
Citation: Batic, D. The

Tomimatsu–Sato Metric Reloaded.

Universe 2023, 9, 77. https://

doi.org/10.3390/universe9020077

Academic Editor: Aharon Davidson

Received: 11 December 2022

Revised: 27 January 2023

Accepted: 30 January 2023

Published: 31 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

The Tomimatsu–Sato Metric Reloaded
Davide Batic

Department of Mathematics, Khalifa University of Science and Technology, Main Campus,
Abu Dhabi 127788, United Arab Emirates; davide.batic@ku.ac.ae

Abstract: In this work, we derive exact analytic formulae for the inner and outer surfaces representing
the boundary of the ergoregion appearing in the Tomimatsu–Sato (TS) metric. Exact expressions
for the radii of the ergoregion in prolate spheroidal coordinates and in Boyer-Lindquist coordinates
are obtained. We also found that in addition to the ring-shaped naked singularity, there is an event
horizon placed in the inner region inside the aforementioned curvature singularity. In comparing
our results with previous studies, we also uncovered and corrected several errors in the literature.
Finally, we provide tables of numerical values for the inner and outer boundaries of the ergoregion
for different values of the rotational parameter. We hope this study will be a useful resource for all
researchers interested in the Tomimatsu–Sato metric.

Keywords: Tomimatsu–Sato metric; black hole; naked singularity

1. Introduction

In 1972, nine years after Kerr obtained the metric associated to a spinning mass,
Tomimatsu and Sato were able to derive a new solution to the Einstein field equations rep-
resenting a stationary axisymmetric and asymptotically flat metric describing the geometry
around a deformed spinning mass with deformation parameter δ = 2 [1,2]. Such a solution
was gradually generalized to the case of an arbitrary positive integer distortion parameter
in the series of papers [2–6]. In the present work, we are interested in the case δ = 2
for which [7] showed that the corresponding space–time is characterized by four distinct
principal null directions and therefore, it is of type I according to Petrov’s classification. We
recall that the Kerr metric is used instead of type D and as such, it admits a Carter constant,
which plays a fundamental role in the separation process and reduction of order for the
geodesic equation while the TS metric, being of general Petrov type, will not allow for
Carter’s integral of motion [8]. Another striking difference between the aforementioned
manifolds is that, in contrast to the Kerr metric where an event horizon shields the ring-like
curvature singularity, the TS space–time has a naked spinning singularity [7] in the vicinity
of which closed time-like curves appear [7]. If from one side this feature is at odds with
the Cosmic Censorship Conjecture (CCC) [9] and we may be induced to dismiss the TS
solution as unphysical, on the other side, we should be aware that CCC is still a conjecture
and up to now, several counterexamples are known [10–17].

There has been a long debate in the literature on whether the TS metric may admit
an event horizon. Both Kerr and TS have an ergoregion, but TS has a ring-like curvature
singularity at the intersection of the inner surface of the ergoregion with the equatorial
plane. Everybody uses prolate spheroidal coordinates while we use Boyer-Lindquist
coordinates adapted to the present problem since the Kerr metric is also usually written
in terms of BL-like coordinates making it easier to highlight similarities and differences
between these two metrics.

One of the reasons leading us to study the TS metric is that the literature on this topic
is characterized by several mistakes, misprints happening from the derivation of the TS
metric and extending until Bambi where the shadow of a TS gravitational object with δ = 2
is studied and instead of using the BL coordinates corresponding to that case which can be
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found in Yamazaki Bambi took the BL coordinates for δ = 1, i.e., the Kerr metric. This led us
to go over the derivation of the TS metric in Section 2 where we pointed out some mistakes
and typos occurring in the literature. In Section 3, we focused our attention on the study of
null surfaces. We found that in addition to the ring-shaped naked singularity, there is an
event horizon placed in the inner region inside the aforementioned curvature singularity.
In In section 4, we draw our conclusions and discuss future research directions related to
the TS metric and its possible extension in the presence of a positive cosmological constant.

2. Derivation of the Tomimatsu–Sato Metric with Deformation Parameter δ = 2

The general form of the Lewis-Papapetrou line element describing cylindrical solutions
to the vacuum Einstein field equations in cylindrical coordinates (x0, x1, x2, x3) = (t, ρ, z, ϕ)
is [18,19]

ds2 = f dt2 − 2κdtdϕ− `dϕ2 − eµ(dρ2 + dz2), (1)

where the four unknown functions appearing in (1) depend on the variables ρ and z only. In
the reminder of this section, we will assume that the metric coefficients satisfy the condition
∂βαgµν = ∂αβgµν. Note that if we want the line element (1) to go over to the Minkowski
metric in cylindrical coordinates as ρ, z→ ∞, i.e.,

ds2 = dt2 − ρ2dϕ2 − dρ2 − dz2, (2)

we need to require in such limit that f → 1, κ, µ → 0 and ` → ρ2. If we impose that the
Ricci tensor Rαβ vanishes, we find by means of Maple that the only components that do not
identically vanish are R00, R03, R11, R12, R22 and R33. More precisely, we end up with the
following overdetermined coupled system of PDEs

∂ρ

(
∂ρ f
D

)
+ ∂z

(
∂z f
D

)
+

f
D3

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (3)

∂ρ

(
∂ρκ

D

)
+ ∂z

(
∂zκ

D

)
+

κ

D3

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (4)

∂ρ

(
∂ρ`

D

)
+ ∂z

(
∂z`

D

)
+

`

D3

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (5)

