Neutrino Flavor Model Building and the Origins of Flavor and Violation
Abstract
:1. Introduction
2. What Do We Know about the Lepton Sector?
2.1. What Do We Currently Know?
2.2. What Do We Expect to Know?
2.3. What Do We Want to Know?
3. Neutrino Mass Generation
- Neutrinos are substantially lighter than even the lightest charged fermions;
- Leptonic mixing angles are generally much larger than their counterparts in the quark sector.
3.1. Mass Generation for Neutrinos as Majorana Fermions
3.2. Radiative Neutrino Masses
3.3. Dirac Neutrino Masses
3.4. Neutrino Masses in Explicit String Models
4. Traditional Flavor Symmetries
4.1. Example:
4.1.1. Explicit Model
4.1.2. Corrections and Limitations
4.1.3. VEV Alignment
4.2. Violation from Finite Groups
4.3. Origin of Flavor Symmetries
4.4. Where to Go from Here?
5. Modular Flavor Symmetries
5.1. Modular Transformations
5.2. Modular Forms
5.3. Modular Flavor Symmetries in the Bottom-Up Approach
5.4. Metaplectic Flavor Symmetries
5.5. Eclectic Flavor Symmetries
- Traditional flavor symmetries;
- Modular flavor symmetries;
- R symmetries (including non-Abelian discrete R symmetries);
- symmetries and -like transformations (see Section 4.2 for the distinction).
5.6. Nonsupersymmetric Modular Flavor Symmetries
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CnB | Cosmic Neutrino Background |
EFT | effective field theory |
GUT | Grand Unified Theory |
IO | inverted ordering |
LHC | Large Hadron Collider |
MFV | Minimal Flavor Violation |
MSSM | minimal supersymmetric standard model |
NO | normal ordering |
NSI | non-standard interactions |
QFT | quantum field theory |
RGE | renormalization group equation |
SB | symmetry based |
SM | Standard Model of Particle Physics |
SUSY | supersymmetry |
TB | torus based |
UV | ultraviolet |
VEV | vacuum expectation value |
1 | The anomalies of finite groups can readily be determined [64,65,66,67,68,69], yet their implications have not been worked in great detail so far in the context of (bottom-up) model building. Discrete matching [70] of these anomalies as well as outer automorphism anomalies [71] may provide us with crucial insights on how bottom-up and top-down models are related. |
2 | For noninteger k, we are technically no longer dealing with modular transformations, a point that we will get back to in Section 5.4. |
References
- Ferrara, S.; Lüst, D.; Shapere, A.D.; Theisen, S. Modular Invariance in Supersymmetric Field Theories. Phys. Lett. B 1989, 225, 363. [Google Scholar] [CrossRef]
- Chun, E.J.; Mas, J.; Lauer, J.; Nilles, H.P. Duality and Landau-ginzburg Models. Phys. Lett. B 1989, 233, 141–146. [Google Scholar] [CrossRef]
- Quevedo, F. Lectures on superstring phenomenology. AIP Conf. Proc. 1996, 359, 202–242. [Google Scholar] [CrossRef]
- Feruglio, F. Are neutrino masses modular forms? In From My Vast Repertoire …: Guido Altarelli’s Legacy; Levy, A., Forte, S., Ridolfi, G., Eds.; World Scientific Publishing: Singapore, 2019; pp. 227–266. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Schmaltz, M. Flavor unification and discrete nonAbelian symmetries. Phys. Rev. D 1994, 49, 3741–3750. [Google Scholar] [CrossRef] [PubMed]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Gribov, V.N.; Pontecorvo, B. Neutrino astronomy and lepton charge. Phys. Lett. B 1969, 28, 493. [Google Scholar] [CrossRef]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef]
- Fukuda, Y. et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Ahmad, Q.R. et al. [SNO Collaboration] Measurement of the rate of νe+d→p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef]
- Esteban, I.; González-García, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 2020, 178. [Google Scholar] [CrossRef]
- Esteban, I.; González-García, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. Available online: http://www.nu-fit.org/ (accessed on 1 April 2022).
