Kilonova Emission and Heavy Element Nucleosynthesis
Abstract
:1. Mergers of Binary Compact Star Systems
2. Aftermath of a Binary Merger Containing a Neutron Star
3. Kilonovae
4. The Gravitational Event of 17 August 2017
5. The Non-Thermal Source Associated with GW170817
6. The Kilonova AT2017gfo Associated with GW170817
7. The Host Galaxy of GW170817
8. Conclusions and Future Prospects
Funding
Data Availability Statement
Conflicts of Interest
1 | https://astro.ru.nl/blackgem/, accessed on 16 February 2023. |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relat. 2018, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Kruckow, M.U.; Tauris, T.M.; Langer, N.; Kramer, M.; Izzard, R.G. Progenitors of gravitational wave mergers: Binary evolution with the stellar grid-based code COMBINE. Mon. Not. R. Astron. Soc. 2018, 481, 1908–1949. [Google Scholar] [CrossRef]
- Santoliquido, F.; Mapelli, M.; Giacobbo, N.; Bouffanais, Y.; Artale, M.C. The cosmic merger rate density of compact objects: Impact of star formation, metallicity, initial mass function, and binary evolution. Mon. Not. R. Astron. Soc. 2021, 502, 4877–4889. [Google Scholar] [CrossRef]
- Belczynski, K.; Romagnolo, A.; Olejak, A.; Klencki, J.; Chattopadhyay, D.; Stevenson, S.; Coleman Miller, M.; Lasota, J.-P.; Crowther, P.A. The Uncertain Future of Massive Binaries Obscures the Origin of LIGO/Virgo Sources. Astrophys. J. 2022, 925, 69. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Taylor, J.H.; Weisberg, J.M. A new test of general relativity-gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 1982, 253, 908. [Google Scholar] [CrossRef]
- van den Heuvel, E.P.J. Formation of Double Neutron Stars, Millisecond Pulsars and Double Black Holes. J. Astrophys. Astron. 2017, 38, 45. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.G.; Stovall, K.; Freire, P.C.C.; Deneva, J.S.; Tauris, T.M.; Ridolfi, A.; Wex, N.; Jenet, F.A.; McLaughlin, M.A.; Bagchi, M. Pulsar J1411+2551: A low-mass double neutron star system. Astrophys. J. 2017, 851, L29. [Google Scholar] [CrossRef] [Green Version]
- Tauris, M.T.; Kramer, M.; Freire, P.C.C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, P.; Bozzo, E.; Chaty, S.; Kruckow, M.U.; et al. Formation of double neutron star systems. Astrophys. J. 2017, 846, 170. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, N.; Cannizzo, J.K.; Kanner, J.; Kasliwal, M.M.; Nissanke, S.; Singer, L.P. Galaxy Strategy for LIGO-Virgo Gravitational Wave Counterpart Searches. Astrophys. J. 2016, 820, 136. [Google Scholar] [CrossRef]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Rosswog, S.; Liebendoerfer, M.; Thielemann, F.-K.; Davies, M.B.; Benz, W.; Piran, T. Mass ejection in neutron star mergers. Astron. Astrophys. 1999, 341, 499–526. [Google Scholar]
- Li, L.-X.; Paczyński, B. Transient Events from Neutron Star Mergers. Astrophys. J. 1998, 507, L59–L62. [Google Scholar] [CrossRef] [Green Version]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J. 1993, 413, L101–L104. [Google Scholar] [CrossRef]
- Lazzati, D.; Ramirez-Ruiz, E.; Ghisellini, G. Possible detection of hard X-ray afterglows of short gamma-ray bursts. Astron. Astrophys. 2001, 379, L39–L43. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Schramm, D.N. Black-hole-neutron-star collisions. Astrophys. J. 1974, 192, L145. [Google Scholar] [CrossRef]
- Freiburghaus, C.; Rosswog, S.; Thielemann, F.-K. R-process in neutron star mergers. Astrophys. J. 1999, 525, L121. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Temis, J.; Wu, M.-R.; Langanke, K.; Martínez-Pinedo, G.; Bauswein, A.; Janka, H.-T. Nuclear robustness of the r process in neutron-star mergers. Phys. Rev. C 2015, 92, 055805. [Google Scholar] [CrossRef] [Green Version]