∂ρρµ + ∂zzµ + 2
∂ρρD

D
− 1

D
(
∂ρµ∂ρD− ∂zµ∂zD

)
− 1

D2

[
∂ρ f ∂ρ`+

(
∂ρκ
)2
]

= 0, (6)

∂ρρµ + ∂zzµ + 2
∂zzD

D
+

1
D
(
∂ρµ∂ρD− ∂zµ∂zD

)
− 1

D2

[
∂z f ∂z`+ (∂zκ)2

]
= 0, (7)

∂z

(
∂ρD

D

)
− 1

2D
(
∂zµ∂ρD + ∂ρµ∂zD

)
+

Ψ
4D4 = 0, (8)

with

D2 = κ2 + f `, (9)

Ψ = κ2(2∂ρκ∂zκ − ∂ρ f ∂z`− ∂z f ∂ρ`
)
+ 2κ`

(
∂zκ∂ρ f + ∂ρκ∂z f

)
+ 2κ f

(
∂ρκ∂z`+ ∂zκ∂ρ`

)
− 2 f `∂ρκ∂zκ + f 2∂ρ`∂z`+ `2∂ρ f ∂z f . (10)

Note that Equations (3)–(5) agree with the corresponding Equations (2.2a)–(2.2c) in [20]
where the corresponding equations arising from the Ricci components R11, R12 and R22
have not been given. As already observed by [18], the combination `R00 − 2κR03 − f R33
gives rise to the Laplace equation ∂ρρD + ∂zzD = 0. This is a remarkable property satisfied
by the function D, which leads to a further simplification of the line element (1). More
precisely, D is the real part of some complex-valued function Σ(ρ + iz) = D(ρ, z) + iE(ρ, z)
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where the functions D and E are intertwined through the Cauchy-Riemann equations
∂ρD = ∂zE and ∂zD = −∂ρE. If we introduce the coordinate transformation

ρ = D(ρ, z), z = E(ρ, z) (11)

together with the invertibility condition ∂ρD∂zE− ∂ρE∂zD = (∂ρD)2 + (∂zD)2 6= 0, we can
rewrite the line element (1) as

ds2 = f dt2 − 2κdtdϕ− `dϕ2 − eµ(dρ2 + dz2), eµ =
eµ

(∂ρD)2 + (∂zD)2 , (12)

where the functions f , κ and ` depend on the new variables ρ and z. At this point, we can
exploit the freedom of choosing D so that it satisfies the Laplace equation. The simplest
choice is D = ρ, which implies that ρ = ρ while the Cauchy-Riemann equations lead to
E = z modulo, an integration constant that can be chosen to be zero. Hence, we have
z = z and as a consequence, the transformed metric (12) coincides again with (1) but the
unknown functions f , κ and ` are not independent anymore because they are connected
through the relation

D2 = κ2 + f ` = ρ2. (13)

If we implement (13) into (3)–(8), the resulting Einstein field equations read

∂ρρ f + ∂zz f −
∂ρ f

ρ
+

f
ρ2

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (14)

∂ρρκ + ∂zzκ −
∂ρκ

ρ
+

κ

ρ2

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (15)

∂ρρ`+ ∂zz`−
∂ρ`

ρ
+

`

ρ2

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
= 0, (16)

∂ρρµ + ∂zzµ−
∂ρµ

ρ
− 1

ρ2

[
∂ρ f ∂ρ`+

(
∂ρκ
)2
]

= 0, (17)

∂zµ +
1

2ρ

(
∂ρ f ∂z`+ ∂z f ∂ρ`+ 2∂ρκ∂zκ

)
= 0, (18)

∂ρρµ + ∂zzµ +
∂ρµ

ρ
− 1

ρ2

[
∂z f ∂z`+ (∂zκ)2

]
= 0. (19)

As a consistency check, it is gratifying to observe that Equations (14)–(16) coincide
with Equations (A)–(C) in [19]. Moreover, (17)–(19) agree with (2.10a) and (2.10b) in [20],
respectively. Finally, if we consider the combinations (17) ± (19), we obtain Equations (2.2)
and (2.2a) in [19], namely

∂ρρµ + ∂zzµ =
1

2ρ2

[
∂ρ f ∂ρ`+ ∂z f ∂z`+ (∂ρκ)2 + (∂zκ)2

]
, (20)

∂ρµ = − 1
2ρ

[
∂ρ f ∂ρ`− ∂z f ∂z`+ (∂ρκ)2 − (∂zκ)2

]
. (21)

Note that Equations (14)–(16) control the functions k, f and ` and once they are found,
we can compute µ by quadratures from (18) and (21). In order to derive the Tomimatsu–Sato
metric with deformation parameter δ = 2, it is convenient to recast (1) in the so-called
Weyl-Lewis-Papapetrou form. This is achieved with the help of (13) and by introducing the
new function

w =
κ

f
. (22)
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As a result, the line element (1) becomes

ds2 = f (dt− wdϕ)2 − ρ2

f
dϕ2 − eµ(dρ2 + dz2). (23)

The corresponding Einstein field equations can be readily obtained from (14), (15), (18)
and (21). They are

f
(

∂ρρ f + ∂zz f +
∂ρ f

ρ

)
−
(
∂ρ f
)2 − (∂z f )2 +

f 4

ρ2

[(
∂ρw

)2
+ (∂zw)2

]
= 0, (24)

f
(

∂ρρw + ∂zzw−
∂ρw

ρ

)
+ 2
(
∂ρw∂ρ f + ∂zw∂z f

)
= 0, (25)

