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Abstract: The Hermean average perihelion rate ω̇2PN, calculated to the second post-Newtonian (2PN)
order with the Gauss perturbing equations and the osculating Keplerian orbital elements, ranges from
−18 to −4 microarcseconds per century

(
µas cty−1), depending on the true anomaly at epoch f0. It is

the sum of four contributions: one of them is the direct consequence of the 2PN acceleration entering
the equations of motion, while the other three are indirect effects of the 1PN component of the Sun’s
gravitational field. An evaluation of the merely formal uncertainty of the experimental Mercury’s
perihelion rate ω̇exp recently published by the present author, based on 51 years of radiotechnical
data processed with the EPM2017 planetary ephemerides by the astronomers E.V. Pitjeva and N.P.
Pitjev, is σω̇exp ' 8 µas cty−1, corresponding to a relative accuracy of 2× 10−7 for the combination
(2 + 2γ− β)/3 of the PPN parameters β and γ scaling the well known 1PN perihelion precession.
In fact, the realistic uncertainty may be up to '10–50 times larger, despite reprocessing the now
available raw data of the former MESSENGER mission with a recently improved solar corona model
should ameliorate our knowledge of the Hermean orbit. The BepiColombo spacecraft, currently
en route to Mercury, might reach a ' 10−7 accuracy level in constraining β and γ in an extended
mission, despite ' 10−6 seems more likely according to most of the simulations currently available
in the literature. Thus, it might be that in the not-too-distant future, it will be necessary to include the
2PN acceleration in the Solar System’s dynamics as well.

Keywords: experimental studies of gravity; experimental tests of gravitational theories

1. Introduction

The post-Newtonian (PN) approximation (see, e.g., [1–6] and references therein) is
a computational scheme for solving Einstein’s field equations of their General Theory of
Relativity (GTR) relying upon the assumptions that the characteristic speeds of the bodies
under consideration are smaller than the speed of light c and that the gravitational fields
inside and around them are weak. Nonetheless, as pointed out in [7], such a scheme turned
out to be remarkably effective in describing also certain strong-field and fast motion systems
such as compact binaries made of at least one dense neutron star and inspiralling pairs of
black holes emitting gravitational waves; the reasons for that are largely unknown [7]. Thus,
putting the PN approximation to the test in as many different scenarios and at the highest
order of approximation as possible is of paramount importance to gain ever-increasing
confidence in it.

In its technical realm of validity, the PN approximation has been successfully tested so
far only to the first post-Newtonian (1PN) order with, e.g., the orbital motions of planets,
asteroids and spacecraft in the Solar System [8–13], being its 2PN effects deemed too small
to be currently measurable. The 1PN precession of the pericentre ω was measured also
with binary pulsars [14,15] and stars orbiting the supermassive black hole at the center of
the Galaxy in Sgr A∗ [16].

The 2PN precession of the pericentre of a two-body system, recently worked out1 [22]
in a perturbative way with the Gauss Equations [23] and the standard osculating Ke-
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plerian orbital elements [24], was investigated in [25] for the double pulsar PSR J0737-
3039A/B [26,27] since it is viewed as a major source of systematic error in the expected
future determination of the spin–orbit Lense–Thirring periastron precession [20] since it
should fall within the envisaged sensitivity level.

Here, we explore the perspectives of including, a day, the 2PN effects in the dynamics
of the Solar System by looking at the perihelion of Mercury and the present and future
level of accuracy in knowing its orbit. For the light propagation to the O

(
c−4) order and its

possible astrometric measurements in the Solar System, see, e.g., [28] and references therein.
Furthermore, various consequences of modified models of gravity were investigated to the
2PN order; see, e.g., [29–33].

The paper is organized as follows. In Section 2, we review the calculational strategy
put forth in [22] to obtain the total 2PN precession of the pericenter of a two-body system.
The results are applied in Section 3 to Mercury and compared to the latest figures for
the uncertainty in determining its perihelion rate. The role of the ongoing BepiColombo
mission in improving the Hermean orbit determination is discussed as well. Section 4
summarizes our findings and offers our conclusions.

