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Abstract: We report a theoretical derivation of the Cabibbo–Kobayashi–Maskawa (CKM) matrix
parameters and the accompanying mixing angles. These results are arrived at from the exceptional
Jordan algebra applied to quark states, and from expressing flavor eigenstates (i.e., left chiral states)
as a superposition of mass eigenstates (i.e., the right chiral states) weighted by the square root of
mass. Flavor mixing for quarks is mediated by the square root mass eigenstates, and the mass ratios
used are derived from earlier work from a left–right symmetric extension of the standard model.
This permits a construction of the CKM matrix from first principles. There exist only four normed
division algebras, and they can be listed as follows: the real numbers R, the complex numbers C, the
quaternions H and the octonions O. The first three algebras are fairly well known; however, octonions
as algebra are less studied. Recent research has pointed towards the importance of octonions in the
study of high-energy physics. Clifford algebras and the standard model are being studied closely. The
main advantage of this approach is that the spinor representations of the fundamental fermions can
be constructed easily here as the left ideals of the algebra. Also, the action of various spin groups on
these representations can also be studied easily. In this work, we build on some recent advances in the
field and try to determine the CKM angles from an algebraic framework. We obtain the mixing angle
values as θ12 = 11.093◦, θ13 = 0.172◦, θ23 = 4.054◦. In comparison, the corresponding experimentally
measured values for these angles are 13.04◦ ± 0.05◦, 0.201◦ ± 0.011◦, 2.38◦ ± 0.06◦. The agreement of
theory with experiment is likely to improve when the running of quark masses is taken into account.

Keywords: Weak interaction; CKM matrix; quark mixing; exceptional Jordan algebra; Clifford
algebras; octonions

1. Introduction

There has been occasional interest in the last few decades regarding the significance of
octonions for understanding the standard model of particle physics [1]. Research on this
topic has picked up significant pace in the last seven years or so since the publication of
Furey’s Ph.D. thesis [2], and also the discovery by Todorov and Dubois-Violette [3] that
the exceptional groups G2, F4, E6 contain symmetries of the standard model as maximal
sub-groups. This has given rise to the hope that octonions could play a significant rule in
the unification of electroweak and strong interactions and, in turn, their unification with
gravitation. Octonionic chains can be used to generate a Clifford algebra, and spinors made
as minimal left ideals of Clifford algebras possess symmetries observed in the standard
model [2,4].

We propose a left–right symmetric extension of the standard model, based on complex
split bioctonions, which incorporates gravitation [5]. This is consistent with unification
based on an E8 × E8 symmetry, and the breaking of this symmetry reveals the standard
model [6,7]. Chiral fermions arise after symmetry breaking; left-handed fermions are
eigenstates of electric charge, and right-handed fermions are eigenstates of the newly intro-
duced U(1) quantum number, square root of mass. By expressing the charge eigenstates
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as superpositions of square root mass eigenstates, one is able to theoretically derive the
observed mass ratios of quarks and charged leptons [8–12].

In the present paper, we extend these methods to provide a theoretical derivation of
the CKM matrix parameters for quark mixing and the accompanying mixing angles. Also,
we show that the complex Clifford algebra Cl(9) is the algebra of unification. Further, we
conclude from our investigations that our universe possesses a second 4D spacetime with
its own distinct light cone structure. Distances in this spacetime are invariably microscopic
and only quantum systems can access this second spacetime.

This paper is organized as follows. Sections 2–4 review a few basics of group represen-
tations, Clifford algebras, and the octonions. Sections 5 and 6 briefly recall earlier work on
particle representations made from octonions, and our own work on the derivation of mass
ratios from the exceptional Jordan algebra. Section 7 is the heart of the paper; the space of
minimal ideals is constructed, and the role of SU(2)L and SU(2)R symmetry is elucidated.
The triality property of the spinor and vector reps of SO(8) is used to motivate the method-
ology for the theoretical derivation of the CKM matrix parameters. The calculation of these
matrix parameters and mixing angles is then carried out in Section 8. Conclusions are in
Section 9.

The CKM matrix plays a central role in the understanding of weak interactions of
quarks and provides a quantitative measure of the flavor change brought about by these
interactions. It plays a key role in the understanding of CP violation, and a possible violation
of the unitarity condition might be an indication of physics beyond the standard model.
What is important is to note that to date, our knowledge of the CKM matrix parameters
comes exclusively from experiments. The CKM angles are free parameters of the standard
model, and there is no generally accepted theory which explains why these angles should
have the values measured in experiments. To the best of our knowledge, the present
paper is the first to provide a first-principles derivation of the CKM angles, starting from a
theory of unification of the standard model with gravitation. Based on the spontaneous
breaking of the unified E8 × E8 symmetry, a new U(1) symmetry arises, which we name
U(1)grav. Its associated charge is square root of mass ±

√
m, which can have either sign

(analogous to electric charge): positive sign for matter, and negative sign for anti-matter.
Left-handed fermion states are eigenstates of electric charge, and right-handed fermion
states are eigenstates of the square root mass. These characteristics enable us to construct
the CKM matrix, and the fact that mass eigenstates are labeled by the square root mass and
not by the mass plays a very important role in correctly determining the values of the CKM
angles. An earlier paper on CKM angles which foresaw the significance of square root
mass is the one by Nishida [13] and is titled “Phenomenological formula for CKM matrix
and its physical interpretation”. An even earlier interesting work is by Fritzsch [14,15],
who also aimed to derive the mixing angles in terms of quark mass ratios. While these
important works bear some interesting similarity to ours, they take quark masses and
their ratios as inputs from experiments. On the other hand, we first derived mass ratios
from an underlying theory of unification, and in the present work, these mass ratios are
used to derive the weak mixing angles. Thus, the octonionic theory of unification provides
strong evidence that the fundamental constants of the standard model are derivable from a
coherent framework and are not free parameters of nature.

2. A Few Basics

To engage in the study of the Clifford algebras, mass ratios and their application to the
standard model itself, we first need a basic introduction to some mathematical concepts.
A basic review is given in the following sections about some of the required concepts.



Universe 2023, 9, 440 3 of 41

2.1. Algebra

An algebra (A, + , . , F) over a field F is defined to be a vector space over the field,
equipped with a bi-linear operation that follows the following properties:

m : A× A −→ A (1)

(a, b) −→ a.b a, b, a.b ∈ A (2)

• (αa).(βb) = αβ(a.b) α, β ∈ F; a, b ∈ A
• (a + b).c = (a.c) + (b.c) a,b,c ∈ A.
• ((a.b).c) = (a.(b.c))

An ideal I is defined as a subspace of A which survives multiplication by any element
of A. A left ideal is defined as

a ∈ I, ∀b ∈ A =⇒ (b.a) ∈ I (3)

2.2. Group Representations

We recall a few essential basics about group theory.

• If there is a homomorphism from a group G to a group of operators U(G) on a vector
space V, then U(G) forms a representation of group G on V.

• The dimension of the representation is the same as the dimension of the vector space:

g ∈ G U−→ U(g) (4)

U(g)ei = D(g)j
iej i, j = 1, 2−−dim(V) (5)

Here, the D is the matrix representation of G on the vector space V. As a representation
is a homomorphism, it must preserve the group operation, so we have

U(g1)U(g2) = U(g1.g2) (6)

D(g1)D(g2) = D(g1.g2) (7)

If for a representation U(G) of G on V, there exists a subspace V1 in V such that

U(g)|x1〉 ∈ V1 ∀x1 ∈ V1 (8)

then such a subspace is called an invariant subspace of V with respect to the group rep-
resentation U(G). The trivial invariant subspaces of V are V itself, and the space of null
vectors. A subspace which does not have any non-trivial invariant subspace is called mini-
mal or proper. The representation U(G) on V is called irreducible if there is no non-trivial
invariant subspace in V; otherwise, the representation is reducible [16].

2.3. The Standard Model

The gauge group of the standard model is given below:

GSM = SU(3)c × SU(2)L ×U(1)Y (9)

Also, the forces and their respective carriers are presented in Table 1.

• A representation of the gauge group G acts on a finite-dimensional Hilbert space V.
• Particles then live in the irreducible invariant subspace of V as their basis vectors.
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Table 1. Forces and force carriers.

Force Gauge Boson Symbol

Electromagnetism Photon γ

Weak Force W and Z bosons W+, W−, Z

Strong Force Gluons g

3. Clifford Algebras

A Clifford algebra Cl(p, q) over R is defined to be an associative algebra, generated by
n elements ei. These n generators exhibit the following properties:{

ei, ej
}
= eiej + ejei = 2ηij (10)

e2
i = 1 e2

j = −1 (11)

Here i runs from 1 to p, and j runs from 1 to q. The multiplication, also called the
Clifford product, can be realized in terms of dot product and wedge product of vectors. An
example is

xy = x.y + x∧ y (12)

The signature becomes irrelevant when we form the algebra over C as the field. For a
vector v (a linear combination of generators), we have

v2 = −||v|| =⇒ v−1 =
−v
||v|| (13)

3.1. Pin and Spin Groups

There is a natural automorphism in the Clifford algebra for all vectors in the Clifford
algebra, given by

v −→ ṽ = −v (14)

Let us denote this automorphism as α. It partitions the algebra into two parts. Firstly,
we have the part that is the product of even number of vectors, given as

Cleven(n) =
{

α(x) = x; ∀x ∈ Cl(n)
}

(15)

The other part contains an odd number of vectors as the product

Clodd(n) =
{

α(x) = −x; ∀x ∈ Cl(n)
}

(16)

For a non-null vector u, we can define an inverse given by

∀u ∈ V ⊂ Cl(V) (17)

∃u−1 ∈ Cl∗(V) : u−1 = − u
‖~u‖ (18)

Here, Cl∗(V) is the group of elements that have inverses. The definition of the inverse
of the vector can be extended to the inverse of the product of the vectors. Thus, we can
define two groups as given below [17,18]:

Pin =
{

a ∈ Cl∗(V) : a = u1u2 −−− ur, uj ∈ V, |uj| = 1
}

(19)
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Spin = Pin ∩ Cleven(n) =
{

a ∈ Cl(n) : a = u1 − u2r; uj ∈ V, |uj| = 1
}

(20)

The action of both these groups on V can be defined as the twisted adjoint action:

Ãdax = α(a)xa−1 ∈ V ∀x ∈ V. (21)

(α(a)va−1)2 = v2 ∀v ∈ V (22)

As both of these group preserve the magnitude of the vectors, they are orthogonal and
special orthogonal transformations:

Pin −→ O(n) (23)

Spin −→ SO(n) (24)

3.2. Representations of Clifford Algebras

The real and complex Clifford algebras have matrix representations. Here, however,
we will focus on representations of complex Clifford algebras. The representations of the
even subalgebra can be similarly obtained by the identity [19,20]

Cleven(n) ∼= Cl(n− 1) ; n ≥ 1 (25)

The matrix representations are given below. Here, Mp(C) represents a p× p matrix
with complex entries:

Cl(n) ∼= Mp(C) p = 2
n
2 ; n = even (26)

Cl(n) ∼= Mp(C)⊕Mp(C) p = 2
n−1

2 ; n = odd (27)

Again, notice that for the odd case, the total representation is reduced to two ir-
reducible representations. In particular, look at the case of n = 3, 7 mod 8. The irre-
ducible subspace on which matrices act is represented by P. These Mn(F) act on the
n-dimensional irreducible space. The choice of the volume element can split the algebra
into two parts [20,21]; total space also becomes partitioned into two irreducible subspaces.
For dimensions 3 and 7, there are two choices of irreducible spaces, positive spinor space
(P+) and negative spinor space (P−).

