The Impact of GRBs on Exoplanetary Habitability
Abstract
:1. Introduction
2. Life-Threatening High-Energy Transients
3. Ozone Depletion and Critical Distance to High-Energy Transients
- NO+O→ NO+O;
- −
- NO+O → NO+O;
- *
- N+O→ NO+O;
- ·
- N+NO→ N+O.
4. Galactic Habitability
5. Lethal Transient Rate
5.1. High-Energy Transient Events
5.2. Galactic Model and Environmental Factors
5.3. Terrestrial Planet Formation
6. Milky Way Habitability
7. Discussion
8. Cosmic Habitability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GRB | Gamma ray burst |
MW | Milky Way |
kJ | Kilojoule |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
UV | Ultra violet |
SFR | Star formation rate |
SN | Supernova |
CDM | Cold dark matter |
ME | Mass extinction |
TNT | Trinitrotoluene |
GHZ | Galactic habitable zone |
TP | Terrestrial planet |
HJ | Hot Jupiter |
1 | https://exoplanetarchive.ipac.caltech.edu/, accessed on 20 December 2022. |
2 | This value corresponds to the so-called isotropic equivalent energy. |
3 | Thomas & Goracke [79] estimated that the low altitude O production is not detrimental to the biosphere. |
4 | Such effects would be enhanced at low latitudes, owing to the Earth’s inclination. |
5 | In their work, Piran & Jimenez [35] assumed an average reduction factor for long-GRB high-metallicity aversion. |
6 | Gonzalez et al. [66] defined the GHZ by considering primarily the physical conditions for the formation of Earth-like planets. |
7 | Spinelli et al. [50] followed a similar approach by developing a semi-analytical model and including the combined effects of GRBs and SNe. This work will be described in detail in the following sections. |
8 | In dealing with the MW properties, we used the redshift z, which corresponds to the cosmic time as the coordinate expressing the evolution of the galaxy. This was motivated by the use of the z coordinate to express other properties, such as the GRB cosmic rate, often expressed as a function of z. |
9 | This assumption states the absence of a possible evolution of the source luminosity with the redshift. This is a debated topic and recent findings, such as those of Ghirlanda & Salvaterra [56], seem to suggest this may not hold. |
References
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.G.; Dunham, E.W.; Jenkins, J.M. Planets Beyond the Solar System and the Next Generation of Space Missions. ASP Conf. Ser. 1997, 119, 153. [Google Scholar]
- Bonfils, X.; Delfosse, X.; Udry, S.; Forveille, T.; Mayor, M.; Perrier, C.; Bouchy, F.; Gillon, M.; Lovis, C.; Pepe, F. The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. Astron. Astrophys. 2013, 549, A109. [Google Scholar] [CrossRef]
- Dressing, C.D.; Charbonneau, D. The Occurrence rate of small planets around small stars. Astrophys. J. 2013, 767, 95. [Google Scholar] [CrossRef] [Green Version]
- Dressing, C.D.; Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and and empirical measurement of the detection sensitivity. Astrophys. J. 2015, 807, 45. [Google Scholar] [CrossRef] [Green Version]
- Tuomi, M.; Jones, H.R.A.; Barnes, J.R.; Anglada-Escudé, G.; Jenkins, J.S. Bayesian search for low-mass planets around nearby M dwarfs—Estimates for occurrence rate based on global detectability statistics. Mon. Not. R. Astron. Soc. 2014, 441, 1545. [Google Scholar] [CrossRef] [Green Version]
- Bochanski, J.J.; Hawley, S.L.; Covey, K.R.; West, A.A.; Reid, I.N.; Golimowski, D.A.; Ivezić, Z. The luminosity and mass functions of low-mass stars in the galactic disk. II. The field. Astrophys. J. 2010, 139, 2679. [Google Scholar] [CrossRef]
- Driscoll, P.E.; Barnes, R. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions. Astrobiology 2015, 15, 739. [Google Scholar] [CrossRef] [Green Version]
- Meadows, V.S.; Barnes, R.K. Factors affecting exoplanet habitability. In Handbook of Exoplanets; Springer: Berlin/Heidelberg, Germany, 2018; Volume 57. [Google Scholar] [CrossRef]
- Walker, J.C.G.; Hays, P.B.; Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 1981, 86, 9776. [Google Scholar] [CrossRef]
- Lenardic, A.; Hoeink, T.; Jellinek, M.; Johnson, C.L.; Cowan, N.B.; Pierrehumbert, R.; Stamenkovic, V.; O’Neill, C.; Dasgupta, R. AGU Fall Meeting Abstracts. 2014. Available online: https://agu.confex.com/agu/fm14/meetingapp.cgi/Paper/7564 (accessed on 13 November 2022).
