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Abstract: It is known that, in quantum field theory, localized operations, e.g., given by unitary
operators in local observable algebras, may lead to non-causal, or superluminal, state changes within
their localization region. In this article, it is shown that, both in quantum field theory as well as in
classical relativistic field theory, there are localized operations which correspond to “instantaneous”
spatial rotations (leaving the localization region invariant) leading to superluminal effects within
the localization region. This shows that “impossible measurement scenarios” which have been
investigated in the literature, and which rely on the presence of localized operations that feature
superluminal effects within their localization region, do not only occur in quantum field theory, but
also in classical field theory.

Keywords: quantum field theory; classical field theory; local operations; faster-than-light communication;
superluminal signalling; impossible measurements

1. Introduction

There are some scenarios, usually set within the framework of special relativity, in
which it is argued that superluminal effects are related to effects that are akin to traveling
backward in time (see, e.g., Section 4.3 in [1]; see, however, also [2] and the references given
therein for more critical considerations on this issue). Taken for granted that a compelling
connection between superluminal effects and time travel can be established, our present
contribution fits into the theme of this volume.

Recently, some attention has been given to the idea that there are “local unitary
operations” in relativistic quantum field theory which can act in a “superluminal” fashion
within their localization region [3–5]. This has, in fact, been observed much earlier by
Sorkin [6], who employed it to argue that relativistic quantum field theory was lacking
a well-defined approach to measurement comparable to the theory of measurement in
non-relativistic quantum mechanics. To illustrate his point, he considers three spacetime
regions, OAlice, OBob and OCharlie, wherein and during which the observers Alice, Bob and
Charlie can carry out operations and measurements on a state of a quantum field they
jointly have access to. The spacetime regions OAlice and OCharlie are causally separated,
but there is causal contact of OBob with both OAlice and OCharlie. (See Figure 1 in Section 3
for an illustration. In some publications, like [5] and [3], the roles of OBob and OCharlie are
interchanged; our labeling coincides with that in [6] and [7].) Sorkin then argues that there
are certain combinations of unitary operations carried out by Alice in OAlice and by Bob
in OBob so that, if Charlie measures the resulting state in OCharlie, it can be determined
whether Alice has carried out her operation, despite the fact that OAlice and OCharlie are not
in causal contact. Notice that, if Bob does not carry out any operation, then Charlie cannot
decide by measurements in OCharlie if Alice has carried out a unitary operation in OAlice.

We will describe the set-up of [6] in more detail below (in a version given by [7]), and
will show that there are indeed local unitary operations with the properties just described.
In response to the apparent superluminal transformations of states by local unitary oper-
ations and the ensuing difficulties regarding measurement in relativistic quantum field
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theory according to Sorkin, it has been shown in [7] that these difficulties do not occur in a
recently proposed, covariant approach to local measurement in quantum field theory [8]
(see also [9–11] for additional discussion). In the present paper, we wish to point out that
certain “superluminal localized operations” are not specific to relativistic quantum field
theory (and therefore, relativistic quantum field theory is not suffering from any partic-
ular conceptual defect or inconsistency), but that they appear also in classical relativistic
theories. For instance, they are related to (local) symmetries that a theory, quantum or
classical, may possess, but which cannot be performed “instantaneously” as they violate
the principles of special or general relativity both on kinematical as well as dynamical
grounds. These are occasionally (but perhaps not systematically) referred to as “passive”
symmetry transformations. Therefore, the present paper provides a “ping-pong ball test” in
regard to the occurrence of “superluminal localized operations”. The said test is a concept
which, according to the present authors’ knowledge, goes back to Reinhard Werner [12],
and we paraphrase it here as follows: When someone presents a paradox as being rooted in
quantum physics, replace the term ‘quantum mechanical particle’ by ‘ping-pong ball’ everywhere. If
the paradox persists, it is unrelated to quantum physics.1 As a matter of fact, the application of
the ping-pong ball test in other scenarios claiming that acausal effects may occur by means
of quantum physics has already proven useful [13].

The present article is structured as follows. In Section 2, we summarize the properties
of relativistic quantum field theories on 1 + 3-dimensional Minkowski spacetime in the
operator–algebraic framework. The assumption of the “split property” implies that global
symmetries, such as space rotations, have unitary implementers in the local operator
algebras. In Section 3, we revisit the “impossible measurements scenario” presented in [6],
and we show how it can be realized by “instantaneous space rotations”, which have unitary
implementing operators that are contained in local algebras. The quantized Klein–Gordon
field is used as a special, simple example. We show in Section 4 that, in a recent proposal
for an algebraic description of classical field theory in terms of local Poisson algebras,
there are also local symmetries corresponding to “instantaneous space rotations”, thus the
considerations leading to the “impossible measurements scenario” apply for classical field
theory as well. We discuss the conclusions that can be drawn from these results in Section 5.