∂ρµ = −
∂ρ f

f
+

ρ

2 f 2

[(
∂ρ f
)2 − (∂z f )2

]
− f 2

2ρ

[(
∂ρw

)2 − (∂zw)2
]
, (26)

∂zµ = −∂z f
f

+
ρ

f 2 ∂ρ f ∂z f − f 2

ρ
∂ρw∂zw. (27)

At this point a couple of remarks are necessary. First of all, it is not difficult to check
that the Equations (26) and (27) are consistent, i.e., ∂ρzµ = ∂zρµ. Moreover, µ defined
through (26) and (27) satisfies the Equations (17) and (19). This can be verified by replacing
κ = w f and ` = ρ2/ f − f w2 therein. Finally, Equation (16) after the aforementioned
substitution coincides with (24). Hence, the new Einstein field equations are represented
by (24)–(27). It is worth mentioning that [19] solved the above system of equations under
the additional assumption that the r.h.s. of (25) vanishes. Such an approach leads to a
solution describing a gravitational field where either the mass or the angular momentum
can be different from zero. Last but not least, instead of working with the functions f
and w, [21,22] introduced a new function γ = (µ + log f )/2 and derived a fourth order
quasi-linear PDE for γ. A less restrictive procedure than the one adopted in [19] relies on
the observation that the divergence of the vector field F : Ω ⊆ (0, ∞)×R −→ R2 defined
as follows

F (ρ, z) =
f 2

ρ

(
∂ρw, ∂zw

)
(28)

coincides with the LHS of (25). This is easily accomplished by showing that the equation
∂ρ(A∂ρw) + ∂z(A∂zw) = 0 coincides with (25) if A = f 2/ρ. Hence, it is possible to
construct a function u = u(ρ, z) such that

∂ρu =
f 2

ρ
∂zw, ∂zu = − f 2

ρ
∂ρw. (29)

By means of (29), it is not difficult to derive from (24)–(27) the following PDEs govern-
ing the functions f and u, namely

f∇2 f =
(
∂ρ f
)2

+ (∂z f )2 −
[(

∂ρu
)2

+ (∂zu)2
]
, (30)

f∇2u = 2
(
∂ρ f ∂ρu + ∂z f ∂zu

)
, (31)

∂ρ(µ + ln f ) =
ρ

2 f 2

[(
∂ρ f
)2 − (∂z f )2

]
+

ρ

2 f 2

[(
∂ρu
)2 − (∂zu)2

]
, (32)

∂z(µ + ln f ) =
ρ

f 2

(
∂ρ f ∂z f + ∂ρu∂zu

)
, (33)

where∇2 = ρ−1∂ρ(ρ∂ρ·)) + ρ−2∂ϕϕ + ∂zz is the Laplace operator in cylindrical coordinates.
We draw the attention of the reader to the fact that there is a typo in Equation (3.3a) in [20]
where the term ∂zu should appear squared. The Ernst equation [23] emerges from (30)
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and (31) by introducing some complex-valued function E = f + iu and realizing that the
aforementioned equations are the real and imaginary parts of the complex PDE

<(E)∇2E =
(
∂ρE

)2
+ (∂zE)2, <E = f . (34)

Hence, (34) is an equivalent form of the Einstein field Equations (30) and (31). In order
to derive the Tomimatsu–Sato metric, it is convenient to introduce the Ansatz

E =
Φ− 1
Φ + 1

(35)

with Φ a complex-valued function yet to be determined. The Ernst equation becomes(
|Φ|2 − 1

)
∇2Φ = 2Φ∗

[(
∂ρΦ

)2
+ (∂zΦ)2

]
, (36)

where the star denotes complex conjugation. Note that our notation departs from that
in [1,2,20] where the lowercase Greek letter ξ is used instead of Φ. The reason behind our
choice is that the letter ξ will denote one of the prolate spheroidal coordinates. Finally, the
Tomimatsu–Sato line element can be constructed by searching for solutions to (36) in prolate
spheroidal coordinates ξ = ξ(ρ, z), η = η(ρ, z) with ξ ≥ 1 and −1 ≤ η ≤ 1 such that

ρ = σ
√
(ξ2 − 1)(1− η2), z = σξη, σ > 0. (37)

The corresponding inversion formulae are

ξ =

√
R+ +

√
R−

2σ
, η =

√
R+ −

√
R−

2σ
, R± = ρ2 + (z± σ)2. (38)

We alert the reader that our notation for the prolate spheroidal coordinates (ξ, η)
differs from that employed in [1,2,20] where the lowercase Latin letters x and y stand for ξ
and η, respectively. If we apply the coordinate transformation (37) to (36), we end up with
the Ernst equation in prolate spheroidal coordinates, i.e.,(

|Φ|2 − 1
)[

(ξ2 − 1)∂ξξΦ + (1− η2)∂ηηΦ + 2ξ∂ξ Φ− 2η∂ηΦ
]
=

2Φ∗
[
(ξ2 − 1)

(
∂ξΦ

)2
+ (1− η2)

(
∂ηΦ

)2
]
. (39)

Moreover, the Equations (29), (32) and (33) become

∂ξ w = −σ(1− η2)

f 2 ∂ηu, (40)

∂ηw =
σ(ξ2 − 1)

f 2 ∂ξ u, , (41)