- Pilat-Lohinger, E. The role of dynamics on the habitability of an Earth-like planet. Int. J. Astrobiol. 2015, 14, 145. [Google Scholar] [CrossRef]
- Segura, A. Star-planet interactions and habitability: Radiative effects. In Handbook of Exoplanets; Springer: Berlin/Heidelberg, Germany, 2018; Volume 73. [Google Scholar] [CrossRef]
- Haqq-Misra, J. Does the Evolution of Complex Life Depend on the Stellar Spectral Energy Distribution? Astrobiology 2019, 19, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wignall, P.B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 2001, 53, 1. [Google Scholar] [CrossRef]
- Self, S.; Widdowson, M.; Thordarson, T.; Jay, A.E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet. Sci. Lett. 2006, 248, 518. [Google Scholar] [CrossRef]
- Rampino, M.R. AGU Fall Meeting Abstracts. 2019. Available online: https://agu.confex.com/agu/fm19/webprogrampreliminary/Session75942.html (accessed on 13 November 2022).
- Li, D.J. The tectonic cause of mass extinctions and the genomic contribution to biodiversification. arXiv 2012, arXiv:1212.4229. [Google Scholar]
- Snakin, V.V. Lithospheric plate tectonics and mass extinctions of biological species. IOP Conf. Ser. Earth Environ. Sci. 2021, 946, 012009. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980, 208, 1095. [Google Scholar] [CrossRef] [Green Version]
- Covey, C. Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob. Planet. Chang. 1994, 9, 263. [Google Scholar] [CrossRef]
- Pope, K.O.; Baines, K.H.; Ocampo, A.C.; Ivanov, B.A. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth Planet. Sci. Lett. 1994, 128, 719. [Google Scholar] [CrossRef] [PubMed]
- Raup, D.M.; Sepkoski, J.J. Mass Extinctions in the Marine Fossil Record. Science 1982, 215, 1501. [Google Scholar] [CrossRef] [Green Version]
- Jablonski, D. Extinctions in the Fossil Record. Philos. Trans. R. Soc. Lond. Ser. B 1994, 344, 11. [Google Scholar]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51. [Google Scholar] [CrossRef] [PubMed]
- Sepkoski, J.J., Jr. A Compendium of Fossil Marine Animal Genera; Jablonski, D., Foote, M., Eds.; Bulletins of American Paleontology: Ithaca, NY, USA, 2002; Volume 363, 563p. [Google Scholar]
- Rohde, R.A.; Muller, R.A. Cycles in fossil diversity. Nature 2005, 434, 208. [Google Scholar] [CrossRef] [PubMed]
- Hallam, A. Evolution: The causes of mass extinctions. Nature 1984, 308, 686. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, A.R.; Penfield, G.T.; Kring, D.A.; Pilkington, M.; Camargo, Z.A.; Jacobsen, S.B.; Boynton, W.V. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 1991, 19, 867. [Google Scholar] [CrossRef]
- Courtillot, V.; Fluteau, F. Cretaceous extinctions: The volcanic hypothesis. Science 2010, 328, 973–974. [Google Scholar] [CrossRef]
- Ruderman, M.A. Possible Consequences of Nearby Supernova Explosions for Atmospheric Ozone and Terrestrial Life. Science 1974, 184, 1079. [Google Scholar] [CrossRef]
- Thorsett, S.E. Terrestrial Implications of Cosmological Gamma-Ray Burst Models. Astrophys. J. Lett. 1995, 444, L53. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, N.; Laird, C.M.; Jackman, C.H.; Cannizzo, J.K.; Mattson, B.J.; Chen, W. Ozone Depletion from Nearby Supernovae. Astrophys. J. 2003, 585, 1169. [Google Scholar] [CrossRef]
- Melott, A.L.; Thomas, B.C. Astrophysical ionizing radiation and Earth: A brief review and census of intermittent intense sources. Astrobiology 2011, 11, 343. [Google Scholar] [CrossRef]
- Piran, T.; Jimenez, R. Possible Role of Gamma Ray Bursts on Life Extinction in the Universe. Phys. Rev. Lett. 2014, 113, 231102. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Forcada, J.; Ribas, I.; Micela, G.; Pollock, A.M.T.; García-Álvarez, D.; Solano, E.; Eiroa, C. A scenario of planet erosion by coronal radiation. Astron. Astrophys. 2010, 511, L8. [Google Scholar] [CrossRef]
- Sagan, C. Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol. 1973, 39, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccino, A.P.; Lemarchand, G.A.; Mauas, P.J.D. UV habitable zones around M stars. Icarus 2007, 192, 582. [Google Scholar] [CrossRef] [Green Version]