2. Algebraic Quantum Field Theory Setting

We start by considering relativistic quantum field theory on 1 + 3 dimensional
Minkowski spacetime (represented as R1+3) in vacuum representation. This is mainly
for convenience; generalizations of the arguments given below are with respect to the case
of more general (globally hyperbolic) spacetimes, or spacetime dimensions ≥ 1 + 2, and
these are not difficult.

Thus, the standard assumptions are made (cf. [14,15]): there is a Hilbert space H on
which a continuous representation UL, L ∈ P

↑
+, of the proper, orthochronous Poincaré

group operates; there is a (up to phase) unique unit vector Ω ∈ H that does not change
under the Poincaré transformations, i.e., ULΩ = Ω. If the translations in P

↑
+ are denoted as

a ∈ R4, and their unitary representers as Ua, then, for any future-directed, timelike unit
vector e, the unitary group t 7→ Ute (t ∈ R) is assumed to have a self-adjoint generator with
a non-negative spectrum: This is the spectrum condition.

Moreover, it is assumed that there is a family A(O) of von Neumann subalgebras of
B(H) indexed by the open, relatively compact subsets O of R1+3, subject to the conditions
of isotony: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2), and locality: A(O2) ⊂ A(O1)

′ if O2 ⊂ O⊥1 . Here,
A(O1)

′ = {C ∈ B(H) : CA = AC for all A ∈ A(O1)} is the commutant algebra (or
simply commutant) of A(O1), and we recall that any von Neumann algebra A in B(H) is
characterized by the property that A′′ = A. Furthermore, for any open subset O of R1+3,
we denote by O⊥ the causal complement of O, i.e., the largest open set in R1+3 such that
there is no pair of points p ∈ O and p⊥ ∈ O⊥ which can be connected by any smooth,
causal curve.
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The algebra A(O) is viewed as the algebra of (in the sense of “generated by”) the
observables that can be measured within the spacetime region O. The unitary representation
of P↑+ acts covariantly on the collection of local observable algebras,

αL(A(O)) = A(L(O)) where αL(A) = UL AU∗L . (1)

It is assumed that the von Neumann algebra generated by all of the A(O) coincides with
B(H).

We recall that for any subset S of Minkowski spacetime, the domain of dependence
D(S) is the set of all points p in the spacetime such that all past-directed or all future-
directed causal rays emanating from p intersect S. In Minkowski spacetime, an open subset
O is called causally complete if it has the property O = (O⊥)⊥, which also entails that
O = D(O).

In addition to the standard properties for a quantum field theory in the operator
algebraic setting just stated, we will make a few additional assumptions that are known
to hold, e.g., in models of linear quantized fields. The first property is the local time-slice
property: A(O) = A(D(O)) (sometimes also called primitive causality). This is demanded to
hold for spacetime regions that are of the form O = D(B) ∩ N, where B is an open subset
of an arbitrary Cauchy surface, and N is any open neighborhood of the Cauchy surface.
The second property is additivity: if O is an open, relatively compact spacetime region,
and Oi, i ∈ J, is any covering of O by open, relatively compact spacetime regions for an
arbitrary index set J, then A(O) is contained in the von Neumann algebra generated by all
the A(Oi). Together with the previously stated conditions, this entails the Reeh–Schlieder
property of the local von Neumann algebras with respect to the vacuum vector Ω, meaning
that A(O)Ω is dense in H if O is any (non-void) open, relatively compact subset of R1+3.
The third property, which is actually very relevant to our discussion, is the split property:
Assume that O1 and O2 are relatively compact, causally complete open subsets of R1+3,
such that O1 ⊂ O2, then there is a type I factor von Neumann algebra N such that

A(O1) ⊂ N ⊂ A(O2) . (2)

We will not discuss this property here, except for remarking that the local von Neumann
algebras A(O) are typically type III, and that the type classification, roughly speaking, gives
information about what kind of projection operators a von Neumann algebra possesses.
The reader is referred to [14,16,17] and the references therein for a considerably more
discussion. One consequence, as shown in [16], is that global symmetries of quantum field
theory can be localized. Here, we are interested in a special case of that consequence, and
we now introduce a suitably adapted notation. An inertial system is assumed to be chosen,
and the coordinates (x0, x1, x2, x3) of R1+3 are the corresponding inertial coordinates. We
consider the centered ball of radius r > 0 at x0 = 0,

B(r) = {(x0 = 0, x1, x2, x3) : (x1)2 + (x2)2 + (x3)2 < r2}, (3)

and its domain of dependence (coinciding with its causal completion)

O(r) = D(B(r)) . (4)

If R ∈ SO(3) denotes any space rotation in the x0 = 0 hyperplane around xj = 0 (j = 1, 2, 3),
whereby it is canonically identifiable with an element in P

↑
+, then RB(r) = B(r) and

RO(r) = O(r). Consequently, denoting by UR the unitary implementer of R, we have

URA(O(r))U∗R = A(O(r)) . (5)

For any positive numbers r1 < r2, we have O(r1) ⊂ O(r2). Since the split property (2)
holds for Oj = O(rj) (j = 1, 2), the results of [16] show that there is a continuous unitary
representation ǓR, R ∈ SO(3) with the properties
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ǓR ∈ A(O(r2)) and ǓR A1Ǔ∗R = UR A1U∗R (6)

for all A1 ∈ A(O(r1)) and all R ∈ SO(3). The ǓR are therefore “localized versions” of the
unitary implementers UR of space rotations R.