- Abe, K. et al. [The T2K Collaboration] Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020, 580, 339–344, Erratum in Nature 2020, 583, E16. [Google Scholar] [CrossRef] [PubMed]
- Esteban, I.; González-García, M.C.; Hernández-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. J. High Energy Phys. 2019, 2019, 106. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Palazzo, A. Resolving the NOvA and T2K tension in the presence of Neutrino Non-Standard Interactions. PoS 2022, 402, 059. [Google Scholar] [CrossRef]
- Acero, M.A. et al. [The NOvA Collaboration] An Improved Measurement of Neutrino Oscillation Parameters by the NOvA Experiment. arXiv 2021, arXiv:hep-ex/2108.08219. [Google Scholar]
- Abe, K. et al. [Hyper-Kamiokande Proto-Collaboration] Hyper-Kamiokande Design Report. arXiv 2018, arXiv:physics.ins-det/1805.04163. [Google Scholar]
- Acciarri, R. et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:physics.ins-det/1601.05471. [Google Scholar]
- Smirnov, M.V.; Hu, Z.J.; Li, S.J.; Ling, J.J. The possibility of leptonic CP-violation measurement with JUNO. Nucl. Phys. B 2018, 931, 437–445. [Google Scholar] [CrossRef]
- Song, N.; Li, S.W.; Argüelles, C.A.; Bustamante, M.; Vincent, A.C. The Future of High-Energy Astrophysical Neutrino Flavor Measurements. J. Cosmol. Astropart. Phys. 2021, 04, 054. [Google Scholar] [CrossRef]
- Denton, P.B.; Parke, S.J.; Zhang, X. Neutrino oscillations in matter via eigenvalues. Phys. Rev. D 2020, 101, 093001. [Google Scholar] [CrossRef]
- Qian, X.; Vogel, P. Neutrino Mass Hierarchy. Prog. Part. Nucl. Phys. 2015, 83, 1–30. [Google Scholar] [CrossRef]
- Lee, C.M.; Selby, J.H. Higher-Order Interference in Extensions of Quantum Theory. Found. Phys. 2016, 47, 89–112. [Google Scholar] [CrossRef]
- Xu, B. Neutrino Decoherence in Simple Open Quantum Systems. arXiv 2020, arXiv:hep-ph/2009.13471. [Google Scholar]
- Agostini, M.; Benato, G.; Detwiler, J.A.; Menéndez, J.; Vissani, F. Toward the discovery of matter creation with neutrinoless double-beta decay. arXiv 2022, arXiv:hep-ex/2202.01787. [Google Scholar]
- Cirigliano, V.; Davoudi, Z.; Dekens, W.; de Vries, J.; Engel, J.; Feng, X.; Gehrlein, J.; Graesser, M.L.; Gráf, L.; Hergert, H.; et al. Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment. arXiv 2022, arXiv:hep-ph/2203.12169. [Google Scholar]
- Gastaldo, L.; Blaum, K.; Chrysalidis, K.; Goodacre, T.D.; Domula, A.; Door, M.; Dorrer, H.; Düllmann, C.E.; Eberhardt, K.; Eliseev, S.; et al. The electron capture in163Ho experiment–ECHo. Eur. Phys. J. Spec. Top. 2017, 226, 1623–1694. [Google Scholar] [CrossRef]
- Aker, M.; Balzer, M.; Batzler, D.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Biassoni, M.; Bieringer, B.; Block, F.; et al. KATRIN: Status and prospects for the neutrino mass and beyond. J. Phys. G 2022, 49, 100501. [Google Scholar] [CrossRef]
- Betti, M.G.; Biasotti, M.; Boscá, A.; Calle, F.; Canci, N.; Cavoto, G.; Chang, C.; Cocco, A.G.; Colijn, A.P.; Conrad, J.; et al. Neutrino physics with the PTOLEMY project: Active neutrino properties and the light sterile case. J. Cosmol. Astropart. Phys. 2019, 7, 047. [Google Scholar] [CrossRef]
- Ashtari Esfahani, A.; Asner, D.M.; Böser, S.; Cervantes, R.; Claessens, C.; de Viveiros, L.; Doe, P.J.; Doeleman, S.; Fernandes, J.L.; Fertl, M.; et al. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8. J. Phys. G 2017, 44, 054004. [Google Scholar] [CrossRef]
- Danilov, M. Review of sterile neutrino searches at very short-baseline reactor experiments. arXiv 2022, arXiv:hep-ex/2203.03042. [Google Scholar] [CrossRef]