- Toupance, G.; Bossard, A.; Raulin, F. Far UV irradiation of model prebiotic atmospheres. Orig. Life 1977, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239. [Google Scholar] [CrossRef]
- Ritson, D.; Sutherland, J.D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 2012, 4, 895. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ritson, D.J.; Ranjan, S.; Todd, Z.R.; Sasselov, D.D.; Sutherland, J.D. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide. Chem. Commun. 2018, 54, 44. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Xu, J.; Thompson, S.J.; Gillen, E.; Sutherland, J.D.; Queloz, D. The origin of RNA precursors on exoplanets. The origin of RNA precursors on exoplanets. Sci. Adv. 2018, 4, eaar3302. [Google Scholar] [CrossRef] [Green Version]
- Sepkoski, J.J. The Search for Extraterrestrial Life: Recent Developments. Int. Astron. Union Symp. 1985, 112, 223. [Google Scholar] [CrossRef] [Green Version]
- Raup, D.M. The role of extinction in evolution. Proc. Natl. Acad. Sci. USA 1994, 91, 6758–6763. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, D. Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. USA 2001, 98, 5393–5398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, A.Z.; Jablonski, D. Long-term origination rates are reset only at mass extinctions. Geology 2012, 40, 731. [Google Scholar] [CrossRef]
- Stroud, J.T.; Losos, J.N. Ecological Opportunity and Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 507–532. [Google Scholar] [CrossRef]
- Spinelli, R.; Ghirlanda, G.; Haardt, F.; Ghisellini, G.; Scuderi, G. The best place and time to live in the Milky Way. Astron. Astrophys. 2021, 647, A41. [Google Scholar] [CrossRef]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Firmani, C. Short versus long gamma-ray bursts: Spectra, energetics, and luminosities. Astron. Astrophys. 2009, 496, 585. [Google Scholar] [CrossRef]
- Wanderman, D.; Piran, T. The luminosity function and the rate of Swift’s gamma-ray bursts. Mon. Not. R. Astron. Soc. 2010, 406, 1944. [Google Scholar] [CrossRef] [Green Version]
- Wanderman, D.; Piran, T. The rate, luminosity function and time delay of non-Collapsar short GRBs. Mon. Not. R. Astron. Soc. 2015, 448, 3026. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Salafia, O.S.; Pescalli, A.; Ghisellini, G.; Salvaterra, R.; Chassande-Mottin, E.; Colpi, M.; Nappo, F.; D’Avanzo, P.; Melandri, A.; et al. Short gamma-ray bursts at the dawn of the gravitational wave era. Astron. Astrophys. 2016, 594, A84. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Salvaterra, R. The Cosmic History of Long Gamma-Ray Bursts. Astrophys. J. 2022, 932, 10. [Google Scholar] [CrossRef]
- Maoz, D.; Mannucci, F. Type-Ia Supernova Rates and the Progenitor Problem: A Review. Publ. Astron. Soc. Aust. 2012, 29, 447. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Leaman, J.; Chornock, R.; Filippenko, A.V.; Poznanski, D.; Ganeshalingam, M.; Wang, X.; Modjaz, M.; Jha, S.; Foley, R.J.; et al. Nearby supernova rates from the Lick Observatory Supernova Search—II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 2011, 412, 1441. [Google Scholar] [CrossRef]
- Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. How Massive Single Stars End Their Life. Astrophys. J. 2003, 591, 288. [Google Scholar] [CrossRef] [Green Version]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-C.; Langer, N.; Norman, C. Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron. Astrophys. 2006, 460, 199. [Google Scholar] [CrossRef]
- Vergani, S.D.; Salvaterra, R.; Japelj, J.; Le Floc’h, E.; D’Avanzo, P.; Fernandez-Soto, A.; Krühler, T.; Melandri, A.; Boissier, S.; Covino, S.; et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs. Astron. Astrophys. 2015, 581, A102. [Google Scholar] [CrossRef] [Green Version]
- Perley, D.A.; Tanvir, N.R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J.P.U.; Krühler, T.; Levan, A.; et al. The Swift GRB Host Galaxy Legacy Survey—II. Rest-Frame NIR Luminosity Distribution and Evidence for a Near-Solar Metallicity Threshold. Astrophys. J. 2016, 817, 8. [Google Scholar] [CrossRef] [Green Version]