- Kajino, T.; Aoki, W.; Balantekin, A.B.; Diehl, R.; Famiano, M.A.; Mathews, G.J. Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys. 2019, 107, 109. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D. Kilonovae. Living Rev. Relat. 2020, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.-K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Siegel, D.; Barnes, J.; Metzger, B.D. Collapsars as a major source of r-process elements. Nature 2019, 569, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, D. r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. Nat. Rev. Phys. 2022, 2022 4, 306–318. [Google Scholar] [CrossRef]
- Zenati, Y.; Siegel, D.M.; Metzger, B.D.; Perets, H.B. Nuclear burning in collapsar accretion discs. Mon. Not. R. Astron. Soc. 2020, 499, 4097–4113. [Google Scholar] [CrossRef]
- Metzger, B.D.; Fernández, R. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. R. Astron. Soc. 2014, 441, 3444–3453. [Google Scholar] [CrossRef] [Green Version]
- Kasen, D.; Fernández, R.; Metzger, B.D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 2015, 450, 1777–1786. [Google Scholar] [CrossRef]
- Berger, E.; Fong, W.; Chornock, R. An r-process Kilonova Associated with the Short-hard GRB 130603B. Astrophys. J. 2014, 774, L23. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.R.; Levan, A.J.; Fruchter, A.S.; Hjorth, J.; Hounsell, R.A.; Wiersema, K.; Tunnicliffe, R.L. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 2013, 500, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.-P.; Li, X.; Cano, Z.; Covino, S.; Fan, Y.-Z.; Wei, D.-M. The Light Curve of the Macronova Associated with the Long-Short Burst GRB 060614. Astrophys. J. 2015, 811, L22. [Google Scholar] [CrossRef]
- Jin, Z.-P.; Hotokezaka, K.; Li, X.; Tanaka, M.; D’Avanzo, P.; Fan, Y.-Z.; Covino, S.; Wei, D.-M.; Piran, T. The Macronova in GRB 050709 and the GRB-macronova connection. Nat. Comm. 2016, 7, 12898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.J.-L.; Diehl, R.; Domingo, A.; et al. Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 2017, 848, L15. [Google Scholar] [CrossRef] [Green Version]
- Beniamini, P.; Duran, R.B.; Petropoulou, M.; Giannios, D. Ready, Set, Launch: Time Interval between a Binary Neutron Star Merger and Short Gamma-Ray Burst Jet Formation. Astrophys. J. 2020, 895, L33. [Google Scholar] [CrossRef]
- Coulter, D.A.; Foley, R.J.; Kilpatrick, C.D.; Drout, M.R.; Piro, A.L.; Shappee, B.J.; Siebert, M.R.; Simon, J.D.; Ulloa, N.; Kasen, D.; et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 2017, 358, 1556. [Google Scholar] [CrossRef] [Green Version]
- Levan, A.J.; Lyman, J.D.; Tanvir, N.R.; Hjorth, J.; Mandel, I.; Stanway, E.R.; Steeghs, D.; Fruchter, A.S.; Troja, E.; Schrøder, S.L.; et al. The Environment of the Binary Neutron Star Merger GW170817. Astrophys. J. 2017, 848, L28. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef]
- Kasliwal, M.M.; Nakar, E.; Singer, L.P.; Kaplan, D.L.; Cook, D.O.; Van Sistine, A.; Lau, R.M.; Fremling, C.; Gottlieb, O.; Jencson, J.E.; et al. Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 2017, 358, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar]
- Pian, E. Binary neutron star mergers: A multi-messenger revolution. Front. Astron. Space Sci. 2021, 7, 108. [Google Scholar] [CrossRef]
- Margutti, R.; Chornock, R. First Multimessenger Observations of a Neutron Star Merger. Annu. Rev. Astron. Astrophys. 2021, 59, 155–202. [Google Scholar] [CrossRef]
- Janka, H.-T.; Aloy, M.-A.; Mazzali, P.A.; Pian, E. Off-Axis Properties of Short Gamma-Ray Bursts. Astrophys. J. 2006, 645, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Berger, E. Short-Duration Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef] [Green Version]
- Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R.T.; Im, M.; Fox, O.D.; Butler, N.R.; Cenko, S.B.; Sakamoto, T.; Fryer, C.L.; et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 2017, 551, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Hallinan, G.; Corsi, A.; Mooley, K.P.; Hotokezaka, K.; Nakar, E.; Kasliwal, M.M.; Kaplan, D.L.; Frail, D.A.; Myers, S.T.; Murphy, T.; et al. A radio counterpart to a neutron star merger. Science 2017, 358, 1579. [Google Scholar] [CrossRef] [Green Version]