- Coloma, P.; Esteban, I.; González-García, M.C.; Larizgoitia, L.; Monrabal, F.; Palomares-Ruiz, S. Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT. arXiv 2022, arXiv:hep-ph/2202.10829. [Google Scholar] [CrossRef]
- Minkowski, P. μ→eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Yanagida, T. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 1979, 7902131, 95–99. [Google Scholar]
- Glashow, S.L. The Future of Elementary Particle Physics. NATO Sci. Ser. B 1980, 61, 687. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. Conf. Proc. C 1979, 790927, 315–321. [Google Scholar]
- Magg, M.; Wetterich, C. Neutrino Mass Problem and Gauge Hierarchy. Phys. Lett. B 1980, 94, 61–64. [Google Scholar] [CrossRef]
- Lazarides, G.; Shafi, Q. Neutrino Masses in SU(5). Phys. Lett. B 1981, 99, 113–116. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Mass and Spontaneous Parity Violation. Phys. Rev. Lett. 1980, 44, 912. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. Phys. Rev. D 1981, 23, 165. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; He, X.G.; Joshi, G.C. Seesaw Neutrino Masses Induced by a Triplet of Leptons. Z. Phys. C 1989, 44, 441. [Google Scholar] [CrossRef]
- Fritzsch, H.; Minkowski, P. Unified Interactions of Leptons and Hadrons. Ann. Phys. 1975, 93, 193–266. [Google Scholar] [CrossRef]
- Fuks, B.; Neundorf, J.; Peters, K.; Ruiz, R.; Saimpert, M. Probing the Weinberg operator at colliders. Phys. Rev. D 2021, 103, 115014. [Google Scholar] [CrossRef]
- Cai, Y.; Herrero-García, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. From the trees to the forest: A review of radiative neutrino mass models. Front. in Phys. 2017, 5, 63. [Google Scholar] [CrossRef]
- Zee, A. A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation. Phys. Lett. B 1980, 93, 389, Erratum in Phys. Lett. B 1980, 95, 461. [Google Scholar] [CrossRef]
- Ma, E. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 2006, 73, 077301. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Hall, L.J.; Murayama, H.; Tucker-Smith, D.; Weiner, N. Small neutrino masses from supersymmetry breaking. Phys. Rev. D 2001, 64, 115011. [Google Scholar] [CrossRef]
- Babu, K.S.; He, X.G. Dirac Neutrino Masses as Two Loop Radiative Corrections. Mod. Phys. Lett. A 1989, 4, 61. [Google Scholar] [CrossRef]
- Farzan, Y.; Pascoli, S.; Schmidt, M.A. Recipes and Ingredients for Neutrino Mass at Loop Level. J. High Energy Phys. 2013, 2013, 107. [Google Scholar] [CrossRef]
- Grossman, Y.; Neubert, M. Neutrino masses and mixings in nonfactorizable geometry. Phys. Lett. B 2000, 474, 361–371. [Google Scholar] [CrossRef]
- Huber, S.J.; Shafi, Q. Fermion masses, mixings and proton decay in a Randall-Sundrum model. Phys. Lett. B 2001, 498, 256–262. [Google Scholar] [CrossRef]
- Park, S.C.; Shin, C.S. Clockwork seesaw mechanisms. Phys. Lett. B 2018, 776, 222–226. [Google Scholar] [CrossRef]
- Hong, S.; Kurup, G.; Perelstein, M. Clockwork Neutrinos. J. High Energy Phys. 2019, 2019, 73. [Google Scholar] [CrossRef]
- Babu, K.S.; Saad, S. Flavor Hierarchies from Clockwork in SO(10) GUT. Phys. Rev. D 2021, 103, 015009. [Google Scholar] [CrossRef]
- Babu, K.S.; Leung, C.N. Classification of effective neutrino mass operators. Nucl. Phys. B 2001, 619, 667–689. [Google Scholar] [CrossRef]
- Giedt, J.; Kane, G.L.; Langacker, P.; Nelson, B.D. Massive neutrinos and (heterotic) string theory. Phys. Rev. D 2005, 71, 115013. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cvetič, M.; Weigand, T. Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-Brane models. Nucl. Phys. B 2007, 771, 113–142. [Google Scholar] [CrossRef]
- Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ramos-Sánchez, S.; Ratz, M. Seesaw neutrinos from the heterotic string. Phys. Rev. Lett. 2007, 99, 021601. [Google Scholar] [CrossRef]