∂ξ(µ + ln f ) =
1− η2

2 f 2(ξ2 − η2)

{
ξ(ξ2 − 1)

[(
∂ξ f
)2

+
(
∂ξu
)2
]
− ξ(1− η2)

[(
∂η f
)2

+
(
∂ηu
)2
]

− 2η(ξ2 − 1)
(
∂ξ f ∂η f + ∂ξ u∂ηu

)}
, (42)

∂η(µ + ln f ) =
ξ2 − 1

2 f 2(ξ2 − η2)

{
η(ξ2 − 1)

[(
∂ξ f
)2

+
(
∂ξ u
)2
]
− η(1− η2)

[(
∂η f
)2

+
(
∂ηu
)2
]

+ 2ξ(1− η2)
(
∂ξ f ∂η f + ∂ξ u∂ηu

)}
. (43)
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It is well-known that the vacuum stationary axisymmetric solutions to Einstein’s field
equations can be generated from the Ernst Equation (34), (36) or equivalently from (39). For
instance, the Kerr metric emerges from the case

ΦK = pξ − iqη, q =
J

M2 , p =
√

1− q2, (44)

where M is the mass of the gravitational source and J its total angular momentum. A
further solution to (39) was found by [1,2] in the form

ΦTS =
u+ iv
m+ in

(45)

with

u = p2ξ4 + q2η4 − 1, v = −2pqξη(ξ2 − η2), m = 2pξ(ξ2 − 1), n = −2qη(1− η2). (46)

It is a straightforward exercise with Maple to verify that (45) indeed satisfies (39).
Since ΦTS → (ξ2 + 1)/2ξ for q→ 0, in this limit, the Tomimatsu–Sato solution coincides
with the class of Weyl’s metrics generated by

ΦW =
(ξ + 1)δ + (ξ − 1)δ

(ξ + 1)δ − (ξ − 1)δ
(47)

when δ = 2. In the case δ = 1, the function ΦW leads to the Schwarzschild metric [24].
Therefore, δ and q can be viewed as positive parameters measuring the deviation from
spherical symmetry. If we insert (45) into (35) and recall that E = f + iu, we can easily
compute the real and imaginary parts of E with the help of Maple. More precisely, we
find that

f = <(E) = A
B

, u = =(E) = 2I
B

(48)

with

A = u2 + v2 − (m2 + n2),

=
[

p2(ξ2 − 1)2 + q2(1− η2)2
]2
− 4p2q2(ξ2 − 1)(1− η2)(ξ2 − η2)2, (49)

B = (u+m)2 + (v+ n)2,

= (p2ξ4 + q2η4 − 1 + 2pξ3 − 2pξ)2 + 4q2η2(pξ3 − pξη2 + 1− η2)2, (50)

I = mv− nu,

= −2qη
[
(1− η2)(1− q2η4) + p2ξ2η2(2− ξ2) + p2ξ4(2ξ2 − 3)

]
. (51)

It is gratifying to observe that the expressions for the coefficients A and B represented
by (49) and (50) agree with the corresponding ones offered in [1,2,20]. Moreover, f exhibits
the desired behaviour at space-like infinity, that is f → 1 as ξ → ∞. Concerning the
function w, it can be derived from the Equations (40) and (41). In particular, we try, as
in [1,2,20], the Ansatz

w =
2Mq(1− η2)

A
C, C =

7

∑
k,l=0

0≤k+l≤7

aklξ
kηl , (52)

where M is the total mass of the gravitational source and C is some polynomial in ξ and η
of maximum degree seven. This requirement together with the fact that A is a polynomial
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of degree eight in ξ is necessary in order to ensure that w→ 0 as ξ → ∞. If we substitute
(52) into (40) and (41), we obtain the following system

A∂ξC− C∂ξ A =
σ

Mq
(

I∂η B− B∂η I
)
, (53)

(1− η2)(A∂ηC− C∂η A)− 2ηAC =
σ

Mq
(ξ2 − 1)

(
B∂ξ I − I∂ξ B

)
(54)

in agreement with Equations (7) and (8) in [3]. Setting σ = Mp/2 and substituting (52)
into (53) leads to a linear system for the unknown coefficients akl , which is easily handled
by Maple. The final result is

C = q2(1 + pξ)(1− η2)3 − p2(ξ2 − 1)(1− η2)(pξ3 + 3ξ2 + 3pξ + 1)

− 2p2ξ(ξ2 − 1)2(pξ2 + 2ξ + p). (55)

As a consistency check, we used Maple to verify that (55) is indeed a solution to
both PDEs (53) and (54). It is gratifying to see that (55) agrees with the corresponding
expressions given in [2,3]. However, a comment is in order. [2] also derived a system of
first order PDEs for C represented by Equations (3.3) and (3.4) therein. Even though the
l.h.s.’s of (53) and (3.3) in [2] coincide, the same cannot be said for the r.h.s.’s. Despite
the fact that the expression for C given in [2] agrees with the corresponding expressions
presented here and in [3], it does not satisfy Equation (3.3) in [2] as it can be easily verified
by means of Maple. The only conclusion is that such a discrepancy is due to a typo in the
aforementioned equation. Finally, [20], instead of deriving a formula for C, gives the same
result as in [2] but with a typo in the last term. It should also be mentioned that [20] makes
an opposite choice for the signs entering in front of the l.h.s. of the equations represented
by (29) in the present work. It is not difficult to check that such a choice would alter the
sign in front of the l.h.s.’s in (53) and (54) and send C into −C. A formula for the metric
coefficient e2γ/ f was derived in [2] while [20] gives an expression for eµ which is linked to
the aforementioned metric coefficient in [2] by the relation eµ = e2γ/ f . We checked with
Maple that

eµ =
B

p4(ξ2 − η2)4 (56)

is indeed a solution of the system (42) and (43). Finally, the line element (23) can be written
in prolate spheroidal coordinates as follows

ds2 =
A
B

dt2 − 4Mq(1− η2)C
B

dtdϕ− M2B
4p2(ξ2 − η2)3

(
dξ2

ξ2 − 1
+

dη2

1− η2

)
− M2(1− η2)

