NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium
Abstract
:1. Introduction
2. Observations and Parameters
3. Method
- Stellar Model atmospheres.
- Sodium atomic model.
- Sodium line data.
3.1. Stellar Model Atmospheres
3.2. Sodium Model Atom
3.3. Line Data
4. Results and Disscussion
4.1. Sodium Abundances
4.2. Abundance Uncertainties
4.3. Abundance Comparisons
4.4. NLTE Effects
4.5. Evolutionary Trend of [Na/Fe]
5. Conclusions
- The consistent sodium abundances between H-band and optical lines for our sample stars suggest that our Na atomic model is valid for studying the formation of the H-band Na I lines.
- The NLTE effects vary across different lines. The corrections for our selected optical lines could be as large as around −0.4 dex, while the NLTE effects for H-band lines, although relatively small, cannot be negligible. It is observed that the impact of NLTE effects is more associated with log g than and [Fe/H] in H band.
- The [Na/Fe] ratios are consistent with the theoretical GCE model and may indicate a secondary effect.
- For stars with low metallicities, caution should be exercised in obtaining sodium abundances with the APOGEE spectra.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Star | 5682 | 5688 | 5889 | 5895 | 6154 | 6160 | 8183 | 8194 | 16,373 | 16,388 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | NLTE | |
Sun | 6.29 | 6.19 | 6.31 | 6.21 | 6.23 | 6.16 | 6.23 | 6.17 | 6.31 | 6.27 | 6.31 | 6.26 | 6.4 | 6.23 | 6.33 | 6.19 | 6.21 | 6.21 | 6.22 | 6.21 |
Arcturus | 0.14 | −0.0 | 0.14 | 0.0 | −0.11 | −0.08 | … | … | 0.11 | 0.03 | 0.14 | 0.03 | 0.12 | −0.03 | 0.26 | 0.14 | 0.07 | 0.06 | 0.03 | 0.03 |
Arcturus | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | 0.08 | 0.07 | 0.03 | 0.03 |
HD87 | 0.12 | −0.01 | 0.19 | 0.03 | 0.05 | 0.08 | 0.07 | 0.05 | 0.19 | 0.12 | 0.24 | 0.13 | 0.2 | 0.06 | … | … | 0.11 | 0.09 | 0.13 | 0.13 |
HD6582 | 0.06 | 0.11 | 0.03 | 0.06 | 0.11 | 0.09 | … | … | 0.1 | 0.11 | 0.1 | 0.11 | … | … | … | … | … | … | … | … |
HD6920 | −0.03 | −0.07 | 0.06 | −0.04 | −0.08 | −0.04 | 0.02 | −0.05 | −0.03 | −0.05 | −0.01 | −0.05 | 0.21 | −0.02 | 0.24 | 0.01 | … | … | −0.01 | −0.01 |
HD22675 | 0.06 | −0.06 | 0.18 | 0.06 | −0.04 | −0.01 | −0.01 | −0.02 | 0.15 | 0.07 | 0.14 | 0.03 | 0.11 | 0.02 | … | … | … | … | 0.02 | 0.02 |
HD31501 | 0.1 | 0.12 | 0.06 | 0.08 | 0.03 | 0.08 | 0.1 | 0.09 | 0.22 | 0.21 | 0.13 | 0.13 | 0.02 | 0.04 | 0.09 | 0.08 | … | … | 0.14 | 0.15 |
HD58367 | 0.39 | 0.2 | 0.46 | 0.25 | 0.29 | 0.31 | 0.29 | 0.3 | 0.36 | 0.27 | 0.39 | 0.25 | 0.57 | 0.3 | 0.71 | 0.52 | 0.32 | 0.3 | 0.25 | 0.23 |
HD67447 | 0.3 | 0.14 | 0.32 | 0.13 | … | … | … | … | 0.29 | 0.19 | 0.33 | 0.19 | 0.37 | 0.15 | 0.62 | 0.47 | 0.18 | 0.17 | 0.17 | 0.16 |
HD102870 | −0.05 | −0.08 | 0.06 | −0.02 | −0.15 | −0.1 | −0.09 | −0.11 | −0.06 | −0.07 | −0.06 | −0.08 | 0.07 | 0.01 | 0.04 | −0.04 | … | … | 0.0 | 0.0 |
HD103095 | −0.29 | −0.2 | −0.29 | −0.22 | −0.24 | −0.24 | −0.21 | −0.27 | −0.18 | −0.16 | −0.27 | −0.24 | … | … | … | … | … | … | … | … |
