Study of He–Mckellar–Wilkens Effect in Noncommutative Space
Abstract
:1. Introduction
2. Approach I: Identifying the Model as the Gauge Theory
3. Approach II: Taking the Dipole Moment as a Pair of Oppositely Charged Particles
4. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 |
References
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485. [Google Scholar] [CrossRef]
- Chambers, R.G. Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Phys. Rev. Lett. 1960, 5, 3. [Google Scholar] [CrossRef]
- Tonomura, A.; Osakabe, N.; Matsuda, T.; Kawasaki, T.; Endo, J.; Yano, S.; Yamada, H. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 1986, 56, 792. [Google Scholar] [CrossRef] [PubMed]
- Aharonov, Y.; Casher, A. Topological Quantum Effects for Neutral Particles. Phys. Rev. Lett. 1984, 53, 319. [Google Scholar] [CrossRef]
- Cimmino, A.; Opat, G.I.; Klein, A.G.; Kaiser, H.; Werner, S.A.; Arif, M.; Clothier, R. Observation of the topological Aharonov-Casher phase shift by neutron interferometry. Phys. Rev. Lett. 1989, 63, 380. [Google Scholar] [CrossRef] [PubMed]
- Sangster, K.; Hinds, E.A.; Barnett, S.M.; Riis, E. Measurement of the Aharonov-Casher phase in an atomic system. Phys. Rev. Lett. 1993, 71, 3641. [Google Scholar] [CrossRef]
- He, X.G.; McKellar, B.H.J. Topological phase due to electric dipole moment and magnetic monopole interaction. Phys. Rev. A 1993, 47, 3424. [Google Scholar] [CrossRef]
- Wilkens, M. Quantum phase of a moving dipole. Phys. Rev. Lett. 1994, 72, 5. [Google Scholar] [CrossRef]
- He, X.-G.; McKellar, B.H.J. The topological phase of the Aharonov-Casher effect and the anyon behaviour of charged particles in 2+1 dimensions. Phys. Lett. B 1991, 256, 250. [Google Scholar] [CrossRef]
- He, X.-G.; McKellar, B.H.J. Topological effects, dipole moments, and the dual current in 2+1 dimensions. Phys. Rev. A 2001, 64, 022102. [Google Scholar] [CrossRef]
- Tkachuk, V.M. Quantum topological phase of an electric dipole circulating around a ferromagnetic wire. Phys. Rev. A 2000, 62, 052112. [Google Scholar] [CrossRef]
- Wilkens, M. Wilkens Replies. Phys. Rev. Lett. 1998, 81, 1534. [Google Scholar] [CrossRef]
- Spavieri, G. Quantum effect for an electric dipole. Phys. Rev. A 1999, 59, 3194. [Google Scholar] [CrossRef]
- Snyder, H.S. Quantized Space-Time. Phys. Rev. 1946, 71, 38. [Google Scholar] [CrossRef]
- Yang, C.N. On Quantized Space-Time. Phys. Rev. 1947, 71, 874. [Google Scholar] [CrossRef]
- Connes, A.; Douglas, M.R.; Schwarz, A. Noncommutative geometry and Matrix theory. JHEP 1998, 2, 3. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String Theory and Noncommutative Geometry. JHEP 1999, 9, 032. [Google Scholar] [CrossRef]
- Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977. [Google Scholar] [CrossRef]
- Szabo, R.J. Quantum Field Theory on Noncommutative Spaces. Phys. Rept. 2003, 378, 207. [Google Scholar] [CrossRef]
- Chu, C.S.; Ho, P.M. Non-commutative open string and D-brane. Nucl. Phys. B 1999, 550, 151. [Google Scholar] [CrossRef]
- Chu, C.S.; Ho, P.M. Constrained quantization of open string in background B field and non-commutative D-brane. Nucl. Phys. B 2000, 568, 447. [Google Scholar] [CrossRef]
- Ardalan, F.; Arfaei, H.; Sheikh-Jabbari, M.M. Dirac Quantization of Open Strings and Noncommutativity in Branes. Nucl. Phys. B 2000, 576, 578. [Google Scholar] [CrossRef]
- Jing, J.; Long, Z.W. Open string in the constant B-field background. Phys. Rev. D 2005, 72, 126002. [Google Scholar] [CrossRef]