Note that a space rotation R by any finite angle acts instantaneously and therefore
with superluminal speed. To illustrate this to its extreme, let Rπ,3 be a rotation by the angle
π around e3, where ej denotes the space unit vector along the xj coordinate axis in the
x0 = 0 hyperplane. We then obtain, e.g., for positive numbers s and λ such that s + λ < r1,
and defining

O(±) = D(B(s)± λe1) , (7)

that O(±) ⊂ O(r1) and

Rπ,3(O(±)) = O(∓) , (8)

thus implying

ǓRπ,3A(O
(±))Ǔ∗Rπ,3

= A(O(∓)), (9)

which means that the adjoint action of ǓRπ,3 rotates the observables localized in O(±)

“instantaneously” to the localization in O(∓).

3. Superluminal Localized State Transformations in Quantum Field Theory

Let us recall some further concepts that are relevant to our discussion. In what follows
we will consider the density matrix states for the quantum field theory described before.
That means, if $ is a density matrix operator on H, then

ω(A) = ω$(A) = Tr($A) (A ∈ B(H)) (10)

is the expectation value functional—which is synonymously the state—induced on B(H) by $.
Since every local observable algebra A(O) is contained in B(H), any density matrix state
ω as above induces a—partial—state ω[A(O)](A) = ω(A) (A ∈ A(O)) on A(O). It is not
convenient to write the subscript to indicate a partial state; thus, we generally will not use
it unless ambiguity might arise.

For the concepts we summarize next, we largely adhere to [12,18]. A linear, completely
positive map T : B(H)→ B(H) such that T(1) = 1, where 1 denotes the unit operator in
B(H), is called a channel. (Occasionally, to emphasize the property T(1) = 1, it is called a
non-selective channel.) Here, we are exclusively interested in channels of the form

T(A) =
N

∑
j=1

Vj AV∗j , Vj ∈ B(H) ,
N

∑
j=1

VjV∗j = 1 . (11)

for any A ∈ B(H), where N is a finite number. A special case is a unitary channel T(A) =
UAU∗ with unitary U ∈ B(H). For a causally complete spacetime region O = (O⊥)⊥, we
call a channel localized in O if the Vj are contained in A(O), which entails T(A) ∈ A(O)

for all A ∈ A(O), as well as T(A′) = A′ for all A′ ∈ A(O′) with O′ ⊂ O⊥. (We caution
the reader that this is not necessarily canonical terminology.) The dual of a channel, τ :
ω 7→ τ(ω)( . ) = ω(T( . )), is called a (non-selective) operation; more generally, an operation
maps states to states under a preservation of convex sums. In this paper, we only consider
operations that arise as the dualities of channels, thereby mapping density matrix states to
density matrix states. An operation is called unitary if it is the dual of a unitary channel,
and it is called localized in a causally complete spacetime region O if the channel to which it
is dual is localized in O. Thus, if an operation τ is localized in O, then for any A′ ∈ A(O′)
with O′ ⊂ O⊥, and for every density matrix state ω, it holds that τ(ω)(A′) = ω(A′).
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Now, we turn to the situation considered by Sorkin [6], in the form presented in [7].
Thus, we consider three spacetime regions OAlice, OBob and OCharlie, wherein and during
which Alice, Bob and Charlie carry out localized operations and measurements on a
density matrix state ω on B(H). The regions OAlice and OCharlie are causally separated,
i.e., OAlice ⊂ O⊥Charlie, while the causal future of OAlice as well as the causal past of OCharlie
intersect OBob. In fact, for our argument, we need a sufficient degree of causal overlap,
although in concrete quantum field models, when using specific properties of the quantum
field, this could be weakened. In greater detail, we take OBob = O(r2) together with the
regions O(±) ⊂ O(r1), as described in the previous section. The causal overlap of OBob
with OAlice and OCharlie is assumed to be such that O(−) is contained in OAlice ∩OBob, and
O(+) is contained in OBob ∩OCharlie (see Figure 1).

Figure 1. The figure depicts the spacetime regions and their relations described in the text.