- Palmerio, J.T.; Vergani, S.D.; Salvaterra, R.; Sanders, R.L.; Japelj, J.; Vidal-García, A.; D’Avanzo, P.; Corre, D.; Perley, D.A.; Shapley, A.E.; et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. Astron. Astrophys. 2019, 623, A26. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Heger, A. The Progenitor Stars of Gamma-Ray Bursts. Astrophys. J. 2006, 637, 914. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, G.; Brownlee, D.; Ward, P. The Galactic Habitable Zone: Galactic Chemical Evolution. Icarus 2001, 152, 185. [Google Scholar] [CrossRef]
- Fischer, D.A.; Valenti, J. The Planet-Metallicity Correlation. Astrophys. J. 2005, 622, 1102. [Google Scholar] [CrossRef]
- Lineweaver, C.H.; Fenner, Y.; Gibson, B.K. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way. Science 2004, 303, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zackrisson, E.; Calissendorff, P.; González, J.; Benson, A.; Johansen, A.; Janson, M. Terrestrial Planets across Space and Time. Astrophys. J. 2016, 833, 214. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.C.; Jackman, C.H.; Melott, A.L.; Laird, C.M.; Stolarski, R.S.; Gehrels, N.; Cannizzo, J.K.; Hogan, D.P. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects. Astrophys. J. 2005, 622, L153. [Google Scholar] [CrossRef] [Green Version]
- Melott, A.L.; Lieberman, B.S.; Laird, C.M.; Martin, L.D.; Medvedev, M.V.; Thomas, B.C.; Cannizzo, J.K.; Gehrels, N.; Jackman, C.H. Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 2004, 3, 55. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Patzkowsky, M.E. Modeling the response of the Late Ordovician climate system to different forcing factors. Astrobiology 2002, 2, 560–561. [Google Scholar]
- Herrmann, A.D.; Patzkowsky, M.E.; Pollard, D. Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation. Geology 2003, 31, 485. [Google Scholar] [CrossRef]
- Thomas, B.C.; Melott, A.L. Gamma-ray bursts and terrestrial planetary atmospheres. New J. Phys. 2006, 8, 120. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B. Can life survive Gamma-Ray bursts in the high-redshift universe? Astrophys. J. 2015, 810, 41. [Google Scholar] [CrossRef] [Green Version]
- Brenchley, P.J.; Carden, G.A.; Hints, L.; Kaljo, D.; Marshall, J.D.; Martma, T.; Meidla, T.; Nõlvak, J. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. GSA Bull. 2003, 115, 89–104. [Google Scholar] [CrossRef]
- Melott, A.L.; Thomas, B.C. Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. arXiv 2008, arXiv:0809.0899. [Google Scholar] [CrossRef]
- Ejzak, L.M.; Melott, A.L.; Medvedev, M.V.; Thomas, B.C. Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events. Astrophys. J. 2007, 654, 373. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.C.; Goracke, B.D. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard? Astrobiology 2016, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitten, R.C.; Cuzzi, J.; Borucki, W.J.; Wolfe, J.H. Effect of nearby supernova explosions on atmospheric ozone. Nature 1976, 263, 398. [Google Scholar] [CrossRef]
- Clark, D.H.; McCrea, W.H.; Stephenson, F.R. Frequency of nearby supernovae and climatic and biological catastrophes. Nature 1977, 265, 318. [Google Scholar] [CrossRef]
- Reid, G.C.; McAfee, J.R.; Crutzen, P.J. Effects of intense stratospheric ionisation events. Nature 1978, 275, 489. [Google Scholar] [CrossRef]
- van Paradijs, J.; Groot, P.J.; Galama, T.; Kouveliotou, C.; Strom, R.G.; Telting, J.; Rutten, R.G.M.; Fishman, G.J.; Meegan, C.A.; Pettini, M. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 1997, 386, 686. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; in’t Zand, J.; Fiore, F.; Cinti, M.N.; Dal Fiume, D.; Nicastro, L.; Orlandini, M. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 1997, 387, 783. [Google Scholar] [CrossRef]
- Hampson, J. Photochemical war on the atmosphere. Nature 1974, 250, 189–191. [Google Scholar] [CrossRef]
- Scalo, J.; Wheeler, J.C. Short-term effects of gamma ray bursts on Earth. Astrophys. J. 2002, 566, 723. [Google Scholar] [CrossRef] [Green Version]
- Martín, O.; Galante, D.; Cárdenas, R.; Horvath, J.E. Short-term effects of gamma ray bursts on Earth. Astrophys. Space Sci. 2009, 321, 161–167. [Google Scholar] [CrossRef]
