)

237, only in this case, the Equations (79) and (80) of the system S(1, 1, 4) from Section 6.1.2
are obtained. Hence, it defines the same asymptotic forms of solutions given by the
Formulas (84) and (85).

8. Summary of Results for the System (30)

In this section, we present the final results in the form of exact solutions and asymptotic
forms of the solutions to the original system (30) in the initial functions k(t, x) and ε(t, x).

8.1. Self-Similar Solutions

The exact solution (34) in variables u, v corresponds to the solution

k = − x2(−3 + 2γ)

6t2(γ− 1)2 , ε = − x2(−3 + 2γ)

6t3(γ− 1)3 (102)

The solutions to the system (36) take the following form:

For γ 6= 1, 3/2:

k =
x2(−3 + 2γ)(

6 + β(t(γ− 1) + α)δ
)
(t(γ− 1) + α)2

, ε =
x2(−3 + 2γ)(

6 + β(t(γ− 1) + α)δ
)
(t(γ− 1) + α)3

, (103)

where δ = −(−3 + 2γ)/(γ− 1).

For γ = 1:

k =
x2(

6 + β et/α
)
α2 , ε =

x2(
6 + β et/α

)
α3 . (104)

For γ = 3/2:

k =− 4x2

(−β + 12 ln(t/2 + α))(t + 2α)2 , ε =− 8x2

(−β + 12 ln(t/2 + α))(t + 2α)3 . (105)

8.2. Asymptotic Forms of Solutions to the System S(1)

In Section 6, four groups of asymptotics were found, two of which coincided with
each other.
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The asymptotic forms of the system S(1, 1, 3):

Asymp1S(1, 1, 3) :

{
k =

√
x C2

t2C2
1

, ε =

√
x C2

t3C3
1

}
,

Asymp2S(1, 1, 3) :

{
k =

C2

t2C2
1

, ε =
C2

t3C3
1

}
,

Asymp3S(1, 1, 3) :

{
k =

x1/3C2

t2C2
1

, ε =
C2

t3C3
1

}
.

Asymptotic forms of the system S(1, 1, 4):

Asymp1,2S(1, 1, 4) :

{
k =

x2

C1a2
1,2xb1,2 t2

, ε =
x2

C2
1 a3

1,2x2b1,2 t3

}
,

where a1,2 and b1,2 are given by the Formula (83).
Asymptotic forms of the system S(1, 2, 1)

Asymp1,2S(1, 2, 1) :

{
k =

x2b1,2

t2C2
1 x2a1,2

, ε =
x2b1,2

t3C3a1,2
1

}

where a1,2 and b1,2 are given by the Formula (88).
The asymptotic forms of the system S(1, 2, 2) coincide with the asymptotic forms of

the system S(1, 1, 3).

8.3. Asymptotic Forms of Solutions to the System S(2)

The solution found for the truncated system S(2, 3) gives the two-parameter asymp-
totic form

AsympS(2, 3) :

{
k =

x(2−C1)t(C1−2)(C1−3)/(2C2
1−6)

4C2
(
C2

1 − 3
)2 , ε =

x2(1−C1)t(2C1−3)(C1−1)/(C2
1−3)

8C2
2
(
C2

1 − 3
)3

}
,

defined for all parameter values C1 6= ±
√

3, C2 6= 0.
The truncated system S(2, 4) does not define new asymptotic forms.
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