With this set-up in place, given any density matrix state ω on B(H), we assume
that Alice carries out a unitary operation τAlice localized in O(−)—which is contained in
OAlice—given as

τAlice(ω)(A) = ω(WAW∗) (12)

with some unitary operator W ∈ A(O(−)). If Charlie carries out a measurement by evaluat-
ing any (symmetric) operator C in the state τAlice(ω), the result is

τAlice(ω)(C) = ω(WCW∗) = ω(WW∗C) = ω(C) (13)

since W is unitary and OAlice ⊂ O⊥Charlie. This means that Charlie cannot decide, by
measurements in OCharlie, if Alice has applied the operation τAlice localized in OAlice.
However, if Bob carries out operations localized in OBob, this may change. In particular,
assume that Bob carries out the operation

τBob(ω̃)(B) = ω̃(Ǔπ,3BǓ∗π,3) (14)

on arbitrary density matrix states ω̃. Since Ǔ3,π is a unitary operator in A(OBob), τBob is
a unitary operation localized in OBob. Thus, for any operator C ∈ A(O(+))—recall that
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O(+) is contained in OBob ∩OCharlie—we have Ǔπ,3CǓ∗π,3 ∈ A(O(−)). Consequently, if on
any density matrix state ω, Alice first carries out operation τAlice, and then Bob carries out
operation τBob, then a measurement by Charlie with C ∈ A(O(+)) yields

(τBob ◦ τAlice ω)(C) = (τAlice ω)(Ǔπ,3CǓ∗π,3) (15)

= ω(WǓπ,3CǓ∗π,3W∗) . (16)

Since C 7→ Č = Ǔπ,3CǓ∗π,3 maps the von Neumann algebra A(O(+)) onto the von Neumann
algebra A(O(−)), Charlie can, by conducting measurements in O(+), determine if Alice has
carried out the operation τAlice once Bob has carried out the “instantaneous rotation by
180 degrees around the x3-axis” operation τBob—barring the trivial case that W commutes
with all operators in A(O(−))—however, for a proper quantum field theory, the local von
Neumann algebras are non-commutative, so there is a rich supply of unitary W and self-
adjoint Č in A(O(−)) that do not commute. In other words, even if ω is the vacuum state,
we will in general have many unitary W ∈ A(O(−)) and self-adjoint C ∈ A(O(+)), such that

(τBob ◦ τAlice ω)(C) = ω(WǓπ,3CǓ∗π,3W∗) 6= ω(C) . (17)

In fact, such unitary operators W and C are guaranteed to exist whenever A(O(−)) is
non-commutative. In turn, this is a obviously a consequence of the additivity property of
the local von Neumann algebras A(O) that we have formulated above, and the implicit
assumption that we truly have a quantum field theory, i.e., that B(H) is non-commutative.

We may quickly illustrate the non-commutativity of the local algebras, leading to (17),
by means of a simple example related to the linear scalar Klein–Gordon field ([19]). Here,
the local von Neumann algebras A(O) are generated by unitary operators W( f ) = eiΦ( f ),
where the real-valued, smooth test-functions f have support in O. The field operators Φ( f )
are the self-adjoint extensions of symmetric operators, defined on the Wightman domain
(cf. [19]), fulfilling Φ((2+ m2) f ) = 0 for some fixed mass term m ≥ 0, where 2 denotes
the d’Alembert operator in Minkowski spacetime. Further properties are

W( f )W(h) = e−iG ( f ,h)/2W(h)W( f ) (18)

for any smooth, compactly supported, real-valued test-functions f , h on Minkowski space-
time R1+3. Here, G is the causal Green function (or causal propagator) of the Klein–Gordon
operator 2+ m2. It arises as

G ( f , h) =
∫

f (x)(Gh)(x) d4x (19)

with the causal Green operator G = G+ − G− mapping that is a real-valued, compactly sup-
ported, smooth test-function f to solutions of the Klein-Gordon equation, i.e., (2+m2)G f =
0, such that the Cauchy data of G f , on any Cauchy-surface, are compactly supported. The
causal Green operator is given as the difference of the retarded minus the advanced Green
operators, denoted as G±. The vacuum vector Ω can be characterized through

(Ω, W( f )Ω) = e−w2( f , f ) (20)

with the two-point function

w2( f , h) = (Φ( f )Ω, Φ(h)Ω) =
1

2π

∫
R3

f̂ (ωp, p)ĥ(ωp, p)
d3p
ωp

, (21)

where the hat denotes a Fourier transform and ωp =
√
|p|2 + m2 (p ∈ R3). The property

(18) implies, writing [A, B] = AB− BA for the commutator,

Φ( f )−W(h)Φ( f )W(h)∗ = [Φ( f ), W(h)]W(h)∗ = −G ( f , h)1 (22)
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on the Wightman domain, as can be easily checked. Hence, with ω( . ) = (Ω, . Ω) denoting
the vacuum state, we have the following:

ω([Φ( f ), W(h)]W(h)∗) = −G ( f , h). (23)

It is not difficult to verify that, given any open subset O of Minkowski spacetime, there are
smooth, real-valued test-functions f and h, having support in O, such that the right-hand
side of the last equation is different from 0. Then one can replace Φ( f ) by the sequence of
bounded symmetric operators Tn = (1 + 1

n Φ( f )2)−1Φ( f ) to conclude that, for sufficiently
large n ∈ N, one has

ω([Tn, W(h)]W(h)∗) 6= 0 . (24)