HD121370 | 0.4 | 0.31 | 0.37 | 0.28 | 0.24 | 0.21 | 0.26 | 0.22 | 0.32 | 0.25 | 0.28 | 0.2 | 0.37 | 0.26 | 0.36 | 0.28 | 0.21 | 0.2 | 0.18 | 0.18 |
HD148816 | 0.06 | 0.09 | 0.1 | 0.1 | −0.03 | 0.01 | 0.06 | −0.02 | 0.1 | 0.09 | 0.07 | 0.08 | 0.17 | 0.05 | 0.16 | 0.01 | … | … | … | … |
HD177249 | 0.26 | 0.09 | 0.26 | 0.07 | 0.13 | 0.16 | 0.16 | 0.18 | 0.26 | 0.17 | 0.28 | 0.15 | 0.36 | 0.06 | 0.32 | 0.12 | 0.12 | 0.1 | 0.12 | 0.11 |
1 | The homepage of MARCS is https://marcs.astro.uu.se, accessed on 15 October 2016. |
2 | The interpolation routine written by Thomas Masseron is available at https://marcs.astro.uu.se/software.php, accessed on 15 October 2016. |
3 | The departure coefficient or b-factor of energy level i is defined as , where and are atomic level number densities calculated based on the statistical equilibrium and the thermal equilibrium (Saha–Boltzmann), respectively. |
4 | refers to the continuum optical depth at the standard reference wavelength 5000 Å. |
5 | https://www.nist.gov/pml/atomic-spectra-database, accessed on 15 October 2016. |
6 | http://vald.astro.uu.se, accessed on 15 October 2016. |
7 | https://dr17.sdss.org/sas/dr17/apogee/spectro/speclib/linelists/turbospec/, accessed on 22 September 2022. |
References
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Clayton, D. Handbook of Isotopes in the Cosmos; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Woosley, S.E.; Weaver, T.A. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis. Astrophys. J. Suppl. 1995, 101, 181. [Google Scholar] [CrossRef]
- Denisenkov, P.A. Origin of anomalous sodium abundances in yellow supergiants. Astrophysics 1989, 31, 588–597. [Google Scholar] [CrossRef]
- Denisenkov, P.A.; Denisenkova, S.N. Correlation Between the Abundances of NA and the CNO Elements in Red Giants in Omega-Centauri. Sov. Astron. Lett. 1990, 16, 275. [Google Scholar]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Cayrel, R.; Depagne, E.; Spite, M.; Hill, V.; Spite, F.; François, P.; Plez, B.; Beers, T.; Primas, F.; Andersen, J.; et al. First stars V—Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 2004, 416, 1117–1138. [Google Scholar] [CrossRef]
- Timmes, F.X.; Woosley, S.E.; Weaver, T.A. Galactic Chemical Evolution: Hydrogen through Zinc. Astrophys. J. Suppl. 1995, 98, 617. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Nissen, P.E.; Zhao, G.; Zhang, H.W.; Benoni, T. Chemical composition of 90 F and G disk dwarfs. Astron. Astrophys. Suppl. 2000, 141, 491–506. [Google Scholar] [CrossRef]
- Edvardsson, B.; Andersen, J.; Gustafsson, B.; Lambert, D.L.; Nissen, P.E.; Tomkin, J. The Chemical Evolution of the Galactic Disk—Part One—Analysis and Results. Astron. Astrophys. 1993, 275, 101. [Google Scholar]
- Bensby, T.; Feltzing, S.; Lundström, I. Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars. Astron. Astrophys. 2003, 410, 527–551. [Google Scholar] [CrossRef]