A

[
p2

4
(ξ2 − 1)B− 4q2(1− η2)

C2

B

]
dϕ2, (57)

where A, B and C are given by (49), (50) and (55), respectively. If, instead, we use the
standard definition of prolate spheroidal coordinates (u, v, ϕ) with ξ = cosh u and η = cos v
where u ≥ 0 and 0 ≤ v ≤ π, (57) can be cast into the form

ds2 =
A
B

dt2 − 4Mq sin2 v
C
B

dtdϕ− M2B
4p2(cosh2 u− cos2 v)3

(
du2 + dv2

)

− M2 sin2 v
4AB

(
p2B2 sinh2 u− 16q2C2 sin2 v

)
dϕ2, (58)

where
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A =
(

p2 sinh4 u + q2 sin4 v
)2
− 4p2q2 sinh2 u sin2 v

(
cosh2 u− cos2 v

)2
, (59)

B =
(

q2 cos4 v + p2 cosh4 u + 2p cosh u sinh2 u− 1
)2

+ 4q2 cos2 v
(

p cosh3 u− p cosh u cos2 v + sin2 v
)2

, (60)

C = q2 sin6 v(1 + p cosh u)− p2 sinh2 u sin2 v(p cosh3 u + 3 cosh2 u + 3p cosh u + 1)

− 2p2 cosh u sinh4 u
(

p cosh2 u + 2 cosh u + p
)

. (61)

3. Analysis of the Metric

In this section, we improve the singularity and ergoregion analysis provided in [7,25].
First of all, a direct inspection of (49), (50), (55) and (56) shows that all metric coefficients
are invariant under the transformation η → −η. The fact that B is always nonnegative
implies that the sign of the metric coefficient f is uniquely controlled by the sign of the
polynomial function A. Moreover, it can be immediately seen that the functions (49), (50)
and (55) have common roots at ξ = 1 and η = ±1. If we Taylor expand B around ξ = ±1
and η = ±1 as follows

B = p2(ξ2 − 1)2a1(ξ)− 4p2q2(ξ2 − 1)3(1− η2) + a2(ξ)(1− η2)2

+ a3(ξ)(η
2 − 1)3 + q4(η2 − 1)4, (62)

with

a1(ξ) = p2ξ4 + 4pξ3 + 2(1 + q2)ξ2 + 4pξ + p2, (63)

a2(ξ) = −6p2q2ξ4 − 4pq2ξ3 + 12p2q2ξ2 + 12pq2ξ + 2q2(1 + 3q2), (64)

a3(ξ) = 4p2q2ξ2 + 8pq2ξ + 4q2(1 + q2) (65)

and we recall that f = A/B, we conclude that the metric coefficient gtt has a regu-
lar behaviour on the line segment described by ξ = 1 and −1 < η < 1. The points
(ξ, η) = (1,±1) making f singular have the interpretation of quasi-regular singulari-
ties [25]. At this step, it is not obvious whether the polynomial functions A and B have
some other common zeroes in addition to those mentioned above. Inspired by the para-
metric surface representation of the ergosphere of a Kerr black hole, we introduce the
ansatz [7]

ξ2 = 1 + λ2(1− η2) (66)

with λ ∈ R. This allows us to cast A into the form

A = (1− η2)4p±, p± = p2λ4 + q2 ± 2pqλ(λ2 + 1). (67)

First of all, we observe that a quartic polynomial similar to p− has been also given
in [7]. However, there is a typo there and the factor 4 multiplying the term λ(λ + 1) should
be replaced by 2. The polynomial p+ does not admit any real root for 0 < q < 1 and
therefore, if there are some other real roots of A distinct from those already identified above,
they must come from the quartic p−. This observation is important because it signalizes
that gtt may not be everywhere positive definite for ξ > 1 and −1 ≤ η ≤ 1. In other
words, for decreasing values of ξ the Killing vector field ∂t may already loose its property
of being time-like before ξ reaches the value one and an ergoregion may arise as pointed
out by [7,25]. Concerning the zeroes of the polynomial p−, there are two sign changes and
Descartes’ rule of signs predicts that the number of positive roots is either equal to two
or zero. Moreover, after the transformation λ → −λ, the corresponding polynomial has



Universe 2023, 9, 77 9 of 18

no sign changes and therefore, p− does not have negative real roots. Finally, by applying
(1.163a) and (1.163b) in [26] the two positive real roots are

λ± =
q

2p
+

√
3
√

4p2q2 + q2

2p
±

√√√√2q2 − 3
√

4p2q2 +
2 3
√

q2(2p2 + q2)√
3
√

4p2 + q 3
√

q
, (68)

to which the following values of ξ correspond, determined with the help of (66), i.e.,