- Beech, M. The past, present and future supernova threat to Earth’s biosphere. Astrophys. Space Sci. 2011, 336, 287. [Google Scholar] [CrossRef]
- Gowanlock, M.G.; Morrison, I.S. The Habitability of our Evolving Galaxy. arXiv 2018, arXiv:1802.07036. [Google Scholar] [CrossRef]
- Prantzos, N. On the “Galactic Habitable Zone”. Space Sci. Rev. 2008, 135, 313. [Google Scholar] [CrossRef]
- Spitoni, E.; Matteucci, F.; Sozzetti, A. The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows. Mon. Not. R. Astron. Soc. 2014, 440, 2588. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, E.; Gioannini, L.; Matteucci, F. Galactic habitable zone around M and FGK stars with chemical evolution models that include dust. Astron. Astrophys. 2017, 605, A38. [Google Scholar] [CrossRef] [Green Version]
- Gowanlock, M.G.; Patton, D.R.; McConnell, S.M. A model of habitability within the Milky Way galaxy. Astrobiology 2011, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naab, T.; Ostriker, J.P. A simple model for the evolution of disc galaxies: The Milky Way. Mon. Not. R. Astron. Soc. 2006, 366, 899. [Google Scholar] [CrossRef]
- Morrison, I.S.; Gowanlock, M.G. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life. Astrobiology 2015, 15, 683. [Google Scholar] [CrossRef] [Green Version]
- Forgan, D.; Dayal, P.; Cockell, C.; Libeskind, N. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation. Int. J. Astrobiol. 2017, 16, 60. [Google Scholar] [CrossRef] [Green Version]
- Vukotić, B.; Steinhauser, D.; Martinez-Aviles, G.; Ćirković, M.M.; Micic, M.; Schindler, S. ‘Grandeur in this view of life’: N-body simulation models of the Galactic habitable zone. Mon. Not. R. Astron. Soc. 2016, 459, 3512. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.-F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670. [Google Scholar] [CrossRef]
- Mortlock, A.; Conselice, C.J.; Hartley, W.G.; Duncan, K.; Lani, C.; Ownsworth, J.R.; Almaini, O.; Wel, A.; Huang, K.-H.; Ashby, M.L.N.; et al. Deconstructing the galaxy stellar mass function with UKIDSS and CANDELS: The impact of colour, structure and environment. Mon. Not. R. Astron. Soc. 2015, 447, 2. [Google Scholar] [CrossRef]
- Salvaterra, R.; Campana, S.; Vergani, S.D.; Covino, S.; D’Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Nava, L.; et al. A complete sample of bright Swift Long Gamma-Ray Bursts: Sample presentation, Luminosity Function and evolution. Astrophys. J. 2012, 749, 68. [Google Scholar] [CrossRef] [Green Version]
- Pescalli, A.; Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Vergani, S.D.; Nappo, F.; Salafia, O.S.; Melandri, A.; Covino, S.; Götz, D. The rate and luminosity function of long gamma ray bursts. Astron. Astrophys. 2016, 587, A40. [Google Scholar] [CrossRef] [Green Version]
- Guetta, D.; Piran, T. The luminosity and redshift distributions of short-duration GRBs. Astron. Astrophys. 2005, 435, 421–426. [Google Scholar] [CrossRef]
- D’Avanzo, P.; Salvaterra, R.; Bernardini, M.G.; Nava, L.; Campana, S.; Covino, S.; D’Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; et al. A complete sample of bright Swift short Gamma-Ray Bursts. Mon. Not. R. Astron. Soc. 2014, 442, 2342. [Google Scholar] [CrossRef] [Green Version]
- Frail, D.A.; Kulkarni, S.R.; Sari, R.; Djorgovski, S.G.; Bloom, J.S.; Galama, T.J.; Reichart, D.E.; Berger, E.; Harrison, F.A.; Price, P.A.; et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. Astrophys. J. Lett. 2001, 562, L55. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum. Astrophys. J. 2004, 616, 331. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 1993, 413, L101. [Google Scholar] [CrossRef]
- Hatano, K.; Fisher, A.; Branch, D. On the spatial distribution and occurrence rate of Galactic classical novae. Mon. Not. R. Astron. Soc. 1997, 290, 360. [Google Scholar] [CrossRef] [Green Version]
- Cappellaro, E.; Evans, R.; Turatto, M. A new determination of supernova rates and a comparison with indicators for galactic star formation. Astron. Astrophys. 1999, 351, 459. [Google Scholar] [CrossRef]
- Richardson, D.; Branch, D.; Casebeer, D.; Millard, J.; Thomas, R.C.; Baron, E. A Comparative Study of the Absolute Magnitude Distributions of Supernovae. Astrophys. J. 2002, 123, 745. [Google Scholar] [CrossRef] [Green Version]