- Feltzing, S.; Gustafsson, B. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex. Astron. Astrophys. Suppl. 1998, 129, 237–266. [Google Scholar] [CrossRef]
- Shi, J.R.; Gehren, T.; Zhao, G. Sodium abundances in nearby disk stars. Astron. Astrophys. 2004, 423, 683–691. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Naumov, S.O.; Carney, B.W.; McWilliam, A.; Wolfe, A.M. The Galactic Thick Disk Stellar Abundances. Astron. J. 2000, 120, 2513–2549. [Google Scholar] [CrossRef]
- Pilachowski, C.A.; Sneden, C.; Kraft, R.P. Sodium Abundances in Field Metal-Poor Stars. Astron. J. 1996, 111, 1689. [Google Scholar] [CrossRef]
- Baumueller, D.; Butler, K.; Gehren, T. Sodium in the Sun and in metal-poor stars. Astron. Astrophys. 1998, 338, 637–650. [Google Scholar]
- Bruls, J.H.M.J.; Rutten, R.J.; Shchukina, N.G. The formation of helioseismology lines. I. NLTE effects in alkali spectra. Astron. Astrophys. 1992, 265, 237–256. [Google Scholar]
- Mashonkina, L.I.; Shimanskiĭ, V.V.; Sakhibullin, N.A. Non-LTE Effects in Na I Spectral Lines in Stellar Atmospheres. Astron. Rep. 2000, 44, 790–803. [Google Scholar] [CrossRef]
- Takeda, Y.; Zhao, G.; Takada-Hidai, M.; Chen, Y.Q.; Saito, Y.J.; Zhang, H.W. Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo. Chin. J. Astron. Astrophys. 2003, 3, 316–340. [Google Scholar] [CrossRef]
- Gehren, T.; Liang, Y.C.; Shi, J.R.; Zhang, H.W.; Zhao, G. Abundances of Na, Mg and Al in nearby metal-poor stars. Astron. Astrophys. 2004, 413, 1045–1063. [Google Scholar] [CrossRef]
- Gehren, T.; Shi, J.R.; Zhang, H.W.; Zhao, G.; Korn, A.J. Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars. Astron. Astrophys. 2006, 451, 1065–1079. [Google Scholar] [CrossRef]
- Alexeeva, S.A.; Pakhomov, Y.V.; Mashonkina, L.I. Non-LTE sodium abundance in galactic thick- and thin-disk red giants. Astron. Lett. 2014, 40, 406–424. [Google Scholar] [CrossRef]
- Zhao, G.; Mashonkina, L.; Yan, H.L.; Alexeeva, S.; Kobayashi, C.; Pakhomov, Y.; Shi, J.R.; Sitnova, T.; Tan, K.F.; Zhang, H.W.; et al. Systematic Non-LTE Study of the -0.6 ≤ [Fe/H] ≤ 0.2 F and G Dwarfs in the Solar Neighborhood. II. Abundance Patterns from Li to Eu. Astrophys. J. 2016, 833, 225. [Google Scholar] [CrossRef]
- Shen, Y.; Alexeeva, S.; Zhao, G.; Liu, S.; Zhou, Z.; Yan, L.; Li, H.; Chen, T.; Xu, X.; Chen, H.; et al. Sodium Abundances in Very Metal-Poor Stars. Res. Astron. Astrophys. 2023, 23, 075019. [Google Scholar] [CrossRef]
- Cunha, K.; Smith, V.V.; Johnson, J.A.; Bergemann, M.; Mészáros, S.; Shetrone, M.D.; Souto, D.; Allende Prieto, C.; Schiavon, R.P.; Frinchaboy, P.; et al. Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-band Spectroscopy. Astrophys. J. Lett. 2015, 798, L41. [Google Scholar] [CrossRef]
- Carrillo, A.; Hawkins, K.; Jofré, P.; de Brito Silva, D.; Das, P.; Lucey, M. The detailed chemical abundance patterns of accreted halo stars from the optical to infrared. Mon. Not. RAS 2022, 513, 1557–1580. [Google Scholar] [CrossRef]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Allende Prieto, C.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Wilson, J.C.; Hearty, F.; Skrutskie, M.F.; Majewski, S.; Schiavon, R.; Eisenstein, D.; Gunn, J.; Blank, B.; Henderson, C.; Smee, S.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy III; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7735, p. 77351C. [Google Scholar] [CrossRef]