- Mooley, K.; Deller, A.T.; Gottlieb, O.; Nakar, E.; Hallinan, G.; Bourke, S.; Frail, D.A.; Horesh, A.; Corsi, A.; Hotokezaka, K. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 2018, 561, 355. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Salafia, O.S.; Paragi, Z.; Giroletti, M.; Yang, J.; Marcote, B.; Blanchard, J.; Agudo, I.; An, T.; Bernardini, M.G.; et al. Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 2019, 363, 968. [Google Scholar] [CrossRef] [Green Version]
- Rosswog, S.; Sollerman, J.; Feindt, U.; Goobar, A.; Korobkin, O.; Wollaeger, R.; Fremling, C.; Kasliwal, M.M. The first direct double neutron star merger detection: Implications for cosmic nucleosynthesis. Astron. Astrophys. 2018, 615, A132. [Google Scholar] [CrossRef] [Green Version]
- Shappee, B.J.; Simon, J.D.; Drout, M.R.; Piro, A.L.; Morrell, N.; Prieto, J.L.; Kasen, D.; Holoien, T.W.-S.; Kollmeier, J.A.; Kelson, D.D.; et al. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science 2017, 358, 1574. [Google Scholar] [PubMed] [Green Version]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369. [Google Scholar] [CrossRef]
- Gillanders, J.H.; McCann, M.; Sim, S.A.; Smartt, S.J.; Ballance, C.P. Constraints on the presence of platinum and gold in the spectra of the kilonova AT2017gfo. Mon. Not. R. Astron. Soc. 2021, 506, 3560–3577. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Wollaeger, R.T.; Mumpower, M.R.; Sprouse, T.M. Actinide opacities for modelling the spectra and light curves of kilonovae. Mon. Not. R. Astron. Soc. 2023, 519, 2862–2878. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 2017, 551, 80. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Utsumi, Y.; Mazzali, P.A.; Tominaga, N.; Yoshida, M.; Sekiguchi, Y.; Morokuma, T.; Motohara, K.; Ohta, K.; Kawabata, K.S.; et al. Kilonova from post-merger ejecta as an optical and near-infrared counterpart of GW170817. Publ. Astron. Soc. Jpn. 2017, 69, 102. [Google Scholar] [CrossRef]
- Gillanders, J.H.; Smartt, S.J.; Sim, S.A.; Bauswein, A.; Goriely, S. Modelling the spectra of the kilonova AT2017gfo–I. The photospheric epochs. Mon. Not. R. Astron. Soc. 2022, 515, 631–651. [Google Scholar] [CrossRef]
- Watson, D.; Hansen, C.J.; Selsing, J.; Koch, A.; Malesani, D.B.; Andersen, A.C.; Fynbo, J.P.U.; Arcones, A.; Bauswein, A.; Covino, S.; et al. Identification of strontium in the merger of two neutron stars. Nature 2019, 574, 497. [Google Scholar] [CrossRef] [Green Version]
- Roberts, L.F.; Lippuner, J.; Duez, M.D.; Faber, J.A.; Foucart, F.; Lombardi, J.C., Jr.; Ning, S.; Ott, C.D.; Ponce, M. The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 2017, 464, 3907–3919. [Google Scholar] [CrossRef] [Green Version]
- Thielemann, F.-K.; Eichler, M.; Panov, I.V.; Wehmeyer, B. Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part Sci. 2017, 67, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Just, O.; Janka, H.-T.; Stergioulas, N. Neutron-star radius constraints from GW170817 and future detections. Astrophys. J. 2017, 850, L34. [Google Scholar] [CrossRef] [Green Version]
- Domoto, N.; Tanaka, M.; Wanajo, S.; Kawaguchi, K. Signatures of r-process Elements in Kilonova Spectra. Astrophys. J. 2021, 913, 26. [Google Scholar] [CrossRef]
- Villar, V.A.; Cowperthwaite, P.S.; Berger, E.; Blanchard, P.K.; Gomez, S.; Alexander, K.D.; Margutti, R.; Chornock, R.; Eftekhari, T.; Fazio, G.G.; et al. Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817. Astrophys. J. 2018, 862, L11. [Google Scholar] [CrossRef]
- Kasliwal, M.M.; Kasen, D.; Lau, R.M.; Perley, D.A.; Rosswog, S.; Ofek, E.O.; Hotokezaka, K.; Chary, R.-R.; Sollerman, J.; Goobar, A.; et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon. Not. R. Astron. Soc. 2022, 510, L7–L12. [Google Scholar] [CrossRef] [Green Version]