Cl(n) ∼= Cl+(n)⊕ Cl−(n) ∼= EndC(P+)⊕ EndC(P−) (28)

P = P+ ⊕ P− (29)

Now, look at the case for the complexified Dirac algebra C⊗ Cl(1, 3). It is equivalent
to complex Clifford algebra Cl(4). We need to study the usual spinors, so we look at the
matrix representations of Cleven(4). We know that Cleven(4) ∼= Cl(3). For those cases, where
the even subalgebra is partitioned into two, we similarly obtain positive spinor space (S+)
and negative spinor space (S−):

Cleven(4) ∼= Cl(3) ∼= M2(C)⊕M2(C) (30)

S = S+ ⊕ S− = SL ⊕ SR (31)

These are the matrix representations of the spin groups that act on the spinor space.
The total spinor space is the vector sum of the positive and negative spinor spaces. Both
spaces are two-dimensional, and indeed these spaces are interpreted as the left-handed
Weyl spinor and right-handed Weyl spinor. Keeping this information in mind, we construct
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two irreducible subspaces in higher dimensions, with the brief outline discussed below.
For the Cl(8) algebra, we look at its even subalgebra:

Cleven(8) = Cl(7) = M8(C)⊕M8(C) (32)

As n = 7, the representation space can be decomposed into two irreducible subspaces.
This fact can be used later to include spin and other things in the analysis.

4. Octonions

A generic complex octonion can be represented as

C⊗O =
7

∑
n=0

Anen (33)

Here, An are complex coefficients, and en are octonionic units, with properties e2
0 = 1

and e2
i = −1. So, e0 = 1 and the rest are imaginary octonionic units. In general, octonionic

multiplication is non-associative. An example is given:

e3(e4(e6 + ie2)) = −1 + ie7 (34)

(e3e4)(e6 + ie2) = −1− ie7 (35)

To tackle this problem of the octonions, we need to define an order of multiplication
on a product of octonions. It leads to a chain of octonions made from maps:

e1(e2(e3(e4)))) −→ ←−−−−e1e2e3e4 (36)

←−−−−−−−−−− eiej −− f = −(←−−−−−−−−−− ejei −− f ) (37)

We will work with octonionic chains only. Octonionic multiplication is represented by
the Fano plane given below. A multiplication example is given by

e7e1 = e3 and e1e7 = −e3 (38)

eiej + ejei = 0 (39)

The octonionic chains form a representation of the Clifford algebras, and hence, we
are interested in their study. They form a representation of Cl(6) [2]. The generators of
the Clifford algebra can be constructed from the octonionic imaginary units as shown in
Furey’s work [2]. The Fano plane in Figure 1 lists the methods to multiply octonionic units.

Cl(6) ∼= C⊗
←−
O (40)

The 64 dim Cl(6) algebra is fully generated by the set
{←−

ie1,
←−
ie2,
←−
ie3,
←−
ie4,
←−
ie5,
←−
ie6
}

. These
are the generators of the Clifford algebra and act as the underlying vector space structure:

←−−−−−−−e1e2e3e4e5e6 f =←−e7 f (41)
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Figure 1. The Fano plane [19].

5. Minimal Left Ideals

The generators of Cl(6) can be used to make elements of maximally totally isotropic
space (MTIS). An element of maximally totally isotropic space has a quadratic norm equal
to zero [22]. This space for the maximally isotropic subspaces follows the algebraic structure
given below: {

qi, qj
}

f = qi(qj f ) + qj(qi f ) = 0 (42)

{
q†

i , q†
j
}

f = q†
i (q

†
j f ) + q†

j (q
†
i f ) = 0 (43)

{
qi, q†

j
}

f = δij f (44)

The a† represents the Hermitian conjugation. It is basically the complex conjugation
a∗ and octonionic conjugation ã performed simultaneously. The elements of the MTIS
can be constructed from the generators of Cl(6). One choice is given below [2,5]. The six
generators give rise to six elements with a quadratic norm equal to zero. There can be other
equivalent choices also [22]:

q1 =
1
2
(−e5 + ie4) q†

1 =
1
2
(e5 + ie4) (45)

q2 =
1
2
(−e3 + ie1) q†

2 =
1
2
(e3 + ie1) (46)

q3 =
1
2
(−e6 + ie2) q†

3 =
1
2
(e6 + ie2) (47)

We construct quantities out of these isotropic vectors, with the nilpotent given as [2]

q = q1q2q3 q† = q†
3q†

2q†
1 (48)

q2 = 0 (q†)2 = 0 (49)

We also have the idempotent given as

p = qq† p′ = q†q (50)

p2 = p (p′)2 = p′ (51)

We act on the idempotent by the q and q† operators and obtain various algebraic states
and the minimal left ideals. These states are later classified according to the transformations
they undergo [2,23].
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5.1. Symmetry Transformations

We first look at such transformations for which the maximally isotropic space is closed.
Operator transforms of the type

eiφk gk |e−iφk gk φk ∈ R (52)

[gk, ∑
i

biqi] = ∑
j

cjqj [gk, ∑
i

b′iq
†
i ] = ∑

j
c′jq

†
j (53)

We can make Hermitian operators by the following procedures:

q = c1q1 + c2q2 + c3q3 and q′ = c′1q1 + c′2q2 + c′3q3 (54)

The charge operator has a U(1) symmetry Q = 1
3 ∑i q†

i qi and SU(3) generators:

Λ1 = −q†
2q1 − q†

1q2 Λ2 = iq†
2q1 − iq†

1q2 (55)

Λ3 = q†
2q2 − q†

1q1 Λ4 = −q†
1q3 − q†

3q1 (56)

Λ5 = −iq†
1q3 + iq†

3q1 Λ6 = −q†
3q2 − q†

2q3 (57)

Λ7 = iq†
3q2 − iq†

2q3 Λ8 = − 1√
3
(q†

1q1 + q†
2q2 − 2q†

3q3) (58)

A general Hermitian operator can be written as

∑
H

H = r0Q + ri

8

∑
i=1

Λi (59)

We see that the idempotent remains unaffected by these operations:

ei ∑ Hqq†e−i ∑ H = (1 + i ∑ H +−−)qq†(1− i ∑ H −−) = qq† = p (60)

Hence, it is identified as a neutrino. The down isospin family can be obtained via
complex conjugation of all the particles. Operators for that family also become complex
conjugated and then are used to identify the particles.

5.2. Particle Representations

We have the symmetry groups SU(3) and U(1) of the standard model; we now look
at the action of these groups on the elements of the minimal left ideals and see how
they transform. Depending upon their transformations and eigenvalues, we label them
accordingly [2] as shown in Table 2. We look at their charges obtained by the action of the
Q operator and also observe the action of SU(3) generators to classify them.

The di and uj have indices running from one to three, representing the three colored up
and anti-down quarks. The left ideal present above gives another left ideal after the complex
conjugation. This time, it gives the isospin down family. Observe that the transition from
one family to other can be performed by complex conjugation. Now, the creation operator
and the annihilation operator reverse their roles, and we also obtain a new idempotent.

Hence, we have a representation of one generation of standard model particles under
the unbroken symmetry SU(3)c ×U(1)em [2].
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Table 2. (a) Up-isospin particles; (b) down-isospin particles.

(a)

Q Λ Pu Particle

0 1 p ν

1
3 3̄ q†

i p d̄i

2
3 3 q†

i q†
j p ui

1 1 q†
i q†

j q†
k p e+

(b)

−Q∗ −Λ∗ Pd Particle

0 1 p′ ν̄

− 1
3 3 qi p′ di

− 2
3 3̄ qiqj p′ ūi

−1 1 qiqjqk p′ e−

6. Split Bioctonions and Mass Ratios

Split bioctonions are simply two copies of octonions in the same algebra. They can be
constructed from the generators in the Cl(7) algebra [5]:

Cl(7) ∼= Cl(6)⊕ Cl(6) (61)

Observe that the spinor representations of Cleven(8) again give us the positive and
negative spinor spaces:

Cleven(8) ∼= Cl(7) ∼= M8(C)⊕M8(C) (62)

6.1. Construction

The seven generators of Cl(7), given as {e1, e2, e3, e4, e5, e6, e7}, can be arranged in the
manner given below. Keeping in mind the non-associativity of the octonions, we use the
octonionic chains [5]:

ω =←−−−−−−−−e1e2e3e4e5e6e7 (63)

e8 =←−−−−−−−e1e2e3e4e5e6 (64)

(1, e1, e2, e3, e4, e5, e6, e8)⊕ω(1,−e1,−e2,−e3,−e4,−e5,−e6,−e8) (65)

ω2 = 1 (66)

Here, e8 acts as an octonionic unit, and ω as a pseudoscalar that commutes with every
octonionic unit and hence with every element of the Cl(7) algebra. It is the analog of the
split complex number that squares to one but is neither one not minus one. To generate the
system with opposite parity, look at an example given below:

←−−−−−−−e1e2e4e5e6e7 = −←−−−−−−−−−−−e1e2e3e3e4e5e7e6e6 = −←−−−−−−−−−−e3e1e2e3e4e5e6e7 = −e3ω = −ωe3 (67)

A Cl(6) algebra can be used to construct a left-sided ideal. It is similar to an irreducible
space; the action (left multiplication) of various elements of algebra on the elements in the
ideal keeps the space of the ideal closed, similar to the working of the irreducible space. The
two sets of octonions can now be used to construct ideals that represent states of opposite
chirality, similar to positive and negative spinor states. By the complex conjugation of the
two chiral families, we can also construct the antiparticle sates. We can do so by defining
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the idempotents and nilpotents as done earlier, and perform our analysis. But notice this
time that for the second copy of the octonions, the generators have a negative sign. This
helps us to introduce chirality into the problem. From the first copy of the octonions, we
obtain the left-handed neutrino family and its right-handed anti-particle’s family. Similarly,
from the second copy we can obtain the right-handed neutrino family and its left-handed
anti-particle’s family [5].