Consequently, if we choose especially O = O(−), and set W = W(h) and Č = Ǔπ,3CǓ∗π,3 =
Tn, we obtain

ω([Č, W]W∗) = ω(Č)−ω(WČW∗) 6= 0 . (25)

On the other hand, we note that, according to the definition of the operators Ǔπ,3, it holds
that Ǔπ,3CǓ∗π,3 = Uπ,3CU∗π,3 for all C ∈ A(O(+)). Therefore,

ω(WǓπ,3CǓ∗π,3W∗) 6= ω(Uπ,3CU∗π,3) = ω(C), (26)

where we used the notion that the vacuum state is invariant under spatial rotations:
Uπ,3Ω = Ω. We have also used the fact that the quantized scalar Klein–Gordon field in a
vacuum representation on Minkowski spacetime fulfills all the assumptions that we have
listed previously for a quantum field theory, in particular, the split property [20].

4. Superluminal Localized State Transformations in Classical Field Theory

We now wish to demonstrate that similar superluminal localized operations with
the—geometrical—significance of “instantaneous spatial rotations” are also present in
classical field theory. To this end, we need a description of classical field theory in a local
and covariant algebraic setting, in the spirit of the approach of Haag and Kastler [15] for
quantum field theory. This has been developed in the recent literature, e.g., see [21–23]
and the literature cited therein. However, we are mainly focussing on the example of the
classical free Klein–Gordon field on Minkowski spacetime, so we will not need the theory
laid out in the mentioned references in full generality. Therefore, we present the approach,
mostly following [22] and [23], in a simplified form.

We start by defining S as the set of all smooth, real-valued solutions to the Klein–Gordon
equation on R1+3,R)). Thus, (2+ m2)ϕ = 0 holds for every ϕ ∈ S. Then, we consider
the set of all functions F : S→ C, which forms in the usual way a unital, commutative ∗-
algebra by defining the algebraic operations pointwise, i.e., (aF + G)(ϕ) = aF(ϕ) + G(ϕ),
(FG)(ϕ) = F(ϕ)G(ϕ), F∗(ϕ) = F(ϕ) for all ϕ ∈ S (a ∈ C, overlining means complex
conjugation). The algebra of functions on S possess a unit element, given by 1(ϕ) = 1.

In the next step, we define a ∗-subalgebra of the algebra of all functions on S, which is
denoted by P . The algebra P is defined to be algebraically generated by the unit element
1 and all linear functionals of the form

Ff (ϕ) =
∫
R1+3

ϕ(x) f (x) d4x, (27)

where f ∈ C∞
0 (R1+3,C) is arbitrary. (One can enlarge the algebra P by taking suitable dis-

tributional limits of the f . In the approach presented in [22,23], this is important since it al-
lows, e.g., to include extended algebra elements of the form of F̃(ϕ) =

∫
R1+3 h(x)ϕ(x)n d4x.

At this point, however, we will not discuss these matters and refer to the references for
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further discussion.) Then one can also define local ∗-subalgebras by defining for any open
subset O of R1+3,

P(O) = ∗-subalgebra of P generated by 1 and all Ff with supp( f ) ⊂ O . (28)

It is obvious that O1 ⊂ O2 ⇒ P(O1) ⊂ P(O2). Moreover, if L ∈ P
↑
+, then setting

βL(Ff )(ϕ) = Ff (ϕ ◦ L) induces automorphisms of P such that

βL(P(O)) = P(L(O)) . (29)

For the functions ϕ 7→ P(ϕ) in P , one can define the functional derivative δP/δϕ by

d
ds

∣∣∣∣
s=0

P(ϕ + sχ) =
∫
R1+3

δP
δϕ

(ϕ)(x)χ(x) d4x, (30)

where ϕ and χ are in S. To give some examples, we have δ1/δϕ = 0, δFf /δϕ(ϕ)(x) = f (x),
and for P(ϕ) = Ff (ϕ)Fh(ϕ), we have δP/δϕ(ϕ)(x) = f (x)Fh(ϕ) + Ff (ϕ)h(x). Note that
x 7→ δP/δϕ(ϕ)(x) is a smooth, compactly supported function on R1+3, which depends (in
general and non-linearly) on ϕ. With the help of the functional derivative of the elements
of P , one can introduce a Poisson bracket (or, more appropriately, a Peierls bracket) on P ,
given by

{P1, P2}PB(ϕ) =
∫
R1+3

δP1

δϕ
(ϕ)(x)G

(
δP2

δϕ
(ϕ)

)
(x) d4x (31)

for P1, P2 ∈ P . Notice that ϕ 7→ {P1, P2}PB(ϕ) is again in P , and we have the following
relations (see [22]):

{P1, P2}PB = −{P2, P1}PB , {P1, P2P3}PB = {P1, P2}PBP3 + P2{P1, P3}PB. (32)

This is with the algebra product in P , P2P3(ϕ) = P2(ϕ)P3(ϕ). Additionally, the Poisson
bracket also fulfills a Jacobi identity. As a consequence of the causal support properties and
the covariance of the causal Green operator G with respect to the transformations in P

↑
+

(see, e.g., [24,25] and the references cited therein), one furthermore obtains

{P1, P2}PB = 0 for Pj ∈P(Oj) with O1 ⊂ O⊥2 (33)

as well as

{βL(P1), βL(P2)}PB = βL({P1, P2}PB) (34)

for all L ∈ P
↑
+ and P1, P2 ∈P .