2. The 2PN Precession of the Pericenter

The total 2PN net2 precession of the argument of pericenter ω of a binary system made
of two static, spherically symmetric bodies A and B, written in terms of the usual osculating
Keplerian orbital elements, is [22] eq. (18), p. 4

ω̇2PN =
3 µ5/2

8 c4 a7/2 (1− e2)
3

{
−68 + 8 ν + e4 (−26 + 8 ν)+

+2 e2 (−43 + 52 ν) + e
[
8 (−29 + 13 ν) + e2 (−8 + 61 ν)

]
cos f0+

+3 e2 [4 (−5 + 4 ν) cos 2 f0 + e ν cos 3 f0]
}

. (1)

where µ
.
= G M is the gravitational parameter of the two-body system given by the product

of the sum of its masses M .
= MA + MB by the Newtonian constant of gravitation G,

the dimensionless parameter ν is given by ν
.
= MA MB/M2, a, e, and f0 are the osculating

values of the semimajor axis, eccentricity and true anomaly, respectively, at the same
arbitrary moment of time t0 [24].

By expanding Equation (1) in powers of the eccentricity e, one obtains

ω̇2PN ' 3 µ5/2 (−17 + 2 ν)

2 c4 a7/2 +
3 µ5/2 (−29 + 13 ν) cos f0

c4 a7/2 e+

+
3 µ5/2 [−145 + 64 ν + 6 (−5 + 4ν) cos 2 f0]

4 c4 a7/2 e2 +O
(

e3
)

. (2)

From Equation (2) it can be noted that, to the order of zero in e, the 2PN pericentre
precession is independent of f0.

It should be recalled that Equation (1) does not come only from the direct3 effect of the
2PN acceleration A2PN entering the equation of motion (see, e.g., [22] eq. (38), p. 8). Indeed,
also two indirect, or mixed, effects related to the 1PN acceleration A1PN (see, e.g., [22] eq. (37),
p. 7) subtly concur to yield the net shift per orbit ∆ω to the 2PN level from which (a part
of) the precession follows by dividing it by the (Keplerian) orbital period Pb; see [34] for
how to calculate such indirect effects in a different scenario. They are due to the following
facts. On the one hand, during an orbital revolution, all the orbital elements entering the
right hand side of the Gauss equation for dω/d f [35], calculated with A1PN, in principle,
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undergo instantaneous variations due to A1PN itself changing their values with respect to
their fixed Keplerian ones referred to some reference epoch t0. On the other hand, when the
integration over f is performed calculating ∆ω, the fact that the true anomaly is reckoned
from a generally varying line of apsides because of A1PN should be taken into account
as well. Such features yield two additional corrections to ∆ω with respect to the usual
1PN one4

∆ω1PN =
6π µ

c2 a (1− e2)
(3)

which, in the case of A1PN, are just of the order of O
(
c−4). Finally, as shown in [22],

when the total 2PN net precession has to be calculated, the 1PN fractional shift per orbit
k1PN .

= ∆ω1PN/2π must be multiplied by the 1PN mean motion n1PN
b , and an expansion in

powers of c−1 to the order of O
(
c−4) must be taken. Thus, the precession of Equation (1)

comes from the sum of the latter contribution plus the direct rate induced by A2PN and the
two indirect terms due to A1PN.

In [22], it is shown that Equation (1) agrees with other calculations existing in the litera-
ture performed with different computational strategies [20,36]. In particular, Equation (1) is
in agreement with the expression for the total 2PN pericentre precession, written in terms of
the osculating Keplerian orbital elements, which can be inferred from [20] eq. (5.18), p. 158
based on the Damour-Deruelle parameterization [21].

3. The 2PN Perihelion Precession of Mercury

In the case of Sun and Mercury5, Figure 1, displaying the plot of Equation (1) as a func-
tion of f0, shows that the Hermean 2PN precession ranges from−18 to−4 microarcseconds
per century

(
µas cty−1).
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Figure 1. Total 2PN perihelion precession ω̇2PN of Mercury, in µas cty−1, as a function of the
true anomaly at epoch f0 according to Equation (1). It turns out that −18 µas cty−1 . ω̇2PN .
−4 µas cty−1.