- Barris, B.J.; Tonry, J.L.; Blondin, S.; Challis, P.; Chornock, R.; Clocchiatti, A.; Filippenko, A.V.; Garnavich, P.; Holland, S.T.; Jha, S.; et al. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7. Astrophys. J. 2004, 602, 571. [Google Scholar] [CrossRef] [Green Version]
- Botticella, M.T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; et al. Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS). Astron. Astrophys. 2008, 479, 49. [Google Scholar] [CrossRef] [Green Version]
- Höflich, P.; Schaefer, B.E. X-ray and Gamma-Ray flashes frin Type Ia supernovae? Astrophys. J. 2009, 705, 483. [Google Scholar] [CrossRef] [Green Version]
- Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 453, 469. [Google Scholar] [CrossRef] [Green Version]
- Schawinski, K.; Justham, S.; Wolf, C.; Podsiadlowski, P.; Sullivan, M.; Steenbrugge, K.C.; Bell, T.; Röser, H.-J.; Walker, E.S.; Astier, P.; et al. Supernova Shock Breakout from a Red Supergiant. Science 2008, 321, 223. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Langer, N.; Weaver, T.A. The Evolution of Massive Stars Including Mass Loss: Presupernova Models and Explosion. Astrophys. J. 1993, 411, 823. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, A.M.; Beacom, J.F. On the Normalization of the Cosmic Star Formation History. Astrophys. J. 2006, 651, 142. [Google Scholar] [CrossRef] [Green Version]
- Daigne, F.; Rossi, E.M.; Mochkovitch, R. The redshift distribution of SWIFT Gamma-Ray Bursts: Evidence for evolution. Mon. Not. R. Astron. Soc. 2006, 372, 1034. [Google Scholar] [CrossRef]
- Le Floc’h, E.; Charmandaris, V.; Forrest, W.J.; Mirabel, I.F.; Armus, L.; Devost, D. Probing the cosmic star formation using long Gamma-Ray Bursts: New constraints from the Spitzer Space Telescope. Astrophys. J. 2006, 642, 636. [Google Scholar] [CrossRef]
- Guetta, D.; Della Valle, M. On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae. Astrophys. J. Lett. 2007, 657, L73. [Google Scholar] [CrossRef]
- Kistler, M.D.; Yüksel, H.; Beacom, J.F.; Hopkins, A.M.; Wyithe, J.S.B. The star formation rate in the reionization era as indicated by gamma-ray bursts. Astrophys. J. Lett. 2009, 705, L104. [Google Scholar] [CrossRef] [Green Version]
- Virgili, F.J.; Zhang, B.; Nagamine, K.; Choi, J.-H. Gamma-ray burst rate: High-redshift excess and its possible origins. Mon. Not. R. Astron. Soc. 2011, 417, 3025. [Google Scholar] [CrossRef] [Green Version]
- Bignone, L.A.; Tissera, P.B.; Pellizza, L.J. The metallicity and star formation activity of long gamma-ray burst hosts for z < 3: Insights from the Illustris simulation. Mon. Not. R. Astron. Soc. 2017, 469, 4921. [Google Scholar] [CrossRef] [Green Version]
- Bignone, L.A.; Pellizza, L.J.; Tissera, P.B. Metallicity effects in long gamma-ray burst populations in a ΛCDM Universe. New Astron. 2018, 65, 73. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, G.; Bressan, A.; Chiosi, C.; Fagotto, F.; Nasi, E. Theoretical isochrones from models with new radiative opacities. Astron. Astrophys. Suppl. 1994, 106, 275. [Google Scholar]
- Guetta, D.; Piran, T. The BATSE-Swift luminosity and redshift distributions of short-duration GRBs. Astron. Astrophys. 2006, 453, 823. [Google Scholar] [CrossRef]
- Webbink, R.F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 1984, 277, 355. [Google Scholar] [CrossRef]
- Naab, T.; Ostriker, J.P. Minor Mergers and the Size Evolution of Elliptical Galaxies. Astrophys. J. 2009, 690, 1452. [Google Scholar] [CrossRef]
- Kennicutt, R.C. The Global Schmidt Law in Star-forming Galaxies. Astrophys. J. 1998, 498, 541. [Google Scholar] [CrossRef] [Green Version]
- Ostriker, J.P.; Tinsley, B.M. Is deuterium of cosmological or galactic origin? Astrophys. J. Lett. 1975, 201, L51. [Google Scholar] [CrossRef]
- Gallazzi, A.; Brinchmann, J.; Charlot, S.; White, S.D.M. A census of metals and baryons in stars in the local Universe. Mon. Not. R. Astron. Soc. 2008, 383, 1439. [Google Scholar] [CrossRef] [Green Version]
- Alibert, Y. Imaging Extrasolar Giant Planets. Astron. Astrophys. 2014, 561, A41. [Google Scholar] [CrossRef] [Green Version]