- Wilson, J.C.; Hearty, F.R.; Skrutskie, M.F.; Majewski, S.R.; Holtzman, J.A.; Eisenstein, D.; Gunn, J.; Blank, B.; Henderson, C.; Smee, S.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs. Publ. ASP 2019, 131, 055001. [Google Scholar] [CrossRef]
- Mészáros, S.; Holtzman, J.; García Pérez, A.E.; Allende Prieto, C.; Schiavon, R.P.; Basu, S.; Bizyaev, D.; Chaplin, W.J.; Chojnowski, S.D.; Cunha, K.; et al. Calibrations of Atmospheric Parameters Obtained from the First Year of SDSS-III APOGEE Observations. Astron. J. 2013, 146, 133. [Google Scholar] [CrossRef]
- Abdurro’uf; Accetta, K.; Aerts, C.; Silva Aguirre, V.; Ahumada, R.; Ajgaonkar, N.; Filiz Ak, N.; Alam, S.; Allende Prieto, C.; Almeida, A.; et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J. Suppl. 2022, 259, 35. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Pan, K.; Allende Prieto, C.; Liu, C. NLTE Analysis of High-Resolution H-band Spectra. I. Neutral Silicon. Astrophys. J. 2016, 833, 137. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Pan, K.; Allende Prieto, C.; Liu, C. NLTE Analysis of High-resolution H-band Spectra. II. Neutral Magnesium. Astrophys. J. 2017, 835, 90. [Google Scholar] [CrossRef]
- Zhou, Z.M.; Pan, K.; Shi, J.R.; Zhang, J.B.; Liu, C. Non-LTE Analyses of High-resolution H-band Spectra. III. Neutral and Singly Ionized Calcium. Astrophys. J. 2019, 881, 77. [Google Scholar] [CrossRef]
- Xu, X.D.; Shi, J.R.; Zhang, J.B.; Zhou, Z.M. NLTE analysis of high-resolution H-band spectra IV: Neutral copper. Res. Astron. Astrophys. 2020, 20, 131. [Google Scholar] [CrossRef]
- Barklem, P.S. Accurate abundance analysis of late-type stars: Advances in atomic physics. Astron. Astrophys. Rev. 2016, 24, 9. [Google Scholar] [CrossRef]
- Pfeiffer, M.J.; Frank, C.; Baumueller, D.; Fuhrmann, K.; Gehren, T. FOCES—A fibre optics Cassegrain Echelle spectrograph. Astron. Astrophys. Suppl. 1998, 130, 381–393. [Google Scholar] [CrossRef]
- Tody, D. The IRAF Data Reduction and Analysis System. In Instrumentation in Astronomy VI; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Crawford, D.L., Ed.; SPIE: Bellingham, WA, USA, 1986; Volume 627, p. 733. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. In Astronomical Data Analysis Software and Systems II; Astronomical Society of the Pacific Conference Series; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
- Reetz, J.K. Oxygen Abundances in Cool Stars and the Chemical Evolution of the Galaxy. Ph.D. Thesis, Ludwig-Maximilians-Universiät München (LMU Munich), Munich, Germany, 1999. [Google Scholar]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Mashonkina, L. Atomic data necessary for the non-LTE analysis of stellar spectra. Phys. Scr. Vol. T 2009, 134, 014004. [Google Scholar] [CrossRef]