About the current accuracy in determining observationally the perihelion precession
ω̇exp of Mercury, the present author in [38] tentatively inferred a formal uncertainty as
little as

σω̇exp ' 8 µas cty−1 (4)
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from the planetary ephemerides6 EPM2017 [39]. At first glance, Equation (4) might seem
interesting since it is of the same order of magnitude as the 2PN contribution to the
Hermean perihelion precession. The dynamical models of7 EPM2017 is accurate to the
1PN level, including, among other things, also the Lense–Thirring effect induced by the
Sun’s angular momentum S�. As far as Mercury is concerned, they are based only on
radio tracking data resulting in 1556 normal points over a temporal interval 51 years long
(1964–2015); in particular, data collected by the MESSENGER (Mercury Surface, Space
Environment, Geochemistry and Ranging) spacecraft from 2011 to 2015 were analyzed.
As pointed out in [38,39], realistic accuracies at the time of writing such papers may be
'10–50 times larger than Equation (4). On the other hand, a new model of solar plasma
affecting the spacecraft ranging observations was recently published [40]; it can now be
used to reprocess the raw MESSENGER data8 which were recently released9. This should
improve the accuracy of our knowledge of Mercury’s orbit. As noted in [38], Equation (4)
corresponds to an uncertainty as little as 2× 10−7 in the combination (2 + 2 γ− β)/3 of
the PPN parameters γ and β in front of Equation (3). The ongoing mission to Mercury
BepiColombo [41] aims, among other things, to accurately determine β and γ; according
to [42] Table 5, p. 21, an extended mission may reach just the ' 10−7 accuracy level in
constraining such PPN parameters. The same conclusion is shown also in [43] Table 2, p. 12;
see also references therein. However, it should be remarked that most of the scenarios
examined in [41,43] envisage an accuracy in constraining β and γ of the order of ' 10−6.
Be that as it may, perhaps, we may not be so far away from having to include, one day, also
the 2PN terms in Solar System’s dynamics.

In principle, a source of major systematic error which may overwhelm the 2PN
perihelion precession is represented by the competing classical effect due to tidal distortion
involving the Hermean Love number k2 [44,45]. Such a parameter measures the mass
concentration toward the center of a fluid body assumed in hydrostatic equilibrium such as,
e.g., a main sequence star. Its possible values range from 0 for the mass point approximation
to 3/4 = 0.75 for a fully homogeneous fluid body [46]. For a binary system, the periastron
precession of tidal origin is [46] eq. (3.100), p. 170

ω̇tid = 15 nb

(
1 +

3
2

e2 +
1
8

e4
)[

kA
2

MB

MA

(
RA

p

)5
+ A� B

]
, (5)

where p .
= a

(
1− e2) is the semilatus rectum of the two-body relative orbit, and RA/B is

the equatorial radius of the body A or B. A recent determination of the Love number of
Mercury relying upon the analysis of the complete four years of MESSENGER tracking
data from March 2011 to April 2015 yields10 [47]

k2 = 0.53± 0.03. (6)

The nominal value of the Hermean contribution11 to Equation (5), calculated with
Equation (6), is of the order of a few µas cty−1. Nonetheless, by assuming to model the
tidal effects to the level of accuracy of Equation (6), the resultant mismodeled perihelion
precession would be well below the 2PN one.

From a practical point of view, experts in planetary data reductions should clarify
which part of Equation (1) could be, actually, measured and how. Indeed, given that the 1PN
equations of motion are currently included in the dynamical force models of the software
routinely adopted to process the data, it may be argued that the indirect components of
Equation (1) should have already been measured along with the 1PN precession; if so, only
the direct part due to A2PN could be detected by explicitly modeling it and estimating, say,
a dedicated scaling solve-for parameter. Otherwise, A2PN should be modeled in terms of β
and γ whose newly estimated values, if known at the 10−7 level, would account for the
2PN component of the equations of motion as well.
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4. Summary and Conclusions