- Gaidos, E.; Mann, A.W. M Dwarf Metallicities and Giant Planet Occurrence: Ironing Out Uncertainties and Systematics. Astrophys. J. 2014, 791, 54. [Google Scholar] [CrossRef] [Green Version]
- Balbi, A.; Tombesi, F. The habitability of the Milky Way during the active phase of its central supermassive black hole. Sci. Rep. 2017, 7, 16626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-López, L.; Cardenas, R.; González-Rodríguez, L.; Guimarais, M.; Horvath, J. Influence of a Galactic Gamma-Ray Burst on Ocean Plankton. arXiv 2020, arXiv:2011.08433. [Google Scholar] [CrossRef]
- Steffen, J.H.; Ragozzine, D.; Fabrycky, D.C.; Carter, J.A.; Ford, E.B.; Holman, M.J.; Rowe, J.F.; Welsh, W.F.; Borucki, W.J.; Boss, A.P.; et al. Kepler constraints on planets near hot Jupiters. Proc. Natl. Acad. Sci. USA 2012, 109, 7982. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wu, Y.; Triaud, A.H.M.J. Warm Jupiters are less lonely than hot Jupiters: Close neighbours. Astrophys. J. 2016, 825, 98. [Google Scholar] [CrossRef] [Green Version]
- Pacetti, E.; Balbi, A.; Lingam, M.; Tombesi, F.; Perlman, E. The impact of tidal disruption events on galactic habitability. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.L. The evidence for and against astronomical impacts on climate change and mass extinctions: A review. Int. J. Astrobiol. 2009, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Raup, D.M.; Sepkoski, J.J. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 1984, 81, 801. [Google Scholar] [CrossRef] [Green Version]
- Whitmire, D.P.; Jackson, A.A. Are periodic mass extinctions driven by a distant solar companion? Nature 1984, 308, 713. [Google Scholar] [CrossRef]
- Dayal, P.; Cockell, C.; Rice, K.; Mazumdar, A. The quest for cradles of life: Using the fundamental metallicity relation to hunt for the most habitable type of galaxy. Astrophys. J. Lett. 2015, 810, L2. [Google Scholar] [CrossRef] [Green Version]
- Dayal, P.; Ward, M.; Cockell, C. The habitability of the Universe through 13 billion years of cosmic time. arXiv 2016, arXiv:1606.09224. [Google Scholar]
- Stanway, E.R.; Hoskin, M.J.; Lane, M.A.; Brown, G.C.; Childs, H.J.T.; Greis, S.M.L.; Levan, A.J. Exploring the cosmic evolution of habitability with galaxy merger trees. Mon. Not. R. Astron. Soc. 2018, 475, 1829. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Navarro, J.; Thacker, R.; Croton, D.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobat, R.; Hong, S.E. Evolution of galaxy habitability. Astron. Astrophys. 2016, 592, A96. [Google Scholar] [CrossRef] [Green Version]
- Béthermin, M.; Doré, O.; Lagache, G. Where stars form and live at high redshift: Clues from the infrared. Astron. Astrophys. 2012, 537, L5. [Google Scholar] [CrossRef]
- Kroupa, P.; Bouvier, J.; Duchêne, G.; Moraux, E. On the universal outcome of star formation: Is there a link between stars and brown dwarfs? Mon. Not. R. Astron. Soc. 2003, 346, 354. [Google Scholar] [CrossRef] [Green Version]
- Ilbert, O.; McCracken, H.J.; Le Fèvre, O.; Capak, P.; Dunlop, J.; Karim, A.; Renzini, M.A.; Caputi, K.; Boissier, S.; Arnouts, S.; et al. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA. Astron. Astrophys. 2013, 556, A55. [Google Scholar] [CrossRef] [Green Version]
- Piran, T.; Jimenez, R.; Cuesta, A.J.; Simpson, F.; Verde, L. Cosmic Explosions, Life in the Universe, and the Cosmological Constant. Phys. Rev. Lett. 2016, 116, 081301. [Google Scholar] [CrossRef]
- Veres, P.; Burns, E.; Bissaldi, E.; Lesage, S.; Roberts, O.; et al. [Fermi GBM Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32636....1V/abstract (accessed on 13 November 2022).
- Bissaldi, E.; Omodei, N.; Kerr, M.; et al. [Fermi-LAT Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32637....1B/abstract (accessed on 13 November 2022).
- Lesage, S.; Veres, P.; Roberts, O.J.; Burns, E.; Bissaldi, E.; et al. [Fermi GBM Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32642....1L/abstract (accessed on 13 November 2022).
- Pillera, R.; Bissaldi, E.; Omodei, N.; La Mura, G.; Longo, F.; et al. [Fermi-LAT Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32658....1P/abstract (accessed on 13 November 2022).