- Barklem, P.S.; Piskunov, N.; O’Mara, B.J. A list of data for the broadening of metallic lines by neutral hydrogen collisions. Astron. Astrophys. Suppl. 2000, 142, 467–473. [Google Scholar] [CrossRef]
- Lind, K.; Asplund, M.; Barklem, P.S.; Belyaev, A.K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 2011, 528, A103. [Google Scholar] [CrossRef]
- Barklem, P.S.; Belyaev, A.K.; Guitou, M.; Feautrier, N.; Gadéa, F.X.; Spielfiedel, A. On inelastic hydrogen atom collisions in stellar atmospheres. Astron. Astrophys. 2011, 530, A94. [Google Scholar] [CrossRef]
- Barklem, P.S.; Belyaev, A.K.; Dickinson, A.S.; Gadéa, F.X. Inelastic Na+H collision data for non-LTE applications in stellar atmospheres. Astron. Astrophys. 2010, 519, A20. [Google Scholar] [CrossRef]
- Butler, K.; Giddings, J. Newsletter on the Analysis of Astronomical Spectra No. 9; University of London: London, UK, 1985. [Google Scholar]
- Mashonkina, L.; Gehren, T.; Shi, J.R.; Korn, A.J.; Grupp, F. A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars. Astron. Astrophys. 2011, 528, A87. [Google Scholar] [CrossRef]
- Meléndez, J.; Barbuy, B. Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands. Astrophys. J. Suppl. 1999, 124, 527–546. [Google Scholar] [CrossRef]
- Shetrone, M.; Bizyaev, D.; Lawler, J.E.; Allende Prieto, C.; Johnson, J.A.; Smith, V.V.; Cunha, K.; Holtzman, J.; García Pérez, A.E.; Mészáros, S.; et al. The SDSS-III APOGEE Spectral Line List for H-band Spectroscopy. Astrophys. J. Suppl. 2015, 221, 24. [Google Scholar] [CrossRef]
- Smith, V.V.; Bizyaev, D.; Cunha, K.; Shetrone, M.D.; Souto, D.; Allende Prieto, C.; Masseron, T.; Mészáros, S.; Jönsson, H.; Hasselquist, S.; et al. The APOGEE Data Release 16 Spectral Line List. Astron. J. 2021, 161, 254. [Google Scholar] [CrossRef]
- Hinkle, K.; Wallace, L.; Livingston, W. Infrared Atlas of the Arcturus Spectrum, 0.9–5.3 microns. Publ. ASP 1995, 107, 1042. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Asplund, M.; Amarsi, A.M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. Astron. Astrophys. 2021, 653, A141. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Lind, K.; Nordlander, T.; Wehrhahn, A.; Montelius, M.; Osorio, Y.; Barklem, P.S.; Afşar, M.; Sneden, C.; Kobayashi, C. Non-LTE abundance corrections for late-type stars from 2000 Å to 3 µm. I. Na, Mg, and Al. Astron. Astrophys. 2022, 665, A33. [Google Scholar] [CrossRef]
- Osorio, Y.; Allende Prieto, C.; Hubeny, I.; Mészáros, S.; Shetrone, M. NLTE for APOGEE: Simultaneous multi-element NLTE radiative transfer. Astron. Astrophys. 2020, 637, A80. [Google Scholar] [CrossRef]
- Grevesse, N.; Asplund, M.; Sauval, A.J. The Solar Chemical Composition. Space Sci. Rev. 2007, 130, 105–114. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J. The Solar Chemical Composition. In Proceedings of the Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Austin, TX, USA, 17–19 June 2004; Astronomical Society of the Pacific Conference Series; Barnes Thomas, G., Bash, F.N., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 336, p. 25. [Google Scholar]