6.2. Mass Ratios

We construct all three families from a single real octonionic family by a set of trans-
formations. Both cases for Dirac and Majorana neutrinos are analyzed [9]. The solution
of the Dirac equation in (9, 1) spacetime is connected with the eigenvalue problem of the
Hermitian octonionic matrices as explained in [24,25]. The eigenvalues thus calculated give
us the square root mass ratios of various fundamental fermions.

6.2.1. Hermitian Octonionic Matrices

The quarks have different representations for different colors. Octonions are difficult
to work with, while quaternions are much easier to deal with. To make the problem simpler,
we take the representations of neutrino and electron and choose the color state of the quarks
accordingly such that only one quaternionic copy is used for one family of fermions. Now,
this complex quaternionic representation is mapped to real octonionic representation by
the mapping given below [9]:

C⊗ H −→ R⊗O (68)

(a0 + ia1) + (a2 + ia3)e4 + (a4 + ia5)e5 + (a6 + ia7)e7 (69)y
a0 + a1e1 + a5e2 + a3e3 + a2e4 + a4e5 + a7e6 + a6e7 (70)

Once we have the real representation for one family, we perform an internal rotation
about some axis and obtain the real octonionic representation for all three families. We
can use these representations to fill the entries in 3× 3 octonionic Hermitian matrices.
The uniqueness of the axis used for transformation and similar matters have already been
discussed [9]. It is observed that the ratios of the square root mass of the positron, the up
quark and the down quark is 1:2:3. Motivated by this information, we can define a new
quantity as the gravi charge. The ratio of gravi charges will then be

e+ : u : d =
1
3

:
2
3

: 1 (71)

The gravi charges can be negative also. These gravi charges are then used on the diago-
nals of these octonionic Hermitian matrices. These 3× 3 octonionic Hermitian matrices are
referred to as exceptional Jordan matrices, and they form the exceptional Jordan algebra,
with a specified Jordan product [26]

AoB =
1
2
(AB + BA) (72)

We fill the entries in the matrices accordingly with the diagonals filled with the
gravi charge

Xν =

 0 Vτ Vµ

Vτ 0 Vν

Vµ Vν 0

 Xe =

 1
3 Vτ Vµ

Vτ
1
3 Ve+

Vµ Ve+
1
3

 (73)
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Xu =

 2
3 Vt Vc

Vt
2
3 Vu

Vc Vu
2
3

 Xd =

 1 Vb Vs
Vb 1 Vd
Vs Vd 1

 (74)

These matrices satisfy the characteristic equation given as [26]

A3 − (trA)A2 + σ(A)A− (detA)I = 0 (75)

The definition and explanation for each quantity are presented in Appendix A. The ex-
act nature of these matrices in the context of standard model is still not completely under-
stood. However, some results do suggest that the OP2 space is crucial for our understanding
of the spinors, and these spaces are closely related to these Hermitian matrices [27]. These
matrices with real octonionic entries can be further decomposed as given [24]:

A =
3

∑
i

λiPλi (76)

Pλi oPλj = 0 =
1
2
(Pλi Pλj + Pλj Pλi ) (77)

=⇒ AoPλ = λPλ (78)

It gives us an eigenmatrix equation. These eigenvalues are used to calculate the square
root masses of various fundamental fermions [9] as shown in Figure 2 below.

Figure 2. The square root of mass of fermions with respect to the down quark [9].

6.2.2. Inclusion of Gravity

The mass ratios of the up quark, down quark, and positron motivated us to extend the
gauge group to SU(3)grav × SU(2)R ×Ug(1). This U(1) symmetry is similar to the usual
U(1), with the gravi charge as the quantity analogous to the electric charge. We can group
the particles with up isospin together as was done earlier and proceed as follows:

e+ : u : d =
1
3

:
2
3

: 1 (79)

We have the following families that are expected to observe the SU(2)R symmetry:(
u

e−

) (
νe
d

)
(80)
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Notice the swapping of the down quark and electron. This structure can be extended
to all three generations. Now, we are working in the Cl(7) algebra; it has two copies of
the Cl(6) algebra. One copy can be used to construct the octonionic representations of the
gravitationally inactive particles that transform according to the normal standard model
gauge group. The second copy of the Cl(6) can be used to construct a new minimal left ideal
for this new extension to the gauge group, which will then have the following octonionic
representation for the various gravitationally active particles. The minimal left ideal and
the right-handed nilpotents and the idempotent for these spinors that are gravitationally
active are then given below:

q1 =
−ω

2
(−e5 + ie4) q†

1 =
−ω

2
(e5 + ie4) (81)

q2 =
−ω

2
(−e3 + ie1) q†

2 =
−ω

2
(e3 + ie1) (82)

q3 =
−ω

2
(−e6 + ie2) q†

3 =
−ω

2
(e6 + ie2) (83)

qR = q1q2q3 q†
R = q†

3q†
2q†

1 (84)

pR = qRq†
R (85)

This helps us to generate the following particle eigenstates:

νe,R =
ie8 + 1

2
(86)

Ve+1 = ω
(−e5 − ie4)

2
(87)

Ve+2 = ω
(−e3 − ie1)

2
(88)

Ve+3 = ω
(−e6 − ie2)

2
(89)

Vu1 =
e4 + ie5

2
(90)

Vu2 =
e1 + ie3

2
(91)

Vu3 =
e2 + ie6

2
(92)

Vd = ω
(i + e8)

2
(93)

7. Space of Minimal Left Ideals

The complete space related to minimal left ideals is not used in the Cl(6) algebra. We
intend to use it fully. We already have information about the square root mass ratios. We
know that p = qq† is idempotent, and q†

i are the ladder operators. By using this, we can
construct a left ideal, and by the right multiplication on this space of the left ideal, we can
span the whole space of the algebra [23,28].
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7.1. Patterns in the Standard Model

To study the standard model, the first thing to do is to introduce vector spaces (or
the Hilbert space) which are later made into an algebra. The underlying complex vector
space (V, h) establishes a natural isomorphism between the vector space dual and its
conjugate. h here is the inner product on the vector space. We, therefore, have the following
relations [23]:

V−1 ∼= V† ∼= V (94)

Table 3 represents the vector space required to explain the appropriate symmetries [23].
The space χem represents one vector that corresponds to a charge of e

3 and the space χc
represents a three-dimensional complex vector space that has three basis vectors given
as {r, g, b}. For the electromagnetic space, the charges add up for the tensor product of
such spaces; they appear as numbers in the exponential associated with the U(1) symmetry.
By the above relations, we then have information about the dual space or the conjugate
space. We have the space χem, which has the charge equal to −e

3 , and the dual color space,
which now has the vectors as {r, g, b}. We can use our knowledge of how particles transform
under various symmetry transformations and define the internal electro-color space for
various particles as given in Table 4. This will later help us to develop isomorphisms
between the exterior algebra related to the internal space and the elements of the Cl(6)
algebra. For the color space of fermions, we can use the exterior powers of the χc to
represent different fermions. The color space χc and its dual (or conjugate) χc have the
basis as given below:

χc = {r, g, b} χc = {r, g, b} (95)

For the exterior algebra of the vectors of the color space and its dual, we have the
following relation:

Λ−kχc = Λkχc (96)

With this knowledge, we have the following isomorphisms:

Λ0χc ∼= C (97)

Λ1χc ∼= χc (98)

Λ2χc ∼= χc : {r ∧ g→ b , g ∧ b→ r , r ∧ b→ g} (99)

Λ3χc ∼= C : r ∧ g ∧ b (100)

The representations of particles in exterior algebra are given in Table 5. For the
simplification of the notation, define

χ = χem ⊗ χc (101)

Note that the Hilbert space is equipped with h = hem ⊗ hc, and the space is three-
dimensional.

Table 3. Internal space for various symmetries.

Force/Charge Internal Space Dimension Symmetry

Electromagnetism χem 1 U(1)

Strong χc 3 SU(3)

Weak Hypercharge χY 1 U(1)

Weak- Electromagnetism χew 2 U(2)
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Table 4. Internal space of particles.

Particle Internal Space

e− χ3
em

u χ2
emχc

d χemχc

ν C

ν C

d χ−1
em χc

u χ−2
em χ̄c

e+ χ−3
em

We choose a basis of the isotropic vectors for the newly defined space χ as {q1, q2, q3},
and its dual basis for the space χ as {q†

1, q†
2, q†

3}. So the total Hilbert space can be seen as
χ† ⊕ χ, and other particles are the elements of the exterior algebra defined by this space.
These vectors are the Grassmann numbers; they indeed define a basis for the exterior
powers of the χ (wedging replaced by the Clifford product).

Table 5. Particles as the representations of the exterior algebra [23].

Particles Vectors in Exterior Space

e− Λ3χ

u Λ2χ

d Λ1χ

ν Λ0χ

ν Λ0χ

d Λ1χ

u Λ2χ

e+ Λ3χ

7.2. Algebra for the Standard Model

We construct an algebra over the space χ† ⊕ χ and generate a basis of null vectors [23].
The two chiral spaces are the maximally isotropic subspaces for the inner product. So from
our previous knowledge and definitions in the earlier section, we have the following:

χ =
{

q1, q2, q3
}

χ† =
{

q†
1, q†

2, q†
3
}

(102)

{
q†

i , q†
j
}
= 0

{
qi, qj

}
= 0

{
qi, q†

j
}
= δij (103)

q = q1q2q3 q† = q†
3q†

2q†
1 (104)

p = qq† p′ = q†q (105)

Here, p and p′ are the idempotents; q and q† are the nilpotents as defined earlier. We
can now define an orthonormal basis using these null vectors by the following construction:

χ† ⊕ χ =
{

e1, e2, e3, ẽ1, ẽ2, ẽ3
}

(106)

ej = qj + q†
j (107)
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ẽj = i(q†
j − qj) (108)

e = e1e2e3 ẽ = ẽ1 ẽ2 ẽ3 (109)

e2
i = ẽ2

i = 1 (110)

eẽ = −ẽe (111)

Observe that we could have chosen−ẽj as the orthonormal vector instead of ej; this will
change the definition of null vectors in terms of the orthonormal vectors. Here, however,
we choose the above given definitions.