ξ±E =
√

1 + λ2
±(1− η2), (69)

where the subscript E stands for the ergoregion

E = {(ξ, η, ϕ) ∈ R3 | ξ−E < ξ < ξ+E , − 1 < u < 1, 0 ≤ ϕ < 2π}. (70)

Note that on the equator, i.e., η = 0, the inner and outer boundaries of the ergoregion
are located at

ξ±E ,e =
√

1 + λ2
±. (71)

In order to investigate whether or not the metric coefficient f becomes singular, it is
necessary to study the zeroes of B. If we restrict our attention to the equatorial plane as
in [7], we end up with the problem of finding the roots of the polynomial equation

B(ξ, 0) = P2 = 0, P = p2ξ4 + 2pξ3 − 2pξ − 1. (72)

Since P exhibits only one sign change, there is only one positive real root, here denoted
as ξB, and it must be a zero of order two for B. Moreover, the polynomial obtained by
means of the transformation ξ → −ξ has three sign changes meaning that there can be
three or one negative real roots. As it can be seen from Table 1, it turns out that ξB = ξ−E , in
agreement with [7], where, however, no numerical/analytic evidence was given for such a
result. Since ξ−E is a simple zero for A, while ξB is a root of order two for B, we can conclude
that the metric coefficient f exhibits a singularity at ξ = ξB on the equatorial plane. We
checked numerically that A and B have no common real roots away from the equatorial
plane (see Appendix A for typical values of ξ±E when η 6= 0). More precisely, all zeroes of B
are complex whenever η 6= 0. This indicates that the metric coefficient f can only have a
singularity at the point (ξ, η) = (ξB, 0) in addition to the singular points at (1,±1). If we
recall that prolate spheroidal and cylindrical coordinates are connected by (37), it can be
easily checked that (ξB, 0) corresponds to a ring singularity with radius

ρs =
Mp
2

λ−. (73)

This is where the inner boundary of the ergoregion intersects the equatorial plane.
Hence, such a singularity resides inside the ergoregion. The ring singularity was proved
to be a curvature singularity by analysing the behaviour of the Weyl curvature invariants
there (see [25] for a detailed discussion). Ref. [25] also showed that such a ring singularity
has zero Komar mass: an unexpected result if we think that an axisymmetric space–time
such as the one described by a Kerr black hole has instead a positive Komar mass [27]
despite the fact it also exhibits a ring singularity. This aspect of the TS metric and its
physical implications seem not to have been addressed in the related existing literature
and they are definitely worth being studied in more detail elsewhere. Finally, the ring
singularity is naked because it is not hidden by a Cauchy or event horizon as it has been
already discussed in [25] (see Figure 10 therein).
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Table 1. Typical values of the zeroes λ± of the polynomial equation p− = 0 in (67) with the
corresponding values ξ±E for the inner and outer boundaries of the ergoregion on the equatorial plane
η = 0. The last column represents the only positive real root of order two for the function B restricted
to the equatorial plane.

η = 0 λ− ξ−E λ+ ξ+E ξB

q = 0.1 0.050157194 1.001257082 0.645657713 1.190325117 1.001257082

q = 0.2 0.101280894 1.005115824 0.877134836 1.330174996 1.005115824

q = 0.3 0.154462485 1.011859012 1.085464940 1.475884188 1.011859012

q = 0.4 0.211086895 1.022036045 1.301672592 1.641448000 1.022036045

q = 0.5 0.273120641 1.036626685 1.547108167 1.842157344 1.036626685

q = 0.6 0.343701531 1.057417014 1.849576162 2.102601241 1.057417014

q = 0.7 0.428584499 1.087972735 2.260794743 2.472082699 1.087972735

q = 0.8 0.540664408 1.136801655 2.909501150 3.076556019 1.136801655

q = 0.9 0.721912637 1.233352284 4.299249247 4.414016774 1.233352284

q = 0.99 1.338695474 1.670959476 14.08894707 14.12439130 1.670959476

It is interesting to understand how the aforementioned singularities are mapped when
we switch from prolate to Boyer-Lindquist (BL) coordinates. When we reviewed the existing
literature, we observed that there has been some confusion regarding the transformations
from cylindrical to BL coordinates in the presence of an arbitrary deformation parameter.
For instance, Ref. [1] gives without proof the formulae

ρ =
Mp

δ

√
ξ2 − 1

√
1− η2 =

√
∆̂ sin ϑ, (74)

z =
Mp

δ
ξη = (r−M) cos ϑ, ∆̂ = r2 − 2Mr + M2q2, (75)

where, strangely enough, the deformation parameter completely disappeared from the
expressions written in terms of the BL coordinates and the function ∆̂ is the same as the one
entering in the Kerr metric. Moreover, Ref. [1] refers to [24] for more details, but [24] pro-
vides only the transformations from prolate spheroidal to cylindrical coordinates. Finally,

the relations ρ =
√

∆̂ sin ϑ and z = (r−M) cos ϑ appear in the work of [23] where Ernst
showed how the metric derived therein is equivalent to the Kerr solution if the coordinate
transformation ξ = (r−M)/Mp and η = cos ϑ is introduced. Hence, those parts in the
expressions (74) and (75) where the (r, ϑ) coordinates enter are correct only in the special
case δ = 1. At this point, we warn the reader about the fact that [28], when analyzing
the shadow of a TS manifold with δ = 2 ,made use of the coordinate transformations (74)
and (75) and therefore, the numerical results presented there should be taken with some
caution. The correct transformation for arbitrary δ > 0 has been given by [4], namely

r =
Mp

δ
ξ + M, cos ϑ = η. (76)