- Feldstein, B.; Klemm, W. Large Mixing Angles From Many Right-Handed Neutrinos. Phys. Rev. D 2012, 85, 053007. [Google Scholar] [CrossRef]
- Hall, L.J.; Murayama, H.; Weiner, N. Neutrino mass anarchy. Phys. Rev. Lett. 2000, 84, 2572–2575. [Google Scholar] [CrossRef]
- De Gouvea, A.; Murayama, H. Statistical test of anarchy. Phys. Lett. B 2003, 573, 94–100. [Google Scholar] [CrossRef]
- De Gouvea, A.; Murayama, H. Neutrino Mixing Anarchy: Alive and Kicking. Phys. Lett. B 2015, 747, 479–483. [Google Scholar] [CrossRef]
- Ishimori, H.; Kobayashi, T.; Ohki, H.; Shimizu, Y.; Okada, H.; Tanimoto, M. Non-Abelian Discrete Symmetries in Particle Physics. Prog. Theor. Phys. Suppl. 2010, 183, 1–163. [Google Scholar] [CrossRef]
- Araki, T. Anomaly of Discrete Symmetries and Gauge Coupling Unification. Prog. Theor. Phys. 2007, 117, 1119–1138. [Google Scholar] [CrossRef]
- Araki, T.; Kobayashi, T.; Kubo, J.; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, P.K.S. (Non-)Abelian discrete anomalies. Nucl. Phys. B 2008, 805, 124–147. [Google Scholar] [CrossRef]
- Chen, M.C.; Fallbacher, M.; Ratz, M.; Trautner, A.; Vaudrevange, P.K.S. Anomaly-safe discrete groups. Phys. Lett. B 2015, 747, 22–26. [Google Scholar] [CrossRef]
- Talbert, J. Pocket Formulae for Non-Abelian Discrete Anomaly Freedom. Phys. Lett. B 2018, 786, 426–431. [Google Scholar] [CrossRef]
- Kobayashi, T.; Uchida, H. Anomaly of non-Abelian discrete symmetries. Phys. Rev. D 2022, 105, 036018. [Google Scholar] [CrossRef]
- Gripaios, B. Gauge anomalies of finite groups. arXiv 2022, arXiv:hep-th/2201.11801. [Google Scholar] [CrossRef]
- Csáki, C.; Murayama, H. Discrete anomaly matching. Nucl. Phys. B 1998, 515, 114–162. [Google Scholar] [CrossRef]
- Henning, B.; Lu, X.; Melia, T.; Murayama, H. Outer automorphism anomalies. J. High Energy Phys. 2022, 2022, 94. [Google Scholar] [CrossRef]
- Feruglio, F.; Romanino, A. Lepton flavor symmetries. Rev. Mod. Phys. 2021, 93, 15007. [Google Scholar] [CrossRef]
- Ma, E.; Rajasekaran, G. Softly broken A(4) symmetry for nearly degenerate neutrino masses. Phys. Rev. D 2001, 64, 113012. [Google Scholar] [CrossRef]
- Babu, K.S.; Ma, E.; Valle, J.W.F. Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix. Phys. Lett. B 2003, 552, 207–213. [Google Scholar] [CrossRef]
- Hirsch, M.; Romao, J.C.; Skadhauge, S.; Valle, J.W.F.; Villanova del Moral, A. Phenomenological tests of supersymmetric A(4) family symmetry model of neutrino mass. Phys. Rev. D 2004, 69, 093006. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. Nucl. Phys. B 2005, 720, 64–88. [Google Scholar] [CrossRef]
- Harrison, P.F.; Perkins, D.H.; Scott, W.G. Tri-bimaximal mixing and the neutrino oscillation data. Phys. Lett. B 2002, 530, 167. [Google Scholar] [CrossRef]
- Antusch, S.; Kersten, J.; Lindner, M.; Ratz, M.; Schmidt, M.A. Running neutrino mass parameters in see-saw scenarios. J. High Energy Phys. 2005, 2005, 24. [Google Scholar] [CrossRef]
- Criado, J.C.; Feruglio, F. Modular Invariance Faces Precision Neutrino Data. SciPost Phys. 2018, 5, 42. [Google Scholar] [CrossRef]
- Leurer, M.; Nir, Y.; Seiberg, N. Mass matrix models: The Sequel. Nucl. Phys. B 1994, 420, 468–504. [Google Scholar] [CrossRef]
- Dudas, E.; Pokorski, S.; Savoy, C.A. Yukawa matrices from a spontaneously broken Abelian symmetry. Phys. Lett. B 1995, 356, 45–55. [Google Scholar] [CrossRef]
- Chen, M.C.; Fallbacher, M.; Ratz, M.; Staudt, C. On predictions from spontaneously broken flavor symmetries. Phys. Lett. B 2012, 718, 516–521. [Google Scholar] [CrossRef]