7.3. Ideals and Representations

We recall that
Cleven(7) ∼= Cl(6) ∼= M8(C) (112)

We know that the Cl(7) spinors have representations as the elements of the Cl(6)
algebra. We construct left ideals in the Cl(6) algebra and now left multiply various elements
of the Cl(6) algebra with the elements of the left ideal; as the space is closed, the resulting
space is invariant. It gives us the matrix representations of the elements of Cl(6). Following
the earlier framework [2], we act with the creation operators on the idempotents to create
the particles and thus obtain the representation of particles in the algebra. A basis of the
minimal left ideal or the action of all creation operators on one idempotent can be written
as [23] {

p, q†
23 p, q†

31 p, q†
12 p, q†

321 p, q†
1 p, q†

2 p, q†
3 p
}

(113)

Upon simplification of the above given basis in terms of the qis, we have{
qq†,−q1q†,−q2q†,−q3q†, q†, q23q†, q31q†, q12q†} (114)

We act on this algebraic basis using various creation and annihilation operators. It
gives us the representations of the algebra as the endomorphisms on the underlying vector
space. For the algebraic ideal A, we have

ρ : A −→ ρ(A) (115)

ρ(A) : b ∈ A −→ ρ(A)(b) ∈ A (116)

ρ(A) ∼= EndC(A ∼=vec C8) (117)

Using the above information, we have

qq†

−q1q†

−q2q†

−q3q†

q†

q23q†

q31q†

q12q†


q†

1−→



0
0

−q1q2q†

−q1q3q†

q1q†

qq†

0
0


(118)
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So the action of q†
1 can be represented as

0
0

−q1q2q†

−q1q3q†

q1q†

qq†

0
0


=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





qq†

−q1q†

−q2q†

−q3q†

q†

q23q†

q31q†

q12q†


(119)

The matrix representation of the q†
1 and other null vectors is therefore given below:

q†
1 =


0 0 0 0
0 0 0 −iσ2
−iσ2 0 0 0

0 0 0 0

 q†
2 =


0 0 0 σ−3
0 0 −σ−3 0
0 −σ+

3 0 0
σ+

3 0 0 0

 (120)

q†
3 =


0 0 0 −σ−
0 0 σ+ 0
0 −σ+ 0 0

σ− 0 0 0

 (121)

σ+ =

[
0 1
0 0

]
σ− =

[
0 0
1 0

]
σ+

3 =

[
1 0
0 0

]
σ−3 =

[
0 0
0 1

]
(122)

With the matrix definitions of the null vectors, we have matrix representations for
other defined elements as given below, the nilpotents, idempotents and the orthonormal
vectors, respectively:

q† =


0 0 0 0
0 0 0 0

σ+
3 0 0 0
0 0 0 0

 q =


0 0 σ+

3 0
0 0 0 0
0 0 0 0
0 0 0 0

 (123)

p =


σ+

3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 p′ =


0 0 0 0
0 0 0 0
0 0 σ+

3 0
0 0 0 0

 (124)

The orthonormal vectors are given below:

e1 =


0 0 iσ2 0
0 0 0 −iσ2
−iσ2 0 0 0

0 iσ2 0 0

 e2 =


0 0 0 12
0 0 −12 0
0 −12 0 0
12 0 0 0

 (125)

e3 =


0 0 0 iσ2
0 0 iσ2 0
0 −iσ2 0 0
−iσ2 0 0 0

 ẽ1 =


0 0 σ2 0
0 0 0 σ2
σ2 0 0 0
0 σ2 0 0

 (126)

ẽ2 =


0 0 0 −iσ3
0 0 iσ3 0
0 −iσ3 0 0

iσ3 0 0 0

 ẽ3 =


0 0 0 −iσ1
0 0 iσ1 0
0 −iσ1 0 0

iσ1 0 0 0

 (127)
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To compute the inner product between various orthonormal vectors, we use the matrix
multiplication:

~a.~b =
1
2
(ab + ba) (128)

7.3.1. SU(2) Symmetry

We will first partition this eight-dimensional space into a vector sum of two irreducible
spaces of dimension four. Then these four-dimensional spaces have to be further decom-
posed into irreducible subspaces, defined to be of different chirality. To proceed, we need
to define new matrix operators; for the weak isospin 1

2 and − 1
2 , we use an isospin operator

(it decomposes the space into two irreducible representations):

e =
[

0 14
−14 0

]
ẽ = i

[
0 14
14 0

]
(129)

eẽ = i
[

14 0
0 −14

]
(130)

The 1±eẽ
2 operator partitions the C8 space into two C4 spaces. We have the chirality

operator given below:

Γ5 = −ie1 ẽ1 =


12 0 0 0
0 −12 0 0
0 0 −12 0
0 0 0 12

 (131)

This operator can be used to define projectors on left and right chiral subspaces of
two irreducible representations. The minus sign of the chirality operator represents the left
chiral subspace. We need to mix the left chiral subspace of the particles for a given SUL(2)
doublet. We can define a new basis of null vectors for the excited weak iso-spin states as
given below [23]:

wu =


0 12 0 0
0 0 0 0
0 0 0 −12
0 0 0 0

 wd =


0 0 −12 0
0 0 0 0
0 0 0 −12
0 0 0 0

 (132)

wo =


σ+ 0 0 0
0 −σ+ 0 0
0 0 −σ+ 0
0 0 0 σ+

 (133)

{
wi, wj

}
= 0

{
w†

i , w†
j
}
= 0

{
wi, w†

j
}
= δij (134)

We have the matrix representations of the various elements. We can make the following
identifications: 

p
w†

o p
w†

u p
w†

uw†
o p

w†
d p

w†
dw†

o p
w†

dw†
u p

w†
dw†

uw†
o p


=



p
q†

23 p
q†

31 p
q†

12 p
q†

321 p
q†

1 p
q†

2 p
q†

3 p


(135)

w†
u represents the creation of the left chiral subspace for an up-isospin particle from the

idempotent; similarly, w†
d represents the creation of the left chiral subspace for a down-
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isospin particle. w†
dw†

u represents the creation of the right chiral subspace of a down-isospin
particle [23]. Observe the following decomposition. Due to isospin projectors and later
projections due to the chirality operator, WCj represents the j-dimensional complex space:

WC8 = W1
C4 ⊕W2

C4 (136)

WC8 = W1
C2,R ⊕W1

C2,L ⊕W2
C2,L ⊕W2

C2,R (137)

= {p, w†
o p} ⊕ {w†

u p, w†
uw†

o p} ⊕ {w†
d p, w†

dw†
o p} ⊕ {w†

dw†
u p, w†

dw†
uw†

o p} (138)

= {p, q†
23 p} ⊕ {q†

31 p, q†
12 p} ⊕ {q†

321 p, q†
1 p} ⊕ {q†

2 p, q†
3 p} (139)

We now define SU(2) symmetry generators. These will only mix the left chiral space
for both fermions:

T1 =
1
2


0 0 0 0
0 0 12 0
0 12 0 0
0 0 0 0

 T2 =
−i
2


0 0 0 0
0 0 −12 0
0 12 0 0
0 0 0 0

 (140)

T3 =
1
2


0 0 0 0
0 −12 0 0
0 0 12 0
0 0 0 0

 (141)

[Ti, Tj] = iεijkTk (142)

Observe that no mixing takes place for the right chiral space.

7.3.2. Complete Space of Ideals

The complete basis of the algebra Cl(6) in terms of the minimal left ideal can be written
as given below, where the initial basis is expanded via the right multiplication on that ideal:



p pq23 pq31 pq12 pq321 pq1 pq2 pq3
q†

23 p q†
23 pq23 q†

23 pq31 q†
23 pq12 q†

23 pq321 q†
23 pq1 q†

23 pq2 q†
23 pq3

q†
31 p q†

31 pq23 q†
31 pq31 q†

31 pq12 q†
31 pq321 q†

31 pq1 q†
31 pq2 q†

31 pq3
q†

12 p q†
12 pq23 q†

12 pq31 q†
12 pq12 q†

12 pq321 q†
12 pq1 q†

12 pq2 q†
12 pq3

q†
321 p q†

321 pq23 q†
321 pq31 q†

321 pq12 q†
321 pq321 q†

321 pq1 q†
321 pq2 q†

321 pq3
q†

1 p q†
1 pq23 q†

1 pq31 q†
1 pq12 q†

1 pq321 q†
1 pq1 q†

1 pq2 q†
1 pq3

q†
2 p q†

2 pq23 q†
2 pq31 q†

2 pq12 q†
2 pq321 q†

2 pq1 q†
2 pq2 q†

2 pq3
q†

3 p q†
3 pq23 q†

3 pq31 q†
3 pq12 q†

3 pq321 q†
3 pq1 q†

3 pq2 q†
3 pq3


8×8

(143)

Now we can identify four-dimensional spaces using the classifier spaces, isospin
spaces and spinor chiral spaces with various particles [28]. We use the elements from
row 1 and row 5 to assign the electric charge to the two four-dimensional column spinors
present in a column by calculating the total electric charge from the product of the creation
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and the annihilation operators. We identify these bases with the following particle spaces,
remembering that these are now complex numbers on which M8(C) can act from the left:

νR1 ur
R1

ub
R1

ug
R1

eL1 d
r
L1

d
b
L1

d
g
L1

νR2 ur
R2

ub
R2

ug
R2

eL2 d
r
L2

d
b
L2

d
g
L2

νL1 ur
L1

ub
L1

ug
L1

eR1 d
r
R1

d
b
R1

d
g
R1

νL2 ur
L2

ub
L2

ug
L2

eR2 d
r
R2

d
b
R2

d
g
R2

eL1 dr
L1

dg
L1

db
L1

νR1 ur
R1

ub
R1

ug
R1

eL2 dr
L2

dg
L2

db
L2

νR2 ur
R2

ub
R2

ug
R2

eR1 dr
R1

dg
R1

db
R1

νL1 ur
L1

ub
L1

ug
L1

eR2 dr
R2

dg
R2

db
R2

νL2 ur
L2

ub
L2

ug
L2


Charge

(144)

7.3.3. Left Action on the Space of Ideals

Now, we have arranged our total complex ideal space in such a manner that left
multiplication will only cause transformation within an ideal. We already showed our
SU(2) generators and their intended action on an ideal (a C8 column, basically). It is
important to notice that for Cl(6) ∼= Cl(4)⊗ Cl(2), now Cl(4) represents the Dirac algebra
and Cl(2) represents the spin algebra. Essential transformations are basically Lorentzian in
nature and SU(2) transformations. Thus, if we want to include spin in our analysis, we
can do so by looking at the algebra Cl(4)⊗ Cl(2)⊗ Cl(2) ∼= Cl(4)Dirac ⊗ Cl(2)Iso−spin ⊗
Cl(2)Spin and the left action of various elements of Cl(8) algebra on the ideals of the Cl(8).