- Jing, J. Fermionic open string in a constant B-field background. Phys. Rev. D 2006, 73, 086001. [Google Scholar] [CrossRef]
- Dunne, G.V.; Jackiw, R.; Trugenberger, C.A. “Topological” (Chern-Simons) quantum mechanics. Phys. Rev. D 1991, 41, 661. [Google Scholar] [CrossRef]
- Bigatti, D.; Susskind, L. Magnetic fields, branes, and noncommutative geometry. Phys. Rev. D 2000, 62, 066004. [Google Scholar] [CrossRef]
- Minwalla, S.; Raamsdonk, M.V.; Seiberg, N. Noncommutative perturbative dynamics. JHEP 2000, 2, 020. [Google Scholar] [CrossRef]
- Raamsdonk, M.V.; Seiberg, N. Comments on noncommutative perturbative dynamics. JHEP 2000, 3, 035. [Google Scholar] [CrossRef]
- Lambert, N.D.; Tong, D. Kinky D-strings. Nucl. Phys. B 2000, 569, 606. [Google Scholar] [CrossRef]
- Gopakumar, R.; Minwalla, S.; Strominger, A. Noncommutative solitons. JHEP 2000, 5, 020. [Google Scholar] [CrossRef]
- Nair, V.P.; Polychronakos, A.P. Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B 2001, 505, 267. [Google Scholar] [CrossRef]
- Morariu, B.; Polychronakos, A.P. Quantum Mechanics on the Noncommutative Torus. Nucl. Phys. B 2001, 610, 531. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A.; Sochichiu, C. Two phases of the noncommutative quantum mechanics. Phys. Lett. B 2001, 522, 345. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A. Phases in noncommutative quantum mechanics on (pseudo) sphere. Phys. Lett. B 2002, 542, 295. [Google Scholar] [CrossRef]
- Karabali, D.; Nair, V.P.; Polychronakos, A.P. Spectrum of Schroedinger field in a noncommutative magnetic monopole. Nucl. Phys. B 2002, 627, 565. [Google Scholar] [CrossRef]
- Morariu, B.; Polychronakos, A.P. Quantum mechanics on noncommutative Riemann surfaces. Nucl. Phys. B 2002, 634, 326. [Google Scholar] [CrossRef]
- Chaichian, M.; Sheikh-Jabbari, M.M.; Tureanu, A. Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED. Phys. Rev. Lett. 2001, 86, 2716. [Google Scholar] [CrossRef]
- Acatrinei, C. Path integral formulation of noncommutative quantum mechanics. JHEP 2001, 9, 7. [Google Scholar] [CrossRef]
- Jing, J.; Liu, F.H.; Chen, J.F. Noncommutative Chern-Simons quantum mechanics. Phys. Rev. D 2008, 78, 125004. [Google Scholar] [CrossRef]
- Falomir, H.; Gamboa, J.; Loewe, M.; Mendez, F.; Rojas, J.C. Testing spatial noncommutativity via the Aharonov-Bohm effect. Phys. Rev. D 2002, 66, 045018. [Google Scholar] [CrossRef]
- Li, K.; Dulat, S. The Aharonov–Bohm effect in noncommutative quantum mechanics. Euro. Phys. J. C 2006, 46, 825. [Google Scholar] [CrossRef]
- Harms, B.; Micu, O. Noncommutative quantum Hall effect and Aharonov–Bohm effect. J. Phys. A 2007, 40, 10337. [Google Scholar] [CrossRef]
- Liang, S.D.; Li, H.; Huang, G.Y. Detecting noncommutative phase space by the Aharonov-Bohm effect. Phys. Rev. A 2015, 90, 010102. [Google Scholar] [CrossRef]
- Rodriguez, M.E.R. Quantum effects of Aharonov-Bohm type and noncommutative quantum mechanics. Phys. Rev. A 2018, 97, 012109. [Google Scholar] [CrossRef]
- Mirza, B.; Zarei, M. Non-commutative quantum mechanics and the Aharonov-Casher effect. Euro. Phys. J. C 2004, 32, 583. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.H. The topological AC effect on non-commutative phase space. Euro. Pys. J. C 2007, 50, 1007. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, K. The HMW effect in Noncommutative Quantum Mechanics. J. Phys. A 2007, 40, 2197. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, K. He–McKellar–Wilkens Effect in Noncommutative Space. Chin. Phys. Lett. 2007, 24, 5. [Google Scholar] [CrossRef]