- Chen, M.C.; Fallbacher, M.; Omura, Y.; Ratz, M.; Staudt, C. Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries. Nucl. Phys. B 2013, 873, 343–371. [Google Scholar] [CrossRef]
- Bazzocchi, F.; Kaneko, S.; Morisi, S. A SUSY A(4) model for fermion masses and mixings. J. High Energy Phys. 2008, 2008, 63. [Google Scholar] [CrossRef]
- Feruglio, F.; Hagedorn, C.; Merlo, L. Vacuum Alignment in SUSY A4 Models. J. High Energy Phys. 2010, 2010, 84. [Google Scholar] [CrossRef]
- King, S.F.; Luhn, C. Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models. J. High Energy Phys. 2011, 2011, 42. [Google Scholar] [CrossRef]
- Holthausen, M.; Schmidt, M.A. Natural Vacuum Alignment from Group Theory: The Minimal Case. J. High Energy Phys. 2012, 2012, 126. [Google Scholar] [CrossRef]
- Kobayashi, T.; Omura, Y.; Yoshioka, K. Flavor Symmetry Breaking and Vacuum Alignment on Orbifolds. Phys. Rev. D 2008, 78, 115006. [Google Scholar] [CrossRef]
- Chen, M.C.; Mahanthappa, K.T. Group Theoretical Origin of CP Violation. Phys. Lett. B 2009, 681, 444–447. [Google Scholar] [CrossRef]
- Chen, M.C.; Fallbacher, M.; Mahanthappa, K.T.; Ratz, M.; Trautner, A. CP Violation from Finite Groups. Nucl. Phys. B 2014, 883, 267–305. [Google Scholar] [CrossRef]
- Feruglio, F.; Hagedorn, C.; Ziegler, R. Lepton Mixing Parameters from Discrete and CP Symmetries. J. High Energy Phys. 2013, 2013, 27. [Google Scholar] [CrossRef]
- Holthausen, M.; Lindner, M.; Schmidt, M.A. CP and Discrete Flavour Symmetries. J. High Energy Phys. 2013, 2013, 122. [Google Scholar] [CrossRef]
- Trautner, A. CP and Other Symmetries of Symmetries. Ph.D. Thesis, Technical University of Munich, München, Germany, 2016. Available online: https://arxiv.org/abs/1608.05240 (accessed on 1 April 2022).
- Kobayashi, T.; Nilles, H.P.; Plöger, F.; Raby, S.; Ratz, M. Stringy origin of non-Abelian discrete flavor symmetries. Nucl. Phys. B 2007, 768, 135–156. [Google Scholar] [CrossRef]
- Ibáñez, L.E.; Kim, J.E.; Nilles, H.P.; Quevedo, F. Orbifold Compactifications with Three Families of SU(3) × SU(2) × U(1)n. Phys. Lett. B 1987, 191, 282–286. [Google Scholar] [CrossRef]
- Nilles, H.P.; Ratz, M.; Trautner, A.; Vaudrevange, P.K.S. CP violation from string theory. Phys. Lett. B 2018, 786, 283–287. [Google Scholar] [CrossRef]
- Ratz, M.; Trautner, A. CP violation with an unbroken CP transformation. J. High Energy Phys. 2017, 2017, 103. [Google Scholar] [CrossRef]
- Abe, H.; Choi, K.S.; Kobayashi, T.; Ohki, H. Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models. Nucl. Phys. B 2009, 820, 317–333. [Google Scholar] [CrossRef]
- Cvetič, M.; Heckman, J.J.; Lin, L. Towards Exotic Matter and Discrete Non-Abelian Symmetries in F-theory. J. High Energy Phys. 2018, 2018, 1. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanaka, K.; Tatsuishi, T.H. Neutrino mixing from finite modular groups. Phys. Rev. D 2018, 98, 016004. [Google Scholar] [CrossRef]
- De Anda, F.J.; King, S.F.; Perdomo, E. SU(5) grand unified theory with A4 modular symmetry. Phys. Rev. D 2020, 101, 015028. [Google Scholar] [CrossRef]
- Okada, H.; Tanimoto, M. CP violation of quarks in A4 modular invariance. Phys. Lett. B 2019, 791, 54–61. [Google Scholar] [CrossRef]
- Ding, G.J.; King, S.F.; Liu, X.G. Neutrino mass and mixing with A5 modular symmetry. Phys. Rev. D 2019, 100, 115005. [Google Scholar] [CrossRef]
- Novichkov, P.; Penedo, J.; Petcov, S.; Titov, A. Generalised CP Symmetry in Modular-Invariant Models of Flavour. J. High Energy Phys. 2019, 2019, 165. [Google Scholar] [CrossRef]