Hence, we see that the theory of the classical Klein–Gordon field on Minkowski
spacetime can be formulated in a very similar way as for the quantized field. The functions
ϕ 7→ P(ϕ) (ϕ ∈ S) in P are (simple and polynomial) functions on S, and the space of
solutions to the Klein–Gordon equation that have compactly supported Cauchy data. This
space of solutions can be identified with the space of Cauchy data of solutions to the
Klein–Gordon equation, as we will soon discuss in more detail. The space of Cauchy data
naturally corresponds to the phase space for a classical field theory in a Hamiltonian setting,
and these can be dynamically described with the help of the Poisson bracket (see [26] for
further discussion). The elements in P are functions on the phase space; hence, if real-
valued, they correspond to simple observables for the classical Klein–Gordon field. (As
mentioned, the set of observables could be enlarged by taking the suitable limits of elements
P ∈ P .) Since it is a classical field theory, the observable algebra is commutative. In the
spirit of [15]—who advocated that, in relativistic field theory, the observables should be
localized and covariant—we also have the local algebras P(O) of observables, which
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can be measured within the spacetime regions O, as well as the actions of the Poincaré
transformations by automorphisms with the covariance property (29).

Also, for the unital ∗-algebra P , the states are linear functionals ν : P → C which are
positive, ν(P∗P) ≥ 0 (and commonly also normalized, ν(1) = 1). States may arise through
suitable measures µ on S (assuming suitable additional structure needed for defining
tmeasures has been put in place) as integrals

ν(P) =
∫
S

P(ϕ) dµ(ϕ), (35)

and for any arbitrarily chosen ϕ0 in S, the Dirac measure δϕ0(P) = P(ϕ0) is an example.
We shall, however, not discuss this matter further.

For any given Cauchy-surface Σ in R1+3, with the future-pointing unit-normal vector
field nµ along it, the Cauchy data of any ϕ ∈ S on Σ are defined by

uϕ = ϕ|Σ and vϕ = nµ ∂

∂xµ ϕ

∣∣∣∣
Σ

. (36)

We define S0 as the subset of all ϕ ∈ S so that the Cauchy data have compact support,
meaning that uϕ and vϕ are in C∞

0 (Σ,R). One can show that this property is independent
of the choice of the Cauchy-surface Σ, and that S0 equals G(C∞

0 (R1+3,R)), the image of all
smooth, compactly supported test-functions under the causal Green operator [24,25].

Furthermore, S0 carries a canonical symplectic form σ, which is given by

σ(ϕ, ψ) =
∫

Σ
(uϕvψ − vϕuψ) dvolΣ, (37)

where dvolΣ denotes the metric-induced volume element on Σ. It is worth noting that the
symplectic form σ is independent of the choice of Σ. For a proof of these properties and for
further facts, which we will use about the symplectic structure of the space of solutions to
the Klein–Gordon equation and the relation to the Green operator below, see e.g., [24–26]
and the references cited therein. According to the definition of S0, there is for every ϕ ∈ S0
some f ∈ C∞

0 (R1+3,R) so that ϕ = G f . In fact, the map C∞
0 (R1+3,R)/ker(G) → S0 given

by [ f ] = f + ker(G) 7→ G f , is a linear bijection, and it is also a symplectomorphism upon
endowing C∞

0 (R1+3,R)/ker(G) with the symplectic form

κ([ f ], [h]) =
∫
R1+3

f (x)(Gh)(x) d4x . (38)

Now let us return to the geometric situation that we have been considering in Figure 1.
Our aim is to construct localized rotations of the system of local Poisson algebras P(O)
that preserve the Poisson structure. More precisely, by choosing positive radii r1 < r2, we
have B(r1) ⊂ B(r2) for the coordinate balls at x0 defined by (3) and, similarly for their
domains of dependence, defined by (4), O(r1) ⊂ O(r2). In the x0 = 0 hyperplane which
is a copy of R3, we will introduce for any 0 ≤ θ < 2π a diffeomorphism γθ that acts like
a rotation around the x3-axis by an angle of θ within B(r1), and like the identity outside
B(r2). To this end, we consider the vector field f on R3 given by

f = η(r)
(

x1 ∂

∂x2 − x2 ∂

∂x1

)
, (39)

where r =
√
(x1)2 + (x2)2 + (x3)2 is the radius function and η : R+ → R+ is a smooth

function with η(r) = 1 for r ≤ r1 and η(r) = 0 for r ≥ r2. Then we take γθ : R3 → R3

to be the flow generated by f with a flow parameter θ (so dγθ/dθ = f ◦ γθ). It it easy to
see that γθ has the claimed geometric properties. In the next step, we define the linear
map Sθ : S → S by choosing the Cauchy-surface Σ in (36) as the x0 = 0 hyperplane, and
by setting
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(
uSθ ϕ

vSθ ϕ

)
=

(
uϕ ◦ (γθ)