- García Pérez, A.E.; Allende Prieto, C.; Holtzman, J.A.; Shetrone, M.; Mészáros, S.; Bizyaev, D.; Carrera, R.; Cunha, K.; García-Hernández, D.A.; Johnson, J.A.; et al. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline. Astron. J. 2016, 151, 144. [Google Scholar] [CrossRef]
- Holtzman, J.A.; Shetrone, M.; Johnson, J.A.; Allende Prieto, C.; Anders, F.; Andrews, B.; Beers, T.C.; Bizyaev, D.; Blanton, M.R.; Bovy, J.; et al. Abundances, Stellar Parameters, and Spectra from the SDSS-III/APOGEE Survey. Astron. J. 2015, 150, 148. [Google Scholar] [CrossRef]
- Holtzman, J.A.; Hasselquist, S.; Shetrone, M.; Cunha, K.; Allende Prieto, C.; Anguiano, B.; Bizyaev, D.; Bovy, J.; Casey, A.; Edvardsson, B.; et al. APOGEE Data Releases 13 and 14: Data and Analysis. Astron. J. 2018, 156, 125. [Google Scholar] [CrossRef]
- Jönsson, H.; Holtzman, J.A.; Allende Prieto, C.; Cunha, K.; García-Hernández, D.A.; Hasselquist, S.; Masseron, T.; Osorio, Y.; Shetrone, M.; Smith, V.; et al. APOGEE Data and Spectral Analysis from SDSS Data Release 16: Seven Years of Observations Including First Results from APOGEE-South. Astron. J. 2020, 160, 120. [Google Scholar] [CrossRef]
- Soubiran, C.; Girard, P. Abundance trends in kinematical groups of the Milky Way’s disk. Astron. Astrophys. 2005, 438, 139–151. [Google Scholar] [CrossRef]
- Takeda, Y.; Sato, B.; Murata, D. Stellar Parameters and Elemental Abundances of Late-G Giants. Publ. ASJ 2008, 60, 781. [Google Scholar] [CrossRef]
- Kobayashi, C.; Karakas, A.I.; Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. RAS 2011, 414, 3231–3250. [Google Scholar] [CrossRef]
- Andrievsky, S.M.; Spite, M.; Korotin, S.A.; Spite, F.; Bonifacio, P.; Cayrel, R.; Hill, V.; François, P. NLTE determination of the sodium abundance in a homogeneous sample of extremely metal-poor stars. Astron. Astrophys. 2007, 464, 1081–1087. [Google Scholar] [CrossRef]
- Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Y.; North, P. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. II. Early chemical enrichment. Astron. Astrophys. 2017, 608, A89. [Google Scholar] [CrossRef]
- Reggiani, H.; Meléndez, J.; Kobayashi, C.; Karakas, A.; Placco, V. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars. Astron. Astrophys. 2017, 608, A46. [Google Scholar] [CrossRef]
/Å | Transition | /eV | log gf | log C6 |
---|---|---|---|---|
Optical Na I | ||||
5682.633 | 2.102 | −0.720 | −29.426 | |
5688.205 | 2.104 | −0.470 | −29.426 | |
5889.951 | 0.000 | 0.110 | −31.120 | |
5895.924 | 0.000 | −0.184 | −31.120 | |
6154.226 | 2.102 | −1.570 | −29.426 | |
6160.747 | 2.104 | −1.280 | −29.426 | |
8183.255 | 2.102 | 0.280 | −30.381 | |
8194.824 | 2.104 | 0.490 | −30.381 | |
H-band Na I | ||||
16,373.853 | 3.753 | −1.400 | −29.208 | |
16,388.857 | 3.753 | −1.040 | −29.208 |
Name | Teff | log g | [Fe/H] | spec. | Opt.-Band | H-Band | ||||
---|---|---|---|---|---|---|---|---|---|---|