7.3.4. Right Action on the Space of Ideals

Looking at the total space of ideals, we see that a right multiplication by M8(C) will
permute the columns. It can basically change the color space of various quarks. So, here,
essential transformations for us will be SU(3) transformations. The matrices that can do so
will form one-to-one correspondence with Gell-Mann SU(3) matrices [28].

7.4. Cl(7) Algebra

We have
Cl(7) = C×O⊕ω(C×O) = Cl(6)⊕ Cl(6) (145)

With the above information, we proceed for the extended gauge group SU(3)grav ×
SU(2)R ×Ug(1). With this, we can define a new internal space, as performed earlier for all
the particles. It is given in Table 6.

Table 6. New symmetry group.

Force/Charge Internal Space Dimension Symmetry

Gravi Electromagnetism χgem 1 U(1)

Gravi Strong χgrav 3 SU(3)

Gravi-Weak Hypercharge χg 1 U(1)

Gravi-Weak Electromagnetism χg−ew 2 U(2)

As done earlier, we again define a space χ as given below:

χ ∼= χgem ⊗ χgrav (146)

The space χgem assigns − 1
3 units of the gravi charge to the particles. We again have

three null basis vectors for this tensor product space. Every basis represents a gravi charge
of 1

3 , and each of the three anti-colors is related to SU(3)grav. The gravi charge is additive in
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nature and it will add up for a product of the null basis vectors. For χ space, we denote the
basis as {q†

i }i=1,2,3. Each basis vector has a gravi charge equal to 1
3 and one gravi anti-color.

We then have the total space as χ⊕ χ†, with their basis vectors as given below:

χ =
{

q†
1, q†

2, q†
3
}

χ† =
{

q1, q2, q3
}

(147)

With this notation, we can proceed further and classify particles according to the
representations of the exterior algebra. This is shown in Tables 7 and 8.

Table 7. Internal space due to extended symmetry group.

Particle Internal Space

d χ3
gem

u χ2
gemχgrav

e− χgemχgrav

ν C

ν C

e+ χ−1
gemχgrav

u χ−2
gemχgrav

d χ−3
gem

Table 8. Particles in exterior algebra.

Particle Vectors in Exterior Space

d Λ3χ

u Λ2χ

e− Λ1χ

ν Λ0χ ∼= C

ν Λ0χ ∼= C

e+ Λ1χ

u Λ2χ

d Λ3χ

Now for the other copy of Cl(6), we can use the complex conjugated vector space and,
similarly, p′ as the idempotent. The new basis will then be{

p′, q23 p′, q31 p′, q12 p′, q321 p′, q1 p′, q2 p′, q3 p′
}

(148)

{
q†q, q†

1q, q†
2q, q†

3q,−q, q†
32q, q†

13q, q†
21q
}

(149)

Similarly, we can define the complete space of ideals as defined earlier:
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p′ p′q†
32 p′q†

13 p′q†
21 p′q†

321 p′q†
1 p′q†

2 p′q†
3

q23 p′ q23 p′q†
32 q23 p′q†

13 q23 p′q†
21 q23 p′q†

321 q23 p′q†
1 q23 p′q†

2 q23 p′q†
3

q31 p′ q31 p′q†
32 q31 p′q†

13 q31 p′q†
21 q31 p′q†

321 q31 p′q†
1 q31 p′q†

2 q31 p′q†
3

q12 p′ q12 p′q†
32 q12 p′q†

13 q12 p′q†
21 q12 p′q†

321 q12 p′q†
1 q12 p′q†

2 q12 p′q†
3

q321 p′ q321 p′q†
32 q321 p′q†

13 q321 p′q†
21 q321 p′q†

321 q321 p′q†
1 q321 p′q†

2 q321 p′q†
3

q1 p′ q1 p′q†
32 q1 p′q†

13 q1 p′q†
21 q1 p′q†

321 q1 p′q†
1 q1 p′q†

2 q1 p′q†
3

q2 p′ q2 p′q†
32 q2 p′q†

13 q2 p′q†
21 q2 p′q†

321 q2 p′q†
1 q2 p′q†

2 q2 p′q†
3

q3 p′ q3 p′q†
32 q3 p′q†

13 q3 p′q†
21 q3 p′q†

321 q3 p′q†
1 q3 p′q†

2 q3 p′q†
3


8×8

(150)

As done earlier, we can obtain a matrix representation of the elements of Cl(6) by the
left action of various elements on the left ideal. We have a method to compute the U(1)
charges using the classifier space. We employed this method to assign electric charges to
four-dimensional column vectors and hence classify the various subspaces of the complete
space of ideals as particles. We use the same method and classify particles according to the
gravi-charges.

7.4.1. Right Adjoint Action

The right action has a similar working. M8(C) acting from the right can permute the
columns and hence can cause color changes for colored particles. We have similar matrices
for such a transformation as we defined earlier for SU(3). Here, too, we can do the same
for SU(3)grav, the gravi color symmetry.

7.4.2. Left Adjoint Action

For the left action of the elements of the algebra, the space of ideals is closed. This
gives us the matrix representations of the algebraic elements. But now, we want our spinors
such that they are SU(2)R active, which means that their right chiral space mixes due to
SU(2)R. We can define a new basis of gravi weak isospin null vectors and similarly a set of
SU(2) generators:

ωu =


0 −12 0 0
0 0 0 0
0 0 0 12
0 0 0 0

 ωd =


0 0 0 0
0 0 0 0
−12 0 0 0

0 −12 0 0

 (151)

ωo = −


σ+ 0 0 0
0 −σ+ 0 0
0 0 −σ+ 0
0 0 0 σ+

 (152)

{
wi, wj

}
= 0

{
w†

i , w†
j
}
= 0

{
wi, w†

j
}
= δij (153)



p′

q23 p′

q31 p′

q12 p′

q321 p′

q1 p′

q2 p′

q3 p′


−→



p′

ω†
o p′

ωu
† p′

ωu
†ωo

† p′

ωd
† p′

ωd
†ωo

† p′

ω†
dω†

u p′

ω†
dω†

uω†
o p′


−→


W1R
W1L
W2L
W2R

 (154)

Interpret these new null vectors as follows: ω†
u as the creation operator of the left

chiral subspace of the gravi weak up-isospin particle, and ω†
d as the creation operator to

generate the left chiral subspace of the gravi weak down-isospin particle. Similarly, ω†
dω†

u
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generates the right chiral subspace for the gravi weak down-isospin particle. With these
definitions for the null basis, we can define an orthonormal basis too, as defined earlier:

uj = ω j + ω†
j (155)

u′j = i(ω†
j −ω j) (156)

We have the following set of orthonormal vectors:{
uu, ud, uo, u′u, u′d, u′o

}
(157)

We now check the action of the SU(2) operator constructed from the ui and u′i. Define
the new SU(2) generators as the following:

T1 =
1
2


0 0 0 12
0 0 0 0
0 0 0 0
12 0 0 0

 T2 =
−i
2


0 0 0 12
0 0 0 0
0 0 0 0
−12 0 0 0

 (158)

T3 =
1
2


12 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −12

 (159)

[Ti, T j] = iεijkTk (160)

Look carefully; it does not mix the left chiral components of the spinors from the two
irreducible representations of different chirality. Hence, it gives us the gravitationally active
right chiral spinors.

7.4.3. Particle Identification

Now, we can proceed further and identify the various particles in the new complete
space of ideals: 

νR1 ur
R1

ub
R1

ug
R1

dL1 er
L1

eb
L1

eg
L1

νR2 ur
R2

ub
R2

ug
R2

dL2 er
L2

eb
L2

eg
L2

νL1 ur
L1

ub
L1

ug
L1

dR1 er
R1

eb
R1

eg
R1

νL2 ur
L2

ub
L2

ug
L2

dR2 er
R2

eb
R2

eg
R2

dL1 er
L1

eg
L1

eb
L1

νR1 ur
R1

ub
R1

ug
R1

dL2 er
L2

eg
L2

eb
L2

νR2 ur
R2

ub
R2

ug
R2

dR1 er
R1

eg
R1

eb
R1

νL1 ur
L1

ub
L1

ug
L1

dR2 er
R2

eg
R2

eb
R2

νL2 ur
L2

ub
L2

ug
L2


Mass

(161)

This is performed using the classifier space, weak force generators and SU(3) opera-
tions. This gives us the following gravi weak isospin doublets SU(2)R:
First generation (

u
e−

)
R

(
ν
d

)
R

(162)

Second generation (
t

µ−

)
R

(
νµ

b

)
R

(163)
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Third generation (
c

τ−

)
R

(
ντ

s

)
R

(164)

7.5. Triality and Cl(8) Algebra

The basic reason to look into the Cl(8) algebra is to use triality mapping. Triality
mapping is generally a very interesting object to study. Some authors have pointed towards
its importance in studying three generations [2,19]:

Cleven(8) ∼= Cl(7) ∼= M8(C)⊕M8(C) (165)

As explained earlier, M8(C)⊕M8(C) acts on a spinor space S+
8 ⊕ S−8 . Both S+

8 and S−8
are eight-dimensional complex spinor spaces. The eight generators of the Cl(8) algebra give
us the vector representation denoted by V8. These can be considered the basis vectors of the
underlying vector space. Triality denoted by t8 is defined as the following mapping [19]:

t8 : S+
8 × S−8 ×V8 −→ C (166)

So it basically takes three complex vector spaces and gives us a number as an output.
Now, focus on the space of the ideals for the Cl(8) algebra. We saw earlier that even the
subalgebra of Cl(8) is the same as Cl(7), and we know that Cl(7) ∼= Cl(6)⊕ Cl(6), so the
subspace, the even subalgebra of Cl(8), is the same as the direct sum of the left ideal space
of the two copies of Cl(6).