−1

qθvϕ ◦ (γθ)
−1

)
, (40)

where qθ = det(Jθ) with Jθ is the Jacobian matrix of γθ . It is plain to see that, due to the
compensating factor qθ , one has

σ(Sθ ϕ, Sθψ) = σ(ϕ, ψ) (41)

for all ϕ, ψ ∈ S0; hence, Sθ is a symplectomorphism on the solution space S0 for the
Klein–Gordon equation with the symplectic form σ. Note that qθ = 1 is on B(r1), as well as
outside of B(r2).

In a further step, we wish to show that the map Sθ induces a unit-preserving ∗-algebra
morphism Υθ of P through

(Υθ P)(ϕ) = P(S−1
θ ϕ) (42)

such that the Poisson bracket is preserved,

{Υθ(P1), Υθ(P2)}PB = Υθ({P1, P2}PB) . (43)

In the light of relations (32), it is enough to check the preservation of the Poisson bracket
for the cases Pj = Ff j

. To this end, if f j ∈ C∞
0 (R1+3,R), and if h ∈ C∞

0 (R1+3,R) is chosen
with ϕ = Gh on the support of f j, then

Ff j
(ϕ) =

∫
R1+3

f j(x)Gh(x) d4x = κ([ f j], [h]) = σ(G f j, ϕ). (44)

Hence, by setting ψj = G f j, it follows that Υθ Ff j
(ϕ) = Ff j

(S−1
θ ϕ) = σ(ψj, S−1

θ ϕ) =

σ(Sθψj, ϕ) since Sθ is a symplectomorphism. On the other hand, we have

{Ff1 , Ff2}PB(ϕ) =
∫
R1+3

f1(x)G f2(x) d4x = κ([ f1], [ f2]) = σ(ψ1, ψ2) (45)

from which one can now deduce

{Υθ Ff1 , Υθ Ff2}PB(ϕ) = σ(Sθψ1, Sθψ2) = σ(ψ1, ψ2) . (46)

On the other hand, since {Ff1 , Ff2}PB(ϕ) = σ(ψ1, ψ2) is independent of ϕ (i.e., it is a multiple
of the unit element in P), we have Υθ({Ff1 , Ff2}PB) = {Ff1 , Ff2}PB. Hence, we obtain

{Υθ Ff1 , Υθ Ff2}PB = Υθ({Ff1 , Ff2}PB), (47)

as required so as to show that Υθ is a ∗-algebra morphism of P , thus preserving the
Poisson structure. It is also easy to see from the geometric construction that Υθ P = P for all
P ∈P(Õ) with Õ ⊂ O(r2)

⊥, and

Υθ(P(O)) = P(R3,θO) (48)

is for all O ⊂ O(r1), where R3,θ denotes the space rotation around the x3-axis by the angle θ.
Hence, for the classical Klein–Gordon field on Minkowski spacetime, as described in

the algebraic setting in terms of local Poisson algebras, Υθ is a local channel, acting trivially
in the causal complement of O(r2) = OBob, and it is like an “instantaneous” space rotation
within O(r1). Thus, in the situation depicted in Figure 1, the operation

τ̃Bobν = ν ◦ Υπ (49)

on the states ν of P is the counterpart of τBob in (14), which we had considered before
in the quantum field theory framework. Obviously, τ̃Bob is not provided by the action of
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unitary algebra elements since the algebra P is commutative. Thus, whenever G ∈P (or,
for that matter, on replacing P by a suitable extension) fulfills GG∗ = 1, then GPG∗ = P
for all P ∈P .

This said, it should now be clear that there are also channels ΥAlice for P which are
localized in OAlice (i.e., they act trivially in the causal complement of OAlice), so that for
their induced operations τ̃Alice given by τ̃Aliceν = ν ◦ ΥAlice, we find

τ̃Aliceν(C) = ν(C) (50)

for all states ν of P and all C ∈P(OCharlie), while

(τ̃Bob ◦ τ̃Aliceν)(C) 6= ν(C) (51)

for some states ν and suitable C ∈ P(O(+)) (cf. Figure 1). For instance, one can choose
for ΥAlice a rotation around some space axis in OAlice, constructed in the same manner
as Υθ with respect to OBob. In other words, we have provided, in an algebraic setting for
a classical, relativistic field theory, an example of an “impossible measurement scenario”
where, according to [6], the information if Alice has carried out an operation in her lab is
mediated by an operation in Bob’s lab with “superluminal speed” to the lab of Charlie
which is causally separated from Alice.