(K) | (km s) | Type | LTE | NLTE | LTE | NLTE | ASPCAP | |||
Sun | 5777 | 4.44 | 0.00 | 0.90 | G2V | 6.30 ± 0.05 | 6.21 ± 0.04 | 6.22 ± 0.01 | 6.21 ± 0.00 | … |
Arcturus | 4275 | 1.67 | −0.58 | 1.60 | K1.5III | 0.11 ± 0.11 | 0.01 ± 0.07 | 0.05 ± 0.03 | 0.05 ± 0.02 | … |
Arcturus | 4275 | 1.67 | −0.58 | 1.60 | K1.5III | 0.11 ± 0.11 | 0.01 ± 0.07 | 0.06 ± 0.04 | 0.05 ± 0.03 | 0.05 |
HD87 | 5053 | 2.71 | −0.10 | 1.35 | G5III | 0.15 ± 0.07 | 0.07 ± 0.05 | 0.12 ± 0.01 | 0.11 ± 0.03 | −0.05 |
HD6582 | 5390 | 4.42 | −0.81 | 0.90 | G5Vb | 0.08 ± 0.03 | 0.10 ± 0.02 | … | … | −1.63 |
HD6920 | 5845 | 3.45 | −0.06 | 1.40 | F8V | 0.05 ± 0.12 | −0.04 ± 0.02 | −0.01 | −0.01 | −1.20 |
HD22675 | 4901 | 2.76 | −0.05 | 1.30 | G8.5IIIb | 0.08 ± 0.08 | 0.01 ± 0.05 | 0.02 | 0.02 | −0.73 |
HD31501 | 5320 | 4.45 | −0.40 | 1.00 | G8V | 0.09 ± 0.06 | 0.10 ± 0.05 | 0.14 | 0.15 | 0.03 |
HD58367 | 4932 | 1.79 | −0.18 | 2.00 | G6IIb | 0.39 ± 0.10 | 0.27 ± 0.04 | 0.29 ± 0.05 | 0.26 ± 0.05 | 0.19 |
HD67447 | 4933 | 2.17 | −0.05 | 2.12 | G7IIb | 0.32 ± 0.03 | 0.16 ± 0.03 | 0.17 ± 0.01 | 0.16 ± 0.01 | 0.16 |
HD102870 | 6070 | 4.08 | 0.20 | 1.20 | F9V | −0.03 ± 0.08 | −0.06 ± 0.04 | 0.00 | 0.00 | 0.07 |
HD103095 | 5085 | 4.65 | −1.35 | 0.80 | K1V | −0.25 ± 0.05 | −0.22 ± 0.04 | … | … | 0.48 |
HD121370 | 6020 | 3.80 | 0.28 | 1.40 | G0IV | 0.32 ± 0.06 | 0.25 ± 0.04 | 0.20 ± 0.02 | 0.19 ± 0.01 | 0.43 |
HD148816 | 5830 | 4.10 | −0.73 | 1.40 | F7V | 0.09 ± 0.06 | 0.05 ± 0.05 | … | … | 0.42 |
HD177249 | 5273 | 2.66 | 0.03 | 1.65 | G6IIb | 0.25 ± 0.08 | 0.12 ± 0.05 | 0.12 ± 0.00 | 0.10 ± 0.01 | 0.14 |
/Å | |
---|---|
5889.951 | 0.03 |
5895.924 | 0.00 |
6154.226 | 0.00 |
6160.747 | 0.00 |
Star | Opt.-Band | H-Band | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Teff | log g | [Fe/H] | Total | Teff | log g | [Fe/H] | Total | |||
80 K | 0.1 dex | 0.1 dex | 0.2 km s | 80 K | 0.1 dex | 0.1 dex | 0.2 km s | |||
Sun | 0.04 | 0.00 | −0.09 | −0.01 | 0.10 | 0.03 | 0.01 | −0.10 | 0.00 | 0.10 |
Arcturus | 0.07 | 0.00 | −0.10 | −0.02 | 0.12 | 0.04 | 0.00 | −0.10 | 0.00 | 0.11 |
HD58367 | 0.05 | 0.00 | −0.10 | −0.01 | 0.11 | 0.04 | 0.00 | −0.09 | 0.00 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Shi, J.; Bi, S.; Yan, H.; Zhang, J.; Pan, K.; Xu, X. NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium. Universe 2023, 9, 457. https://doi.org/10.3390/universe9110457
Zhou Z, Shi J, Bi S, Yan H, Zhang J, Pan K, Xu X. NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium. Universe. 2023; 9(11):457. https://doi.org/10.3390/universe9110457
Chicago/Turabian StyleZhou, Zeming, Jianrong Shi, Shaolan Bi, Hongliang Yan, Junbo Zhang, Kaike Pan, and Xiaodong Xu. 2023. "NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium" Universe 9, no. 11: 457. https://doi.org/10.3390/universe9110457
APA StyleZhou, Z., Shi, J., Bi, S., Yan, H., Zhang, J., Pan, K., & Xu, X. (2023). NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium. Universe, 9(11), 457. https://doi.org/10.3390/universe9110457