7.5.1. Space of Ideals in Cl(8)

We require an eight-dimensional null basis to obtain the complete maximally totally
isotropic subspace of the null vectors. To the six-dimensional vector space of χ⊕ χ†, add a
two-dimensional space S for the two spin vectors. Our final underlying space will then
be χ⊕ χ† ⊕ S. To describe this new space, we also add {q4, q†

4} to the pre-existing set of
null vectors. Now, any element in ideal will be a product from these eight vectors, then we
have [28]

Cl(8) ∼= Cl(4)⊗ Cl(2)⊗ Cl(2) ∼= Cl(4)Dirac ⊗ Cl(2)Iso−spin ⊗ Cl(2)Spin (167)

{q1, q2, q3, q4, q†
1, q†

2, q†
3, q†

4} (168)

q = q1q2q3q4 q† = q†
4q†

3q†
2q†

1 (169)

p = qq† p′ = q†q (170)

Here, q and q† are the nilpotents, and p and p′ are the idempotents. We use p as the
idempotent; from the previous information, we know the importance of Cleven(8), so we
can write the Cleven(8) ideal subspace as [28]

Cl(8) =
[

Even1 Odd
Odd Even2

]
=⇒ Cleven(8) =

[
Even1 0

0 Even2

]
(171)

The Even1 part of the complete space of the ideal of Cl(8) is given below:
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p pq32 pq13 pq21 pq4321 pq41 pq42 pq43
q†

23 p q†
23 pq32 q†

23 pq13 q†
23 pq21 q†

23 pq4321 q†
23 pq41 q†

23 pq42 q†
23 pq43

q†
31 p q†

31 pq32 q†
31 pq13 q†

31 pq21 q†
31 pq4321 q†

31 pq41 q†
31 pq42 q†

31 pq43
q†

12 p q†
12 pq32 q†

12 pq13 q†
12 pq21 q†

12 pq4321 q†
12 pq41 q†

12 pq42 q†
12 pq43

q†
1234 p q†

1234 pq32 q†
1234 pq13 q†

1234 pq21 q†
1234 pq4321 q†

1234 pq41 q†
1234 pq42 q†

1234 pq43
q†

14 p q†
14 pq32 q†

14 pq13 q†
14 pq21 q†

14 pq4321 q†
14 pq41 q†

14 pq42 q†
14 pq43

q†
24 p q†

24 pq32 q†
24 pq13 q†

24 pq21 q†
24 pq4321 q†

24 pq41 q†
24 pq42 q†

24 pq43
q†

34 p q†
34 pq32 q†

34 pq13 q†
34 pq21 q†

34 pq4321 q†
34 pq41 q†

34 pq42 q†
34 pq43


(172)

The Even2 part of the complete space of the ideal of Cl(8) is given below:

q†
4 pq4 q†

4 pq432 q†
4 pq413 q†

4 pq421 q†
4 pq321 q†

4 pq1 q†
4 pq2 q†

4 pq3
q†

234 pq4 q†
234 pq432 q†

234 pq413 q†
234 pq421 q†

234 pq321 q†
234 pq1 q†

234 pq2 q†
234 pq3

q†
314 pq4 q†

314 pq432 q†
314 pq413 q†

314 pq421 q†
314 pq321 q†

314 pq1 q†
314 pq2 q†

314 pq3
q†

124 pq4 q†
124 pq432 q†

124 pq413 q†
124 pq421 q†

124 pq321 q†
124 pq1 q†

124 pq2 q†
124 pq3

q†
123 pq4 q†

123 pq432 q†
123 pq413 q†

123 pq421 q†
123 pq321 q†

123 pq1 q†
123 pq2 q†

123 pq3
q†

1 pq4 q†
1 pq432 q†

1 pq413 q†
1 pq421 q†

1 pq321 q†
1 pq1 q†

1 pq2 q†
1 pq3

q†
2 pq4 q†

2 pq432 q†
2 pq413 q†

2 pq421 q†
2 pq321 q†

2 pq1 q†
2 pq2 q†

2 pq3
q†

3 pq4 q†
3 pq432 q†

3 pq413 q†
3 pq421 q†

3 pq321 q†
3 pq1 q†

3 pq2 q†
3 pq3


(173)

We know that there is a volume element in Cl(7) algebra that can partition the algebra
into two parts. Here, the Cleven(8) algebra gets partitioned into two parts depending upon
whether the element is self-dual or not. So by this, we can assign different spins to both the
even parts. Let us assign spin up to Even1 and spin down to Even2 parts of the Cleven(8).
By our previous arguments, we know that a correspondence can be established between
each even part of the Cl(8) algebra and two copies of Cl(6), so we can identify a given
subspace of even subalgebra by particles from one generation with two different definite
spins. Let us make some identifications; for example, for the SU(2)L active particles, we
can identify the Even1 part as

A↑ =



ν↑R1
ur↑

R1
ub↑

R1
ug↑

R1
e↑L1

d
r↑
L1

d
b↑
L1

d
g↑
L1

ν↑R2
ur↑

R2
ub↑

R2
ug↑

R2
e↑L2

d
r↑
L2

d
b↑
L2

d
g↑
L2

ν↑L1
ur↑

L1
ub↑

L1
ug↑

L1
e↑R1

d
r↑
R1

d
b↑
R1

d
g↑
R1

ν↑L2
ur↑

L2
ub↑

L2
ug↑

L2
e↑R2

d
r↑
R2

d
b↑
R2

d
g↑
R2

e↑L1
dr↑

L1
dg↑

L1
db↑

L1
ν↑R1

ur↑
R1

ub↑
R1

ug↑
R1

e↑L2
dr↑

L2
dg↑

L2
db↑

L2
ν↑R2

ur↑
R2

ub↑
R2

ug↑
R2

e↑R1
dr↑

R1
dg↑

R1
db↑

R1
ν↑L1

ur↑
L1

ub↑
L1

ug↑
L1

e↑R2
dr↑

R2
dg↑

R2
db↑

R2
ν↑L2

ur↑
L2

ub↑
L2

ug↑
L2


Charge

(174)

Similarly, the Even2 part can be identified by the second-generation SU(2)L particle
eigenstates. We replace the particles with the corresponding second-generation particles:

{ν, ν} −→ {νµ, νµ} (175)

{e, e} −→ {µ, µ} (176)

{u, d} −→ {c, s} (177)

{u, d} −→ {c, s} (178)
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However, this family will have the opposite spin sign; let us denote the second-
generation SU(2)L active family with down spin as B↓. Similarly, the third-generation
family with up spin can be represented as C↑. So the total SU(2)L active vector spaces
(C8 ×C8) with different spins available to us can be listed as follows:

{A↑, A↓, B↑, B↓, C↑, C↓} (179)

Now, observe the following:

Cl(9) = Cl(7)⊗ Cl(2) = (C×O⊕ω(C×O))⊗ Cl(2) = Cl(8)⊕ Cl(8) (180)

Now we can use one copy of Cl(8) to construct the representations for left active
SU(2)L particles. The other copy of Cl(8) can be used to construct the right active SU(2)R
particles. Both copies will give us the spin-up and spin-down particles. For SU(2)R active
particles, we can use the complexified space of ideals and use the p′ as the idempotent. We
perform a similar procedure; now, again, the Cleven(8) algebra will be partitioned into two
subalgebras denoting different spins. An example of the particle identification of different
gravi charges and the SU(2)R active first generation is present below:

P↑ =



ν↑R1
ur↑

R1
ub↑

R1
ug↑

R1
dL1 er↑

L1
eb↑

L1
eg↑

L1

ν↑R2
ur↑

R2
ub↑

R2
ug↑

R2
d
↑
L2

er↑
L2

eb↑
L2

eg↑
L2

ν↑L1
ur↑

L1
ub↑

L1
ug↑

L1
d
↑
R1

er↑
R1

eb↑
R1

eg↑
R1

ν↑L2
ur↑

L2
ub↑

L2
ug↑

L2
d
↑
R2

er↑
R2

eb↑
R2

eg↑
R2

d↑L1
er↑

L1
eg↑

L1
eb↑

L1
ν↑R1

ur↑
R1

ub↑
R1

ug↑
R1

d↑L2
er↑

L2
eg↑

L2
eb↑

L2
ν↑R2

ur↑
R2

ub↑
R2

ug↑
R2

d↑R1
er↑

R1
eg↑

R1
eb↑

R1
ν↑L1

ur↑
L1

ub↑
L1

ug↑
L1

d↑R2
er↑

R2
eg↑

R2
eb↑

R2
ν↑L2

ur↑
L2

ub↑
L2

ug↑
L2


Mass

(181)

Similarly, the second family will be represented by Q and the third family by R, both
presenting as spin up and spin down. The three mass families with different spins that
transform according to SU(3)grav × SU(2)R ×U(1)g can be represented as

{P↑, P↓, Q↑, Q↓, R↑, R↓} (182)

7.5.2. Triality Operator

The action of the triality operator on Cl(8) representations [19,23,29] can be seen as

Trial :
{

V8, S+
8 , S−8

}
−→

{
S+

8 , S−8 , V8
}

(183)

Trial :
(

A↑ 0
0 B↓

)
=

(
C↑ 0
0 A↓

)
(184)

where {A, B, C} represents the usual SU(2)L active generations. Now look at the Cl(9)
algebra. It gives us the spin up and spin down for both flavors as well as mass eigen-
states; one transforms according to SU(2)L and the other transforms according to SU(2)R.
If {P, Q, R} are the three generations that transform according to SU(2)R, then the total
space for us is A↑ ⊕ A↓

B↑ ⊕ B↓

C↑ ⊕ C↓

⊕
 P↑ ⊕ P↓

Q↑ ⊕Q↓

R↑ ⊕ R↓

 (185)
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O = 1⊗ Trial (186)

Now, if we operate the operator O on our total space, we can group various mass and
flavor families in a given Cl(9) algebra by permuting the rows. This gives us a theoretical
framework to construct the CKM matrix.