- Chaichian, M.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.; Tureanu, A. Aharonov-Bohm Effect in Noncommutative Spaces. Phys. Lett. B 2002, 527, 149. [Google Scholar] [CrossRef]
- Chaichian, M.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.; Tureanu, A. Quantum Theories on Noncommutative Spaces with Nontrivial Topology: Aharonov-Bohm and Casimir Effects. Nucl. Phys. B 2001, 611, 383. [Google Scholar] [CrossRef]
- Chaichian, M.; Langvik, M.; Sasaki, S.; Tureanu, A. Gauge Covariance of the Aharonov-Bohm Phase in Noncommutative Quantum Mechanics. Phys. Lett. B 2008, 666, 199. [Google Scholar] [CrossRef]
- Kokado, A.; Okamura, T.; Saito, T. Noncommutative quantum mechanics and the Seiberg-Witten map. Phys. Rev. D 2004, 69, 125007. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.H.; Yang, H.X. Time-dependent Aharonov-Bohm effect on the noncommutative space. Phys. Lett. B 2016, 759, 306. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.H.; Yang, H.X. Seiberg-Witten map and quantum phase effects for neutral Dirac particle on noncommutatiave plane. Phys. Lett. B 2016, 756, 221. [Google Scholar] [CrossRef]
- Jing, J.; Kong, L.B.; Wang, Q.; Dong, S.H. On the noncommutative Aharonov-Bohm effects. Phys. Lett. B 2020, 808, 135660. [Google Scholar] [CrossRef]
- Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; Lane, C.D.; Okamoto, T. Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef]
- Jing, J.; Wang, Y.L.; Wang, Q.; Kong, L.B.; Dong, S.H. Noncommutative (2+1)-dimensional Anandan effects. Int. J. Mod. Phys. A 2022, 37, 2250172. [Google Scholar] [CrossRef]
- Boyer, T.H. Proposed Aharonov-Casher effect: Another example of an Aharonov-Bohm effect arising from a classical lag. Phys. Rev. A 1987, 36, 5083. [Google Scholar] [CrossRef]
- Spavieri, G.; Cavalleri, G. Interpretation of the Aharonov-Bohm and the Aharonov-Casher Effects in Terms of Classical Electromagnetic Fields. Europhys. Lett. 1992, 18, 301. [Google Scholar] [CrossRef]
- Vaidman, L. Role of potentials in the Aharonov-Bohm effect. Phys. Rev. A 2012, 86, 040101. [Google Scholar] [CrossRef]
- Boyer, T.H. Classical interaction of a magnet and a point charge. Phys. Rev. E 2015, 91, 013201. [Google Scholar] [CrossRef] [PubMed]
- Spavieri1, G.; Gillies, G.T.; Rodriguez, M.; Perez, M. Effective Interaction Force between an Electric Charge and a Magnetic Dipole and Locality (or Nonlocality) in Quantum Effects of the Aharonov–Bohm Type. Chin. Phys. Lett. 2021, 38, 034101. [Google Scholar] [CrossRef]
- Boyer, T.H. Does the Aharonov–Bohm Effect Exist? Found. Phys. 2000, 30, 893. [Google Scholar] [CrossRef]
- Spavieri, G. Quantum Effect of the Aharonov-Bohm Type for Particles with an Electric Dipole Moment. Phys. Rev. Lett. 1999, 82, 3932. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, J.; Wang, Q.; Yuan, Z.-G.; Dong, S.-H. Study of He–Mckellar–Wilkens Effect in Noncommutative Space. Universe 2023, 9, 494. https://doi.org/10.3390/universe9120494
Jing J, Wang Q, Yuan Z-G, Dong S-H. Study of He–Mckellar–Wilkens Effect in Noncommutative Space. Universe. 2023; 9(12):494. https://doi.org/10.3390/universe9120494
Chicago/Turabian StyleJing, Jian, Qing Wang, Zi-Gang Yuan, and Shi-Hai Dong. 2023. "Study of He–Mckellar–Wilkens Effect in Noncommutative Space" Universe 9, no. 12: 494. https://doi.org/10.3390/universe9120494
APA StyleJing, J., Wang, Q., Yuan, Z. -G., & Dong, S. -H. (2023). Study of He–Mckellar–Wilkens Effect in Noncommutative Space. Universe, 9(12), 494. https://doi.org/10.3390/universe9120494