- Hotokezaka, K.; Tanaka, M.; Kato, D.; Gaigalas, G. Tungsten versus Selenium as a potential source of kilonova nebular emission observed by Spitzer. Mon. Not. R. Astron. Soc. 2022, 515, L89–L93. [Google Scholar] [CrossRef]
- Gompertz, B.P.; Levan, A.J.; Tanvir, N.R.; Hjorth, J.; Covino, S.; Evans, P.A.; Fruchter, A.S.; González-Fernández, C.; Jin, Z.P.; Lyman, J.D.; et al. The Diversity of Kilonova Emission in Short Gamma-Ray Bursts. Astrophys. J. 2018, 860, 62. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.; Stratta, G.; Maiorano, E.; Spighi, D.; Masetti, N.; Palazzi, E.; Gardini, A.; Melandri, A.; Nicastro, L.; Pian, E.; et al. A comparison between short GRB afterglows and kilonova AT2017gfo: Shedding light on kilonovae properties. Mon. Not. R. Astron. Soc. 2020, 493, 3379–3397. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.-P.; Covino, S.; Liao, N.-H.; Li, X.; D’Avanzo, P.; Fan, Y.-Z.; Wei, D.-M. A kilonova associated with GRB 070809. Nature Astr. 2020, 4, 77–82. [Google Scholar] [CrossRef]
- Hajela, A.; Margutti, R.; Bright, J.S.; Alexander, K.D.; Metzger, B.D.; Nedora, V.; Kathirgamaraju, A.; Margalit, B.; Radice, D.; Guidorzi, C.; et al. Evidence for X-Ray Emission in Excess to the Jet-afterglow Decay 3.5 yr after the Binary Neutron Star Merger GW 170817: A New Emission Component. Astrophys. J. 2022, 927, L17. [Google Scholar] [CrossRef]
- Fong, W.; Blanchard, P.K.; Alexander, K.D.; Strader, J.; Margutti, R.; Hajela, A.; Villar, V.A.; Wu, Y.; Ye, C.S.; Berger, E.; et al. The Optical Afterglow of GW170817: An Off-axis Structured Jet and Deep Constraints on a Globular Cluster Origin. Astrophys. J. 2019, 883, L1. [Google Scholar] [CrossRef] [Green Version]
- Stevance, H.F.; Eldridge, J.J.; Stanway, E.R.; Lyman, J.; McLeod, A.F.; Levan, A.J. End-to-end study of the home and genealogy of the first binary neutron star merger. Nat. Astr. 2023; in press. arXiv:2301.05236. [Google Scholar] [CrossRef]
- Wollaeger, R.T.; Korobkin, O.; Fontes, C.J.; Rosswog, S.K.; Even, W.P.; Fryer, C.L.; Sollerman, J.; Hungerford, A.L.; van Rossum, D.R.; Wollaber, A.B. Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Mon. Not. R. Astron. Soc. 2018, 478, 3298–3334. [Google Scholar] [CrossRef]
- Kobayashi, C.; Mandel, I.; Belczynski, K.; Goriely, S.; Janka, H.-T.; Just, O.; Ruiter, A.J.; Vanbeveren, D.; Kruckow, M.U.; Briel, M.M.; et al. Can neutron star mergers alone explain the r-process enrichment of the Milky Way? Astrophys. J. 2023, 943, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of a compact binary coalescence with total mass ∼3.4 M⊙. Astrophys. J. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. 2020, 896, L44. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences. Astrophys. J. 2021, 915, L5. [Google Scholar] [CrossRef]
- Pozanenko, A.S.; Minaev, P.Y.; Grebenev, S.A.; Chelovekov, I.V. Observation of the second LIGO/Virgo event connected with a binary neutron star merger S190425z in the gamma-ray range. Astrophys. Lett. 2019, 45, 710. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. The population of merging compact binaries inferred using gravitational waves through GWTC-3. arXiv 2021, arXiv:2111.03634. [Google Scholar]
- Arcavi, I.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; Poznanski, D.; Kasen, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 2017, 551, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.; Frederiks, D.D.; Kann, D.A.; De Pasquale, M.; Pian, E.; Lamb, G.; D’Avanzo, P.; Izzo, L.; Levan, A.J.; Malesani, D.B.; et al. A blast from the infant Universe: The very high-z GRB 210905A. Astron. Astrophys. 2022, 665, A125. [Google Scholar] [CrossRef]