The 2PN pericentre precession ω̇2PN of a two-body system made of two static, spheri-
cally symmetric masses, obtained with the standard Gauss perturbative equation in terms
of the usual osculating Keplerian orbital elements, is reviewed. Both the exact expression
(Equation (1)) and an approximated expansion in powers of the eccentricity e up to the order
of O

(
e2) (Equation (2)) are given. It is recalled that ω̇2PN consists of four contributions:

a direct term straightforwardly arising from the 2PN acceleration A2PN in the equations
of motion, and three indirect parts due to the 1PN acceleration A1PN itself. In particular,
one of the latter ones arises from the expansion to the order of O

(
c−4) of the product of

the well-known fractional 1PN shift per orbit (the ratio of Equation (3) to 2π) by the 1PN
mean motion. The other two indirect contributions come from taking into account also the
instantaneous variations of the order of O

(
c−2) of the orbital elements and the fact that the

anomalistic period over which the 1PN shift is integrated is the time interval between two
successive crossings of an actually moving pericenter due to A1PN itself. The resulting total
2PN precession of Equation (1) depends on the true anomaly at epoch f0. It is remarked
that Equation (1) agrees with other expressions for ω̇2PN in the literature obtained with
different parameterizations and calculational schemes.

In the case of the Sun and Mercury, the Hermean 2PN perihelion precession, calculated
with Equation (1), ranges from −18 to −4 µas cty−1 depending on f0. A recent guess for the
formal experimental uncertainty in determining Mercury’s perihelion precession with the
EPM2017 planetary ephemerides is σω̇exp ' 8 µas cty−1, although the realistic uncertainty
may be up to '10–50 times larger. Nonetheless, the raw data collected during the past
MESSENGER mission are now available, and a new, accurate model of the solar corona,
usually a major bias impacting the accuracy of ranging measurements, was recently pub-
lished. Thus, reprocessing the MESSENGER observations with such a new model should
improve our knowledge of Mercury in the near future. A ' µas cty−1 level corresponds
to an uncertainty of the order of ' 10−7 in the PPN combination (2 + 2γ− β)/3 scaling
the 1PN precession. In a few scenarios encompassing an extended mission profile of
the BepiColombo spacecraft, currently en route to Mercury, such a level of accuracy in
constraining the PPN parameters γ and β may be reached, although ' 10−6 seems more
plausible according to the majority of the simulations performed so far in the literature.
Anyway, perhaps, the time when it will be necessary to model the dynamics of the Solar
System at the 2PN order might not be that far away, after all.
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Notes
1 Among the several calculations existing in the literature with different computational schemes and parameterizations such as,

e.g., [17–19], see [20] for a derivation based on the Hamilton–Jacobi method and the Damour-Deruelle parameterization [21].
2 Here and in the following, the angular brackets 〈. . .〉 denoting the orbital average are omitted.
3 It is calculated perturbatively in the usual way by evaluating the right hand side of the Gauss equation for dω/dt [23], calculated

with A2PN, onto a fixed Keplerian ellipse, and integrating it over a Keplerian orbital period.
4 It is obtained by keeping a and e fixed during the integration of the right hand side of the Gauss equation for dω/d f , calculated

with A1PN, over a Keplerian orbital period.
5 For a recent comparative study of Mercury’s perihelion advance induced by some classical dynamical effects, see [37].
6 EPM stands for Ephemeris of Planets and the Moon.
7 See https://iaaras.ru/en/dept/ephemeris/epm/2017/ (accessed on 30 December 2022) for details.

https://iaaras.ru/en/dept/ephemeris/epm/2017/
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8 Until now, the simpler model of the NASA Jet Propulsion Laboratory (JPL) was pre-applied to the normal points published by it;
see https://ssd.jpl.nasa.gov/dat/planets/messenger.txt (accessed on 30 December 2022).

9 D. Pavlov, private communication to the present author, November 2022.
10 It has to be meant as the geophysicists’ Love number, which is twice the astronomers’ one, known also as apsidal constant,

entering Equation (5) [46] p. 115.
11 The one due to the Sun’s Love number is much smaller, being, thus, of no concern.
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