8. CKM Matrix Parameters

Let us focus our attention on one generation that transforms according to SU(3)grav ×
SU(2)R ×U(1)g. Here, we have eight mass eigenstates or the particles in one generation,
considering the two particles that transform according to SU(3)grav. Here, we develop some
isomorphisms to make further progress. As we already had octonionic representations
of various particles and quaternionic representations of particles from one generation, it
was natural to proceed with them. However, those methods did not yield any significant
progress, which forced us to adopt the method given below.

8.1. Gravi-Charge Operator

We can develop an isomorphism from the space of representations (space of ideals) of
one generation of mass eigenstates to an eight-dimensional complex vector space. For some
definite spin, suppressing the spin, we can write the above argument of isomorphism for
all the particles for three generations as given below:

{P, Q, R} −→ C8 ⊕C8 ⊕C8 (187)

We can now act on this space of C8 ⊕C8 ⊕C8 with an operator G—the gravi charge
operator—to assign the gravi charges to various particles:

G = M8(C)⊕M8(C)⊕M8(C) (188)

M8(C) =


g1 0 0 0 0
0 g2 0 0 0
0 0 g3 0 0
0 0 0 g4 0
0 0 0 0 −−

 (189)

This matrix M8(C) will be used three times for three mass families. So the gravi charge
operator only has diagonal entries. It acts on linear column vectors that are SU(2)R mass
eigenstates and assigns them a gravi charge.

8.2. Mass and Gravi-Charge

Now before moving further, we make some assumptions:

• Mass is a derived quantity. The gravi-charge is more fundamental.
• The mass operator will be constructed from the gravi-charge operator, and the gravi-

charge eigenvectors are weighed accordingly by the value of the square root of the
mass of respective particles to make them massive eigenvectors.

8.3. Left Handed Quarks

We now look only at a part of the operator G and its action on down, charm and
strange quarks, and similarly, the action on up, charm and top quarks. The operator G can
be reduced to a small matrix representation as given below:

G =

g 0 0
0 g 0
0 0 g

 (190)
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It acts on SU(2)R active mass eigenstates and gives the gravi charges:

{u, c, t} ∈ C3 (191)

{d, s, b} ∈ C3 (192)

Observe that the C3 vector space is needed for both families of quarks Figure 3.

Figure 3. Basis vectors of reduced vector space C3 act as SU(2)R active quarks. The space is used for
SU(2)L active quarks.

We will use this later, when one axis represents one quark from the up-isospin family
and one from the down-isospin family. This is done to observe the transformation between
quark states. The right-handed up quarks (eigenstates of the gravi charge operators) are
given by

ug,R =

1
0
0

 cg,R =

0
1
0

 tg,R =

0
0
1

 (193)

We can define massive quark vectors as

um,R =

√mu
0
0

 cm,R =

 0√
mc
0

 tm,R =

 0
0√
mt

 (194)

Now in nature, we see a left-handed quark, an SU(2)L active left-handed quark vector
is present. We propose that it is a linear combination of massive quark vectors. So a
normalized left-handed vector can be represented by

e′q =
1√

mu + α2mc + β2mt

√mu
α
√

mc
β
√

mt

 (195)

By varying α and β, we can change the contribution of various massive vectors to the
given SU(2)L active left-handed quark vector. The same can be done for the down-quark
family. However, it should be kept in mind that only the integer linear combination of
massive quark vectors can be performed.



Universe 2023, 9, 440 28 of 41

8.4. CKM Matrix

Now observe these two left-handed vectors:

e′1 =
1√

mu + α2mc + β2mt

√mu
α
√

mc
β
√

mt

 (196)

e′2 =
1√

md + a2ms + b2mb

√md
a
√

ms
b
√

mb

 (197)

We try a set of values α = β = a = b = 1. With this choice, for e1, the probability of it
being in a top quark gravi eigenstate is 99.33%. Similarly, for e2, the probability of it being
in bottom quark gravi eigenstate will then be equal to 97.7%. So let us identify e1 and e2 as
the left-handed top quark (et) and a left-handed bottom quark (eb), respectively. Now let us
see the decay of the flavor eigenstate of the bottom quark to a flavor eigenstate of the top
quark e′b −→ e′t:

e′t =
1√

mu + mc + mt

√mu√
mc√
mt

 e′b =
1√

md + ms + mb

√md√
ms√
mb

 (198)

These vectors can be rotated into each other by the application of normal rotation ma-
trices. Here, u represents the matrices acting on vectors in the space of the up-isospin
particles, and similarly, d represents the matrices acting on the space of the down-isospin
particles Figure 4:

e′t = Ru
12(−β)Ru

23(−α)Rd
23(ρ)Rd

12(δ)e
′
b = Ve′b (199)

Figure 4. SU(2)L active particles and their projections.

Rd
12(δ) =

cos(δ) −sin(δ) 0
sin(δ) cos(δ) 0

0 0 1

 cos(δ) =
√

ms√
ms + md

(200)

Rd
23(ρ) =

1 0 0
0 cos(ρ) −sin(ρ)
0 sin(ρ) cos(ρ)

 cos(ρ) =
√

mb√
mb + ms + md

(201)

Ru
12(−β) = (Ru

12(β))T =

 cos(β) sin(β) 0
−sin(β) cos(β) 0

0 0 1

 cos(β) =

√
mc√

mu + mc
(202)
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Ru
23(−α) = (Ru

23(α))
T =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

 cos(α) =
√

mt√
mu + mc + mt

(203)

Now we use the numerical values of the square root masses of various quarks obtained
from the eigenvalues of 3× 3 octonionic Hermitian matrices as shown in Figure 2. By that
substitution, we obtain

Vij =

0.9813 −0.1924 −0.0030
0.1917 0.9789 −0.0707
0.0165 0.0688 0.9975

 (204)

|Vij| =

0.9813 0.1924 0.0030
0.1917 0.9789 0.0707
0.0165 0.0688 0.9975

 (205)

The code used to obtain the above CKM matrix using the square root mass as projec-
tions is presented in Appendix B. Every element of Vij represents a projection of quark j
on quark i. Its square represents the probability of transitioning from quark j to quark i in
standard particle physics.

8.4.1. Standard CKM Matrix

In standard QFT textbooks [30], it is given that the CKM matrix is just a unitary
transformation from mass eigenstates to states that are weak iso-spin doublets. The weak
isospin doublets are SU(2)L active. The weak interaction doublets are given below:(

u
d′

) (
c
s′

) (
t
b′

)
(206)

The CKM matrix can then be written asd′

s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d
s
b

 (207)

The {d, s, b} represents the mass eigenstates. Each entry in the CKM matrix written
as Vij represents the transition of the j quark to i quark by weak interactions. The CKM
matrix is parameterized using three Euler angles {θ12, θ13, θ23} and a phase factor δ13 [31]
as given below: c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

 (208)

The experimental determination of the entries of the CKM matrix gives the values [20]|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024
0.221± 0.004 0.987± 0.011 0.0410± 0.0014

0.0080± 0.0003 0.0388± 0.0011 1.013± 0.030

 (209)

This yields the following experimentally determined values of the angles and the
complex phase [32]

θ12 = 13.04◦ ± 0.05◦ (210)

θ13 = 0.201◦ ± 0.011◦ (211)
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θ23 = 2.38◦ ± 0.06◦ (212)

δ13 = 68.8◦ ± 4.5◦ (213)

8.4.2. Theoretical Determination of CKM Matrix Angles

With the values of the CKM matrix obtained from the theoretical considerations, we
calculate the following values of the CKM Euler angles:

θ12 = 11.093◦ (214)

θ13 = 0.172◦ (215)

θ23 = 4.054◦ (216)

We have no information about phase in our analysis so far. Further assumptions and
research are required in this direction. The values obtained are in reasonable agreement
with the measured values. Basically, the off-diagonal matrix elements are different from the
experimentally determined values and hence are the reason for these values of the angles.
A correction to the mass matrices and hence to the masses of particles itself is required to
obtain better values. This is because we used mass ratios derived in the asymptotically free
limit, whereas mixing angles are likely impacted by the running of masses.

8.4.3. CKM Parameters Using Mass as Projections

Instead of using the square root mass as the projections, we tried using mass. With this
new definition, our SU(2)L active particles are given by

e′b −→ e′t (217)

e′t =
1√

m2
u + m2

c + m2
t

mu
mc
mt

 (218)

e′b =
1√

m2
d + m2

s + m2
b

md
ms
mb

 (219)

e′t = Ru
12(−β1)Ru

23(−β2)Rd
23(α2)Rd

12(α1)e′b = Ve′b (220)

We use the same machinery, and rotate the vectors into each other by the application
of rotation matrices. It gives us the following matrix required for the transformation:

Vij =

 0.9984 −0.0559 0.2228× 10−5

0.0559 0.9982 0.1236× 10−2

−0.7134× 10−5 −0.1234× 10−2 0.9998

 (221)

The code to obtain the above given CKM matrix is presented in Appendix C. With the
above values of the various CKM matrix elements, we obtain the following values of the
CKM parameters:

θ12 = 3.205◦ (222)

θ13 = 0.00013◦ (223)
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θ23 = 0.071◦ (224)

The above values are very different from the experimentally obtained values. This
thus provides us with additional justification for using the square root mass values over
the mass values while constructing the massive and the SU(2)L active left-handed vectors.

8.4.4. Connection between Mass Eigenstates and Weak-Isospin Doublets

Observe that the physically massive vectors used in the above calculations are a linear
combination of gravi-charge eigenstates of the right-handed quarks. Also, observe that as
we developed an isomorphism between the vector space of ideals to this new vector space
C8 ⊕C8 ⊕C8, for SU(2)R active mass eigenstates, we can perform a similar mapping for
the space of the SU(2)L active flavour eigenstates. So for the three left-handed quarks of
the same color of SUc(3), we need the following space to describe them C⊕C⊕C, just
as for mass eigenstates. This time however, instead of the gravi charge operator, another
diagonal operator corresponding to the electric charge will act on this space. Let us use
the same C3 for both left and right active states (suppressing the color for both SU(3)c
and SU(3)grav). Then we can interpret the CKM matrix as a transformation that rotates
the normalized mass eigenstates of the gravi charge vectors to the normalized left-handed
flavor eigenstates. This connection can be made because of the triality. Triality allows for
the mixing of various families in the spinor representations of the Cl(8) algebra:dL

sL
bL

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

dg,R
sg,R
bg,R

 (225)

We have to use the normalized mass eigenstates and hence the gravi charge eigenvectors.