- Zerbi, F.M.; Chincarini, G.; Rodonó, M.; Ghisellini, G.; Antonelli, A.; Conconi, P.; Covino, S.; Cutispoto, G.; Molinari, E. REM—Rapid Eye Mount. A Fast Slewing Robotized Telescope to Monitor the Prompt Infra-Red Afterglow of GRBs. In Scientific Drivers for ESO Future VLT/VLTI Instrumentation, Proceedings of the ESO Workshop Held in Garching, Germany, 11–15 June 2001; ESO Astrophysics Symposia; Bergeron, J., Monnet, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 42–47. ISBN 3-540-43755-X. [Google Scholar]
- Dyer, M.J.; Dhillon, V.S.; Littlefair, S.; Steeghs, D.; Ulaczyk, K.; Chote, P.; Galloway, D.; Rol, E. A telescope control and scheduling system for the Gravitational-wave Optical Transient Observer (GOTO). Proc. SPIE 2018, 10704, 107040C. [Google Scholar]
- Gompertz, B.P.; Cutter, R.; Steeghs, D.; Galloway, D.K.; Lyman, J.; Ulaczyk, K.; Dyer, M.J.; Ackley, K.; Dhillon, V.S.; O’Brien, P.T.; et al. Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4). Mon. Not. R. Astron. Soc. 2020, 497, 726–738. [Google Scholar] [CrossRef]
- Bloemen, S.; Groot, P.; Woudt, P.; Klein Wolt, M.; McBride, V.; Nelemans, G.; Körding, E.; Pretorius, M.L.; Roelfsema, R.; Bettonvil, F.; et al. MeerLICHT and BlackGEM: Custom-built telescopes to detect faint optical transients. Proc. SPIE 2016, 9906, 990664. [Google Scholar]
- Chase, E.A.; O’Connor, B.; Fryer, C.L.; Troja, E.; Korobkin, O.; Wollaeger, R.T.; Ristic, M.; Fontes, C.J.; Hungerford, A.L.; Herring, A.M. Kilonova Detectability with Wide-field Instruments. Astrophys. J. 2022, 927, 163. [Google Scholar] [CrossRef]
- Ben-Ami, S.; Shvartzvald, Y.; Waxman, E.; Netzer, U.; Yaniv, Y.; Algranatti, V.M.; Gal-Yam, A.; Lapid, O.; Ofek, E.; Topaz, J.; et al. The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT). Proc. SPIE 2022, 12181, 1218105. [Google Scholar]
- Mazzali, P.A.; Nomoto, K.; Patat, F.; Maeda, K. The Nebular Spectra of the Hypernova SN 1998bw and Evidence for Asymmetry. Astrophys. J. 2001, 559, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Jerkstrand, A.; Smartt, S.J.; Heger, A. Nebular spectra of pair-instability supernovae. Mon. Not. R. Astron. Soc. 2016, 455, 3207–3229. [Google Scholar] [CrossRef]
- Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P.K.; Jerkstrand, A.; Smartt, S.J.; Arcavi, I.; Challis, P.; Chambers, K.C.; et al. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star. Astrophys. J. 2016, 828, L18. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, P.A.; Ashall, C.; Pian, E.; Stritzinger, M.D.; Gall, C.; Phillips, M.M.; Höflich, P.; Hsiao, E. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: Broad, multiple components indicate aspherical explosion cores. Mon. Not. R. Astron. Soc. 2018, 476, 2905–2917. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, G.; et al. The THESEUS space mission concept: Science case, design and expected performances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar]
- Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F.E.; Benetti, S.; Bernardini, M.G.; Bhirombhakdi, K.; Botticella, M.T.; Branchesi, M.; Brocato, E.; et al. Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astron. Astrophys. 2020, 643, A113. [Google Scholar] [CrossRef]
- Domoto, N.; Tanaka, M.; Kato, D.; Kawaguchi, K.; Hotokezaka, K.; Wanajo, S. Lanthanide Features in Near-infrared Spectra of Kilonovae. Astrophys. J. 2022, 939, 8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pian, E. Kilonova Emission and Heavy Element Nucleosynthesis. Universe 2023, 9, 105. https://doi.org/10.3390/universe9020105
Pian E. Kilonova Emission and Heavy Element Nucleosynthesis. Universe. 2023; 9(2):105. https://doi.org/10.3390/universe9020105
Chicago/Turabian StylePian, Elena. 2023. "Kilonova Emission and Heavy Element Nucleosynthesis" Universe 9, no. 2: 105. https://doi.org/10.3390/universe9020105
APA StylePian, E. (2023). Kilonova Emission and Heavy Element Nucleosynthesis. Universe, 9(2), 105. https://doi.org/10.3390/universe9020105