- Liu, X.G.; Ding, G.J. Neutrino Masses and Mixing from Double Covering of Finite Modular Groups. J. High Energy Phys. 2019, 2019, 134. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shimizu, Y.; Takagi, K.; Tanimoto, M.; Tatsuishi, T.H. A4 lepton flavor model and modulus stabilization from S4 modular symmetry. Phys. Rev. D 2019, 100, 115045, Erratum in Phys. Rev. D 2020, 101, 039904. [Google Scholar] [CrossRef]
- Asaka, T.; Heo, Y.; Tatsuishi, T.H.; Yoshida, T. Modular A4 invariance and leptogenesis. J. High Energy Phys. 2020, 2020, 144. [Google Scholar] [CrossRef]
- Ding, G.J.; King, S.F.; Liu, X.G.; Lu, J.N. Modular S4 and A4 symmetries and their fixed points: New predictive examples of lepton mixing. J. High Energy Phys. 2019, 2019, 30. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shimizu, Y.; Takagi, K.; Tanimoto, M.; Tatsuishi, T.H.; Uchida, H. CP violation in modular invariant flavor models. Phys. Rev. D 2020, 101, 055046. [Google Scholar] [CrossRef]
- Ding, G.J.; Feruglio, F. Testing Moduli and Flavon Dynamics with Neutrino Oscillations. J. High Energy Phys. 2020, 2020, 134. [Google Scholar] [CrossRef]
- Liu, X.G.; Yao, C.Y.; Qu, B.Y.; Ding, G.J. Half-integral weight modular forms and application to neutrino mass models. Phys. Rev. D 2020, 102, 115035. [Google Scholar] [CrossRef]
- Ding, G.J.; Feruglio, F.; Liu, X.G. Automorphic Forms and Fermion Masses. J. High Energy Phys. 2021, 2021, 37. [Google Scholar] [CrossRef]
- Yao, C.Y.; Liu, X.G.; Ding, G.J. Fermion masses and mixing from the double cover and metaplectic cover of the A5 modular group. Phys. Rev. D 2021, 103, 095013. [Google Scholar] [CrossRef]
- Novichkov, P. Aspects of the Modular Symmetry Approach to Lepton Flavour. Ph.D. Thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, 2021. [Google Scholar]
- Kikuchi, S.; Kobayashi, T.; Uchida, H. Modular flavor symmetries of three-generation modes on magnetized toroidal orbifolds. Phys. Rev. D 2021, 104, 065008. [Google Scholar] [CrossRef]
- Liu, X.G.; Ding, G.J. Modular flavor symmetry and vector-valued modular forms. J. High Energy Phys. 2022, 2022, 123. [Google Scholar] [CrossRef]
- Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E. Nonperturbative Effects on the String World Sheet. Nucl. Phys. B 1986, 278, 769–789. [Google Scholar] [CrossRef]
- Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E. Nonperturbative Effects on the String World Sheet. 2. Nucl. Phys. B 1987, 289, 319–363. [Google Scholar] [CrossRef]
- Cvetič, M. Suppression of Nonrenormalizable Terms in the Effective Superpotential for (Blownup) Orbifold Compactification. Phys. Rev. Lett. 1987, 59, 1795. [Google Scholar] [CrossRef] [PubMed]
- Font, A.; Ibáñez, L.E.; Lüst, D.; Quevedo, F. Supersymmetry Breaking From Duality Invariant Gaugino Condensation. Phys. Lett. B 1990, 245, 401–408. [Google Scholar] [CrossRef]
- Nilles, H.P.; Olechowski, M. Gaugino Condensation and Duality Invariance. Phys. Lett. B 1990, 248, 268–272. [Google Scholar] [CrossRef]
- Novichkov, P.P.; Penedo, J.T.; Petcov, S.T. Modular Flavour Symmetries and Modulus Stabilisation. arXiv 2022, arXiv:hep-ph/2201.02020. [Google Scholar] [CrossRef]
- Okada, H.; Tanimoto, M. Modular invariant flavor model of A4 and hierarchical structures at nearby fixed points. Phys. Rev. D 2021, 103, 015005. [Google Scholar] [CrossRef]
- Feruglio, F.; Gherardi, V.; Romanino, A.; Titov, A. Modular invariant dynamics and fermion mass hierarchies around τ=i. J. High Energy Phys. 2021, 2021, 242. [Google Scholar] [CrossRef]
- Novichkov, P.P.; Penedo, J.T.; Petcov, S.T. Fermion mass hierarchies, large lepton mixing and residual modular symmetries. J. High Energy Phys. 2021, 2021, 206. [Google Scholar] [CrossRef]
- Chen, M.C.; Ramos-Sánchez, S.; Ratz, M. A note on the predictions of models with modular flavor symmetries. Phys. Lett. B 2020, 801, 135153. [Google Scholar] [CrossRef]