9. Summary and Discussion

As is evident from the analysis in the previous sections, the complex Clifford algebra
Cl(9) is one of great significance. It is the algebra of unification of the standard model
with gravitation, via a left–right symmetric extension of the standard model. We also
note that Cl(9) has dimension 512, and its irrep is 16× 16 matrices with complex number
entries. If we assume the diagonal entries of these matrices to be real, their dimensionality
is reduced to 512− 16 = 496, which is precisely the dimension of the E8 × E8 symmetry
group (248 + 248) proposed by us earlier for unification [6]. Hence, there is consistency
between E8 × E8 symmetry and the algebra Cl(9) vis a vis unification. Prior to left–right
symmetry breaking, which breaks unification in this theory, the coupling constant is simply
unity, and the role of the emergent U(1) charge is played by this coupling constant divided
by 3. Thus, the fundamental entities prior to symmetry breaking are lepto-quark states,
which all have an associated charge 1/3: these are neither bosonic nor fermionic in nature,
and the charge value 1/3 is evident when one finds the eigenmatrices corresponding to the
Jordan eigenvalues in the exceptional Jordan eigenvalue problem. For these eigenmatrices,
see the appendix in [9]. The neutrino family, the up quark family, the down quark family
and the electron family all are expressed as different superpositions of three basis states,
which all have an associated charge 1/3. This means that the left-chiral families are
electric charge eigenstates expressed as the superposition of pre-unification basis states,
and right-chiral families are square root mass eigenstates expressed as the superposition of
pre-unification basis states. This fact permits electric charge eigenstates to be expressed
as superpositions of square root mass eigenstates, which in turn allows mass ratios to be
determined theoretically [8].
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We recall from the above that the unification algebra Cl(9) is written as a direct
sum of two copies of Cl(8). On the other hand, Cl(9) can also be written as Cl(9) =
Cl(7) ⊗ Cl(2) = [Cl(6) ⊗ Cl(2)] ⊕ [Cl(6) ⊗ Cl(2)]. This last expression has profound
implications for our understanding of spacetime structure in quantum field theory. Recall
that each of the two Cl(6) represents one generation of standard model chiral quarks and
leptons: the first Cl(6) for left-chiral particles and the second Cl(6) for right-chiral particles.
In so far as the Cl(2) are concerned, the second Cl(2) (associated with right chiral fermions)
is used to generate the Lorentz algebra SL(2, C) of 4D spacetime (via complex quaternions
with one quaternionic imaginary kept fixed), which includes the Lorentz boosts and the
three-dimensional SU(2)R rotations. The gauging of this SU(2)R symmetry can be used to
achieve Einstein’s general relativity on a 4D spacetime manifold [33]. As for the first Cl(2),
the one associated with left-chiral fermions, the SU(2)L rotations describe weak isospin.
However, undoubtedly, this Cl(2) has its own set of Lorentz boosts, which, along with the
weak isospin rotations, generate a second 4D spacetime algebra SL(2, C) distinct from the
first, familiar 4D spacetime. In spite of its counterintuitive nature, this second spacetime
is also an element of physical reality, and there is definitive evidence for it in our earlier
work [7,11,12]. In this second spacetime, distances are at most of the order of the range of the
weak force, and only microscopic quantum systems access this second spacetime. Classical
systems do not access it—their penetration depth into this spacetime is much less than one
Planck length. Our universe thus has two 4D spacetimes, which have resulted from the
symmetry breaking of a 6D spacetime, consistent with the equivalence SL(2,H) ' SO(1, 5).
See also [34–37]. The second spacetime also obeys the laws of special relativity, and has a
causal light cone structure. A quantum system travels from a spacetime point A to another
spacetime point B through both space-times but gets to B much faster through the second
spacetime, on a time scale of the order L/c ∼ 10−26 s, where L ∼ 10−16 cm is the range of
the weak force. This is true even if B is located billions of light years away from A, and this
offers a convincing resolution of the EPR paradox as to how quantum influences manage
to arise nonlocally. These influences are local through the second spacetime. In spirit, our
resolution could be compared to the ER=EPR proposal, but unlike the latter, our resolution
has a sound mathematical basis. Moreover, our resolution was not invented with the
express purpose of understanding quantum nonlocality, but is an indirect implication of
the algebraic unification of the standard model with gravitation. The weak force is seen as
the geometry of this second spacetime.
How is the Coleman–Mandula theorem evaded by our proposed unification of spacetime and internal
symmetries? The Coleman–Mandula theorem [38] is a no-go theorem that states that the
spacetime symmetry (Lorentz invariance) and internal symmetry of the S-matrix can only
be combined in a trivial way, i.e., as a direct product. However, this does not prevent the
E8 × E8 unification of gravitation and the standard model, on which the analysis of the
present paper is based. This is because, as pointed out, for instance, in Section 7 of the
work on gravi weak unification [39] the theorem applies only to the spontaneously broken
phase, in which the Minkowski metric is present. The unified phase does not have a metric,
and hence the Minkowski metric does not either; therefore, the Coleman–Mandula theorem
does not apply to the unified symmetry.
Interpreting the theoretically derived mass ratios: In the first paragraph of this section, we
explain how the eigenvalues and eigenmatrices of the exceptional Jordan algebra determine
the quantization of mass and charge. Furthermore, the expression of charge eigenstates
as a superposition of mass eigenstates permits derivation of the mass ratios because mass
measurements are eventually carried out using electric charge eigenstates. This explains
the strange observed mass ratios of elementary particles. Nonetheless, it is known that
masses run with the energy scale, and one can legitimately ask how the derived mass ratios
are to be interpreted. The answer is straightforward: the ratio is of those mass values which
are obtained in the no-interaction (asymptotically free) limit. Thus, the ratio of the muon to
electron mass is derived in the low-energy limit, whereas the ratio of, say, the down quark
to the electron mass is obtained by comparing the down quark mass at the relatively high
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energy at which the quark asymptotic freedom is achieved, to the electron mass at the low
energy free limit. These two compared masses (down quark and electron) are not at the
same energy. Moreover, all these mass ratios will run with energy—that running is not part
of the present derivation and is left for future work.
Evidence for a second 4D spacetime: The Clifford algebra associated with the complex quater-
nions (when none of the quaternionic imaginary directions is kept fixed) is Cl(3), and is
a direct sum of two Cl(2) algebras, which together correspond to complex split biquater-
nions [5]. The spacetime associated with Cl(3) is the 6D spacetime SO(1, 5) because of the
homomorphism SL(2, H) ∼ SO(1, 5) whereas each of the Cl(2) is individually associated
with a 4D spacetime each, because Cl(2) generates the Lorentz algebra SL(2, C). See also
the related work of Kritov [40]. The construction of two copies of such a spacetime is made
explicit in Equation (13) and the subsequent discussion in [12] and also in [11]. The presence
of a second spacetime is also fully evident in [7], where we discussed in detail the bosonic
content of the spontaneously broken E8 × E8 symmetry.
Implications for fundamental physics in the early universe/high-energy regime: In our algebraic
approach to unification, Clifford algebras and the standard model are studied, with dy-
namics given by the theory of trace dynamics. The main advantage of this approach is
that the spinor representations of the fundamental fermions can be constructed easily here
as the left ideals of the algebra. This formalism makes unique predictions for fundamen-
tal physics, including new particle content which should be looked for in experiments.
The predicted particles include three right-handed sterile neutrinos (the only new fermions
predicted beyond the standard model), a second (electrically charged) Higgs, eight gravi
gluons associated with the newly predicted SU(3)grav symmetry, and the dark photon
associated with the new U(1)grav symmetry, which possibly underlies Milgrom’s MOND as
an alternative to dark matter. We predict that the Higgs bosons are composites of those very
fermions to which they are said to assign mass. Prior to electroweak symmetry breaking,
the universe obeys the unified E8 × E8 symmetry, which combines the standard model
forces with gravitation. In this phase, there is no distinction between spacetime and matter,
and the fundamental degrees of freedom are the so-called atoms of spacetime matter.
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Appendix A

The 3× 3 Hermitian octonionic matrices, known as the exceptional Jordan algebra,
satisfy the characteristic equation given as [18,26]

A3 − (trA)A2 + σ(A)A− (detA)I = 0 (A1)
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For the definition of each part, look at the example shown here:

A =

p a b
a m c
b c n

 (A2)

p, m, n ∈ R a, b, c ∈ O (A3)

trA = p + m + n (A4)

σ(A) = pm + pn + mn− |a|2 − |b|2 − |c|2 (A5)

detA = pmn + b(ac) + b(ac)− n|a|2 −m|b|2 − p|c|2 (A6)

The real eigenvalues of the 3 × 3 Hermitian octonionic matrix satisfy a modified
characteristic equation given by

det(λI − A) = λ3 − (trA)λ2 + σ(A)λ− det(A) = r (A7)

r2 + 4Φ(a, b, c)r− |[a, b, c]|2 = 0 (A8)

Φ(a, b, c) =
1
2

Re([a, b]c) (A9)

[a, b, c] = (ab)c− a(bc) (A10)

The [a, b, c] is the associator. It is a measure of the associativity of the algebra involved.
Now, for our case, the mass matrix has only quaternionic entries. In that case, r = 0, and we
have the usual characteristic equation that gives us real roots. These real roots are then
used to calculate the mass ratios [9].

Appendix B

Here, in this code, we use mass eigenstates weighted by the square root of mass.
The method is explained in Section 8.4. The identifications used in the code are written
below:

e′t = Ru
12(−β)Ru

23(−α)Rd
23(ρ)Rd

12(δ)e
′
b = Ve′b (A11)

A12T −→ Ru
12(−β) (A12)

A23T −→ Ru
23(−α) (A13)

B23 −→ Rd
23(ρ) (A14)

B12 −→ Rd
12(δ) (A15)
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These values are reported in the earlier section.

Appendix C

Here is a code for computing CKM matrix parameters and mixing angles with mass
eigenstates weighted by mass (instead of square root of mass). The definitions of rotation
matrices and the mass vectors correspondingly get changed:

e′t = Ru
12(−β1)Ru

23(−β2)Rd
23(α2)Rd

12(α1)e′b = Ve′b (A16)

P12T −→ Ru
12(−β1) (A17)

P23T −→ Ru
23(−β2) (A18)

Q23 −→ Rd
23(α2) (A19)
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Q12 −→ Rd
12(α1) (A20)
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Here, it can be seen that the values obtained for the CKM parameters are very different
from the experimentally seen values. It justifies our choice of using the square root mass as
a more fundamental quantity over the mass of the fermions.
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