- Omodei, N.; Di Lalla, N.; Pillera, R.; et al. [Fermi-LAT Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.31659....1O/abstract (accessed on 13 November 2022).
- Krimm, H.A.; Barthelmy, S.D.; Dichiara, S.; Laha, S.; Lien, A.Y.; Markwardt, C.B.; Palmer, D.M.; Parsotan, T.; Sakamoto, T.; Stamatikos, M. GRB 221009A (Swift J1913.1+1946): Swift-BAT Refined Analysis. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32688....1K/abstract (accessed on 13 November 2022).
- Gotz, D.; Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Bozzo, E.; et al. [IBAS Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32660....1G/abstract (accessed on 13 November 2022).
- Piano, G.; Verrecchia, F.; Bulgarelli, A.; Ursi, A.; Panebianco, G.; Pittori, C.; Tavani, M.; Argan, A.; et al. [Agile Team]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32657....1P/abstract (accessed on 13 November 2022).
- Frederiks, D.; et al. [Konus-Wind Team]. Available online: https://gcn.gsfc.nasa.gov/gcn3/32668.gcn3 (accessed on 13 November 2022).
- Ripa, J.; et al. [GRBalpha Collaboration]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32685....1R/abstract (accessed on 13 November 2022).
- Mitchell, L.J.; Phlips, B.F.; Johnson, W.N. GRB 221009A: Gamma-Ray Detection by SIRI-2. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32746....1M/abstract (accessed on 13 November 2022).
- Liu, J.C.; et al. [GECAM and HEBS Teams]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32751 (accessed on 13 November 2022).
- de Ugarte Postigo, A.; et al. [Stargate Collaboration]. Available online: https://ui.adsabs.harvard.edu/abs/2022GCN.32648....1D/abstract (accessed on 13 November 2022).
Reference | GRBs | SNe | PF | SFR | Metallicity | GHZ (kpc) |
---|---|---|---|---|---|---|
Lineweaver et al. [68] | × | ✔ | ✔ | (R,t) | (R,t) | 7–9 |
Prantzos [90] | × | ✔ | ✔ | (R,t) | (R,t) | Disk |
Gowanlock et al. [93] | × | ✔ | ✔ | (R,t) | (R,t) | Outskirt |
Spitoni et al. [91,92] | × | ✔ | ✔ | (R,t) | (R,t) | 9–11 |
Piran Jimenez [35] | ✔ | × | × | × | Const | Outskirt |
Li & Zhang [75] | ✔ | × | × | Const | Const | Outskirt |
Morrison & Gowanlock [95] | × | ✔ | ✔ | (R,t) | (R,t) | ≈2.5 |
Vukotić et al. [97] | × | ✔ | ✔ | (R,t) | (R,t) | Outskirt |
Forgan et al. [96] | × | ✔ | ✔ | (R,t) | (R,t) | 2–13 |
Spinelli et al. [50] | ✔ | ✔ | ✔ | (R,t) | (R,t) | 5–7 |
b | |||||||
---|---|---|---|---|---|---|---|
(Gpc yr) | (erg s) | (erg s) | (erg s) | (s) | |||
LGRB | 1.3 ± 0.6 | 1.2 ± 0.9 | 2.4 ± 0.77 | 10 | 10 | 10 | 20 |
SGRB | 0.3 ± 0.06 | 0.53 ± 0.88 | 3.4 ± 2.2 | (2.8 ± 2.1) × 10 | 5 × 10 | 10 | 2 |
SN Type | Rate (z = 0) | Burst Energy |
---|---|---|
(erg) | ||
Ia | 2.2 ± 0.3 | 10 |
Ibc | 2.6 ± 0.4 | 10 |
IIp | 3.1 ± 0.5 | 10 |
Property | Value |
---|---|
M | M |
M | M |
35 M | |
15 M | |
SFR | 3 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinelli, R.; Ghirlanda, G. The Impact of GRBs on Exoplanetary Habitability. Universe 2023, 9, 60. https://doi.org/10.3390/universe9020060
Spinelli R, Ghirlanda G. The Impact of GRBs on Exoplanetary Habitability. Universe. 2023; 9(2):60. https://doi.org/10.3390/universe9020060
Chicago/Turabian StyleSpinelli, Riccardo, and Giancarlo Ghirlanda. 2023. "The Impact of GRBs on Exoplanetary Habitability" Universe 9, no. 2: 60. https://doi.org/10.3390/universe9020060
APA StyleSpinelli, R., & Ghirlanda, G. (2023). The Impact of GRBs on Exoplanetary Habitability. Universe, 9(2), 60. https://doi.org/10.3390/universe9020060