Note that the condition ξ ≥ 1 requires that

r ≥ rδ = M +
Mp

δ
. (77)



Universe 2023, 9, 77 11 of 18

Then, it is straightforward to verify that the cylindrical coordinates can be expressed as

ρ =

√
(r−M)2 −

(
Mp

δ

)2
sin ϑ, z = (r−M) cos ϑ. (78)

Note that r = rδ corresponds to ρ = 0 and −Mp/δ ≤ z ≤ Mp/δ, that is to an
infinitesimally thin rod of length 2Mp/δ. In the present work, we are interested in the case
δ = 2. Hence, (78) becomes

ρ =
Mp
2

√
ξ2 − 1

√
1− η2 =

√
∆ sin ϑ, (79)

z =
Mp
2

ξη = (r−M) cos ϑ, ∆ = (r−M)2 − M2 p2

4
. (80)

It is not difficult to verify that the prolate spheroidal coordinates can be expressed in
terms of the BL coordinates as

ξ =

√
R+ +

√
R−

Mp
, η =

(r−M) cos ϑ√
R+ +

√
R−

, (81)

R± = ∆ sin2 ϑ +

[
(r−M) cos ϑ± Mp

2

]2
=

(
r−M± Mp

2
cos ϑ

)2
(82)

and as a consistency check, it can be easily shown that under the condition r ≥ r2 =
M + Mp/2, Formulae (81) and (82) give

ξ =
2

Mp
(r−M), η = cos ϑ (83)

in agreement with (76). Finally, the TS line element in BL coordinates is

ds2 =
A
B

dt2 − 4Mq
C
B

sin2 ϑdtdϕ− Σ1

(
dr2

∆
+ dϑ2

)
− Σ2 sin2 ϑdϕ2 (84)

with

Σ1 =
M8 p4B

256
[
(r−M)2 − M2 p2

4 cos2 ϑ
]3 , Σ2 =

1
A

(
B∆− 4M2q2 C2

B
sin2 ϑ

)
(85)

and A, B and C, given by (49), (50) and (55) where ξ and η, must be replaced according
to (83). To find the radii of the ergoregion on the equatorial plane, we can use (69) with
η = 0 and (81) with ϑ = π/2 together with the constraint r ≥ r2 where r2 is defined
according to (77) to obtain the formulae

r±E ,e = M
(

1 +
p
2

ξ±E ,e

)
(86)

with ξ±E ,e given as in (71). Here, the subscript e stands for equator. For typical numerical
values of these radii we refer to Table 2. In Figure 1 we represented the ergoregion for the
case q = 0.5 where cusp singularities emerge at the top and bottom of the inner surface of
the ergoregion.



Universe 2023, 9, 77 12 of 18

Table 2. Typical values of the horizon r2 and the inner and outer boundaries of the ergoregion r±E ,e on
the equatorial plane.

η = 0 r2/M r−E,e/M r+E,e/M

q = 0.1 1.497493719 1.498119109 1.592179268

q = 0.2 1.489897949 1.492404180 1.651650002

q = 0.3 1.476969601 1.482625988 1.703951892

q = 0.4 1.458257570 1.468355754 1.752205971

q = 0.5 1.433012702 1.448872522 1.797677529

q = 0.6 7/5 1.422966806 1.841040496

q = 0.7 1.357071421 1.388483971 1.882710084

q = 0.8 13/10 1.341040496 1.922966806

q = 0.9 1.217944947 1.268802898 1.962012653

q = 0.99 1.070533680 1.117858921 1.996245294

Figure 1. Plot of of the ergoregion for q = 0.5 and M = 1. Cusp singularities emerge at the top and
bottom of the inner surface of the ergoregion.

At this point, some comments are in order. First of all, r = r−E ,e remains a curvature
singularity after we performed the coordinate transformation on the TS metric. Moreover,
according to the discussion here below, it turns out that switching to Boyer-Lindquist
coordinates has the effect of introducing an event horizon located in the inner region of
the ring singularity. This behaviour is not surprising if we keep in mind the example of
the Schwarzschild metric. In Kruskal-Szekeres coordinates there is no horizon, but if we
rewrite the line element in spherical coordinates, an horizon appears at r = 2M. In order
to proceed further, we recall that an event horizon can be characterized in terms of a null
surface S , that is gαβ∂αS∂βS = 0 [20]. In the case of the TS metric in Boyer-Lindquist
coordinates, such an equation reduces to[

(r−M)2 − M2 p2

4
cos2 ϑ

]3[
∆(∂rS)2 + (∂ϑS)2

]
= 0. (87)

Let us consider the surface ∆ = 0, i.e., r = M±Mp/2. Call these surfaces S+ and
S−. It can be easily verified that these surfaces indeed satisfy (87) so that they are null
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surfaces. However, due to the condition r ≥ r2 only the surface S+ should be taken into
account. Since ξ−E ,e > 1 when q > 0 (see Table 1), it follows from (86) that r−E ,e > r2. Hence,
in addition to the ring-shaped naked singularity, there is an event horizon placed in the
inner region inside the aforementioned curvature singularity. However, such a null surface
corresponds to the segment −Mp/2 ≤ z ≤ Mp/2. Finally, we observe that the term in the
first bracket of (87) vanishes at

r± = M± Mp
2

cos ϑ. (88)

with r+ and r− coinciding with r2 for ϑ = 0 and ϑ = π, respectively, and otherwise, r± < r2.
Since ∆ becomes purely imaginary on the interval r− < r < r+, we can neglect this case.