- Chen, M.C.; Knapp-Pérez, V.; Ramos-Hamud, M.; Ramos-Sánchez, S.; Ratz, M.; Shukla, S. Quasi-eclectic modular flavor symmetries. Phys. Lett. B 2022, 824, 136843. [Google Scholar] [CrossRef]
- Cremades, D.; Ibáñez, L.E.; Marchesano, F. Computing Yukawa couplings from magnetized extra dimensions. J. High Energy Phys. 2004, 2004, 79. [Google Scholar] [CrossRef]
- Cremades, D.; Ibáñez, L.E.; Marchesano, F. Yukawa couplings in intersecting D-brane models. J. High Energy Phys. 2003, 2003, 38. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagamoto, S.; Uemura, S. Modular symmetry in magnetized/intersecting D-brane models. Prog. Theor. Exp. Phys. 2017, 2017, 023B02. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagamoto, S.; Takada, S.; Tamba, S.; Tatsuishi, T.H. Modular symmetry and non-Abelian discrete flavor symmetries in string compactification. Phys. Rev. D 2018, 97, 116002. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tamba, S. Modular forms of finite modular subgroups from magnetized D-brane models. Phys. Rev. D 2019, 99, 046001. [Google Scholar] [CrossRef]
- Kariyazono, Y.; Kobayashi, T.; Takada, S.; Tamba, S.; Uchida, H. Modular symmetry anomaly in magnetic flux compactification. Phys. Rev. D 2019, 100, 045014. [Google Scholar] [CrossRef]
- Ohki, H.; Uemura, S.; Watanabe, R. Modular flavor symmetry on a magnetized torus. Phys. Rev. D 2020, 102, 085008. [Google Scholar] [CrossRef]
- Kikuchi, S.; Kobayashi, T.; Takada, S.; Tatsuishi, T.H.; Uchida, H. Revisiting modular symmetry in magnetized torus and orbifold compactifications. Phys. Rev. D 2020, 102, 105010. [Google Scholar] [CrossRef]
- Kikuchi, S.; Kobayashi, T.; Otsuka, H.; Takada, S.; Uchida, H. Modular symmetry by orbifolding magnetized T2×T2: Realization of double cover of ΓN. J. High Energy Phys. 2020, 2020, 101. [Google Scholar] [CrossRef]
- Almumin, Y.; Chen, M.C.; Knapp-Pérez, V.; Ramos-Sánchez, S.; Ratz, M.; Shukla, S. Metaplectic Flavor Symmetries from Magnetized Tori. J. High Energy Phys. 2021, 2021, 78. [Google Scholar] [CrossRef]
- Tatsuta, Y. Modular symmetry and zeros in magnetic compactifications. J. High Energy Phys. 2021, 2021, 54. [Google Scholar] [CrossRef]
- Kikuchi, S.; Kobayashi, T.; Nasu, K.; Uchida, H.; Uemura, S. Modular symmetry anomaly and non-perturbative neutrino mass terms in magnetized orbifold models. arXiv 2022, arXiv:hep-th/2202.05425. [Google Scholar]
- Lauer, J.; Mas, J.; Nilles, H.P. Duality and the Role of Nonperturbative Effects on the World Sheet. Phys. Lett. B 1989, 226, 251–256. [Google Scholar] [CrossRef]
- Lauer, J.; Mas, J.; Nilles, H.P. Twisted sector representations of discrete background symmetries for two-dimensional orbifolds. Nucl. Phys. B 1991, 351, 353–424. [Google Scholar] [CrossRef]
- Bailin, D.; Love, A. Orbifold compactifications of string theory. Phys. Rept. 1999, 315, 285–408. [Google Scholar] [CrossRef]
- Ramos-Sánchez, S. Towards Low Energy Physics from the Heterotic String. Fortsch. Phys. 2009, 10, 907–1036. [Google Scholar] [CrossRef]
- Vaudrevange, P.K.S. Grand Unification in the Heterotic Brane World. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2008. [Google Scholar]
- Nilles, H.P.; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, P.K.S. From strings to the MSSM. Eur. Phys. J. C 2009, 59, 249–267. [Google Scholar] [CrossRef]
- Kappl, R.; Petersen, B.; Raby, S.; Ratz, M.; Schieren, R.; Vaudrevange, P.K.S. String-Derived MSSM Vacua with Residual R Symmetries. Nucl. Phys. B 2011, 847, 325–349. [Google Scholar] [CrossRef]
- Nilles, H.P.; Vaudrevange, P.K.S. Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics. Mod. Phys. Lett. A 2015, 30, 1530008. [Google Scholar] [CrossRef]