5. Discussion

We have shown that in the algebraic framework (both in quantum field theory—under
very general assumptions, as well as more concretely for the quantized Klein–Gordon
field—and in classical field theory (for the classical Klein–Gordon field), “superluminal
localized operations” τBob occur. They have a geometric significance as “instantaneous
space rotations” by 180 degrees, and they lead to the scenario in which [6] has been
connected with the “impossible measurements scenario”, where (cf. Figure 1) Charlie can
tell if Alice has carried out an operation on a state ω if Bob carries out τBob localized in
OBob through the relation

(τBob ◦ τAliceω)(C) 6= ω(C) (52)

for some states ω and some observables C measured by Charlie in OCharlie. In this sense,
at face value, the “impossible measurements scenario” in [6] fails the ping-pong ball test in
the sense that it is not a feature of quantum field theory only, but also occurs in classical
field theory.

That is not to say, however, that the scenario presented in [6] was without interest or
significance. In fact, various interesting lessons can be learned by having subjected it to our
ping-pong ball test.

First, we see that, as pointed out in [6] and [3,5], localized operations, both in quantum
field theory and in classical field theory, are only specified by acting trivially in the causal
complement of the spacetime region wherein they are localized, but they can act superlu-
minally within that localization region. As we have seen, this includes (unsurprisingly)
“passive” transformations which are related to the (local) symmetries of (the theory of) a
physical system. However, carrying them out “instantaneously” is actually impossible on
kinematical or dynamical grounds. What can really be carried out in a lab on a physical
system must be brought about by interaction, and in a relativistic theory, it must respect the
principle that “no action on a system can proceed faster than with the velocity of light”, i.e.,
it cannot lead to superluminal effects. In the local, algebraic setting of quantum field theory,
or of classical field theory, one could think of various ways of capturing this principle. A
quite strong requirement on operations τ to be physical could be that they should arise as
duals of channels T which obey

T(A(O)) ⊂ A(J(O)) (53)
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for all subsets O of Minkowski spacetime, where J(O) is the causal set of O, i.e., the set of
all points that lie on causal curves emanating from O. In [27], successions of Fermi–Walker-
transported observables t 7→ αLt(A) for A ∈ A(O) have been considered, where {Lt}t∈I ,
with I real interval, is a smooth family of Poincaré transformations such that, for every
x ∈ O, t 7→ Lt(x) is a future-directed, causal curve. One could attempt to restrict the
possibility of instantaneous rotations (or other instantaneous Poincaré transformations) in
a similar manner. (For the discussion of other, related restrictions on local operations in
order to prevent them from acting in a superluminal fashion, see e.g., [3,5].)

While investigating useful kinematical characterizations of the local operations com-
patible with the principles of special or general relativity is important—and may actually
remove a gap in the literature on localized operations—we think that what is really of prime
importance is the aspect that, in the lab, the experimenter carries out “active” operations,
i.e., operations that involve interactions with the physical system under consideration. In
the framework of quantum field measurement set out in [8,9], the system under consider-
ation, described by a quantum field, interacts with another quantum field, modeling the
probe. The interaction is subject to specific conditions on localization and causality that, as
a consequence, avoid the impossible measurement scenario for the operations resulting
from the interaction of system and probe [7]. Imposing suitable locality and causality condi-
tions on interactions is also of importance in the construction of interacting quantum field
theories (see [28,29] for a recent contribution in this direction, as well as related discussion
in [22,23]).

A second lesson that may be drawn is about the status of the unitary elements U of the
local algebras A(O) in quantum field theory as operations, or more precisely, as giving rise
to the channels A 7→ UAU∗ that induce local operations. As we have mentioned already,
this does not match too well with how local operations arise in the algebraic framework of
classical field theory because the algebras P(O) are commutative. However, in classical
field theory, the action of the generators of (local) symmetries can be obtained with the help
of the Poisson bracket and the elements G of the (local) Poisson algebras, i.e., as derivations
of the form P 7→ {G, P}PB [30]. Similarly in quantum field theory, the commutator bracket
with (typically unbounded) operators Q affiliated to the local algebras A(O) gives rise
to the derivations A 7→ [Q, A], thereby generating (local) symmetries. This analogy is
very familiar when discussing the passage from Hamiltonian mechanics to quantum
mechanics; therefore, in comparison with the classical field theory situation, the operators
affiliated with local algebras should be seen as the generators, in the commutator bracket,
of local channels. The circumstance that, in quantum field theory, the corresponding
channels are actually implemented by unitary operators U in the local algebras A(O) is
perhaps more a consequence of the richness of the A(O) and less related to an a priori
significance of unitaries in the local algebras as implementers of local channels and their
associated operations.
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Note
1 In [12], the ping-pong ball test is more specifically related to Bell’s inequalities, and its wording is verbatim as follows: Take an

author’s explanation of Bell’s inequalities, and substitute “ping-pong balls” for every quantum particle. Then if whatever the author is selling
as paradoxical, remains true, he/she hasn’t understood a thing.
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