- Parr, E.; Vaudrevange, P.K.S. Contrast data mining for the MSSM from strings. Nucl. Phys. B 2020, 952, 114922. [Google Scholar] [CrossRef]
- Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Eclectic flavor scheme from ten-dimensional string theory—II detailed technical analysis. Nucl. Phys. B 2021, 966, 115367. [Google Scholar] [CrossRef]
- Baur, A.; Kade, M.; Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. The eclectic flavor symmetry of the Z2 orbifold. J. High Energy Phys. 2021, 2021, 18. [Google Scholar] [CrossRef]
- Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Eclectic flavor scheme from ten-dimensional string theory—I. Basic results. Phys. Lett. B 2020, 808, 135615. [Google Scholar] [CrossRef]
- Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Lessons from eclectic flavor symmetries. Nucl. Phys. B 2020, 957, 115098. [Google Scholar] [CrossRef]
- Baur, A.; Kade, M.; Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Completing the eclectic flavor scheme of the Z2 orbifold. J. High Energy Phys. 2021, 2021, 110. [Google Scholar] [CrossRef]
- Baur, A.; Nilles, H.P.; Ramos-Sánchez, S.; Trautner, A.; Vaudrevange, P.K.S. Top-down anatomy of flavor symmetry breakdown. Phys. Rev. D 2022, 105, 055018. [Google Scholar] [CrossRef]
- Baur, A.; Nilles, H.P.; Ramos-Sánchez, S.; Trautner, A.; Vaudrevange, P.K.S. The first string-derived eclectic flavor model with realistic phenomenology. J. High Energy Phys. 2022, 09, 224. [Google Scholar] [CrossRef]
- Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K. Eclectic Flavor Groups. J. High Energy Phys. 2020, 2020, 45. [Google Scholar] [CrossRef]
- Blaszczyk, M.; Groot Nibbelink, S.; Loukas, O.; Ramos-Sánchez, S. Non-supersymmetric heterotic model building. J. High Energy Phys. 2014, 2014, 119. [Google Scholar] [CrossRef]
- Ashfaque, J.M.; Athanasopoulos, P.; Faraggi, A.E.; Sonmez, H. Non-Tachyonic Semi-Realistic Non-Supersymmetric Heterotic String Vacua. Eur. Phys. J. C 2016, 76, 208. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R.; Mavroudi, E. Towards a nonsupersymmetric string phenomenology. Phys. Rev. D 2015, 91, 126014. [Google Scholar] [CrossRef]
- Pérez-Martínez, R.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Landscape of promising nonsupersymmetric string models. Phys. Rev. D 2021, 104, 046026. [Google Scholar] [CrossRef]
- Groot Nibbelink, S.; Loukas, O.; Mütter, A.; Parr, E.; Vaudrevange, P.K.S. Tension Between a Vanishing Cosmological Constant and Non-Supersymmetric Heterotic Orbifolds. Fortsch. Phys. 2020, 68, 2000044. [Google Scholar] [CrossRef]
without SK atmospheric data | Normal Ordering (best fit) | Inverted Ordering () | |||
bfp | range | bfp | range | ||
with SK atmospheric data | Normal Ordering (best fit) | Inverted Ordering () | |||
bfp | range | bfp | range | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almumin, Y.; Chen, M.-C.; Cheng, M.; Knapp-Pérez, V.; Li, Y.; Mondol, A.; Ramos-Sánchez, S.; Ratz, M.; Shukla, S.
Neutrino Flavor Model Building and the Origins of Flavor and
Almumin Y, Chen M-C, Cheng M, Knapp-Pérez V, Li Y, Mondol A, Ramos-Sánchez S, Ratz M, Shukla S.
Neutrino Flavor Model Building and the Origins of Flavor and
Almumin, Yahya, Mu-Chun Chen, Murong Cheng, Víctor Knapp-Pérez, Yulun Li, Adreja Mondol, Saúl Ramos-Sánchez, Michael Ratz, and Shreya Shukla.
2023. "Neutrino Flavor Model Building and the Origins of Flavor and
Almumin, Y., Chen, M. -C., Cheng, M., Knapp-Pérez, V., Li, Y., Mondol, A., Ramos-Sánchez, S., Ratz, M., & Shukla, S.
(2023). Neutrino Flavor Model Building and the Origins of Flavor and