4. Conclusions and Outlook

Even though the TS space–time is relatively unknown to the majority of researchers in
General Relativity and its application in astrophysics might be questionable as pointed out
by [7], we decided to focus the present work on the TS metric due mainly to two reasons.
The first one is related to the observation that the literature on this topic is littered with
mistakes and misprints which have been able to propagate from the seminal work of [1,2]
to the most recent result concerning the shadow of a gravitational object described by the
TS metric (see [28]). Hence, the first merit of the present work is to have uncovered and
corrected several mistakes in the literature. In doing that, we were able to obtain an exact
expression for the ergoregion boundary of the TS space–time which in turn allowed to
derive exact formulae of the radii of the ergoregion in prolates spheroidal coordinates
and in Boyer-Lindquist coordinates. In addition, we also discovered that there is an event
horizon located at the inner region of a ring-shaped naked singularity.

The second reason behind our work is related to the claims made in [29], where the
authors, besides presenting the derivation of a weak lensing formula recently corrected
by [30], analyse the motion of a massive test particle starting at space-like infinity with zero
total angular momentum. It was found by [29] that for q = 0 and q = 1, the corresponding
trajectories emerging from the geodesic equations exhibit a perihelion. However, Ref. [29]
was not able to show whether the same happens for all intermediate values of the parameter
q. Hence, Ref. [29] conjectured that the conclusion should also hold for 0 < q < 1. In
order to prove/disprove such a conjecture in a forthcoming paper, it is desirable to have
bulletproof formulae to rely on and therefore, the present work represents a first step in
this direction.

Moreover, in view of the fact that the capabilities of very long baseline interferom-
etry have improved in the recent years and are expected to further increase in the next
decade [31,32] at the extent of allowing the observation of the accretion disk around a
candidate black hole, a strong gravitational lensing analysis of the TS metric might provide
a valuable theoretical resource for the experimental search of such a gravitational object in
the observed universe. A first step in this direction would require the (in)-stability analysis
of null circular orbits for the TS metric. Should they emerge from a saddle point in the
effective potential, then extra care needs to be applied in order to find out whether or not
such orbits are (un)-stable. Preliminary computations show that, in principle, this problem
can be reasonably solved using techniques similar to those adopted in [33,34].

Last but not least, the TS metric is asymptotically flat while the cosmological data
collected in the last decades seem to suggest that our universe has a positive cosmological
constant. On the other hand, to the best of the author’s knowledge, no study has been
conducted so far in the literature to extend the TS metric in the presence of a positive cosmo-
logical constant. Therefore, it would be interesting to address the problem of deriving the
deSitter–TS metric in a forthcoming paper. Excellent starting points for such an endeavour
are represented by [35,36].
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Appendix A. Numerical Tables

We present here the numerical values for the inner and outer boundaries ξ±E of the
ergoregion for different values of the rotational parameter q and of the angular variable
η (see Tables A1–A3). More precisely, we considered the intervals 0.1 ≤ q ≤ 0.99 and
0.1 ≤ η ≤ 0.99. In these ranges, the roots of the polynomial function B entering the metric
coefficient f are always complex. This indicates that modulo the quasi-regular singularities
at (1,±1), f can only become singular on the equatorial plane.

Table A1. Typical values of ξ±E in prolate spheroidal coordinates for 0.1 ≤ q ≤ 0.99 and 0.1 ≤ η ≤ 0.3.

η = 0.1 ξ−E ξ+E
q = 0.1 1.001244519 1.188572734

q = 0.2 1.005064795 1.327279875

q = 0.3 1.011741110 1.471887154

q = 0.4 1.021818037 1.636278712

q = 0.5 1.036266826 1.835649270

q = 0.6 1.056858285 2.094450443

q = 0.7 1.087128247 2.461723165

q = 0.8 1.135515223 3.062767535

q = 0.9 1.231237701 4.393029551

q = 0.99 1.665588339 14.05394768

η = 0.2 ξ−E ξ+E
q = 0.1 1.001206829 1.183300016

q = 0.2 1.004911691 1.318556370

q = 0.3 1.011387321 1.459830391

q = 0.4 1.021163733 1.620671921

q = 0.5 1.035186500 1.815985114

q = 0.6 1.055180322 2.069805474

q = 0.7 1.084590838 2.430379632

q = 0.8 1.131647154 3.021024505

q = 0.9 1.224872051 4.329457508

q = 0.99 1.649369985 13.84046576
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Table A1. Cont.

η = 0.3 ξ−E ξ+E
q = 0.1 1.001144009 1.174459550

q = 0.2 1.004656467 1.303887504

q = 0.3 1.010797398 1.439511398

q = 0.4 1.020072295 1.594321140

q = 0.5 1.033383445 1.782729578

q = 0.6 1.052377772 2.028065112

q = 0.7 1.080348579 2.377222226

q = 0.8 1.125170823 2.950140542

q = 0.9 1.214188473 4.221377158

q = 0.99 1.621979060 13.47714996

Table A2. Typical values of ξ±E in prolate spheroidal coordinates for 0.1 ≤ q ≤ 0.99 and 0.4 ≤ η ≤ 0.6.

η = 0.4 ξ−E ξ+E
q = 0.1 1.001056055 1.161969906

q = 0.2 1.004299043 1.283069381

q = 0.3 1.009970927 1.410573173

q = 0.4 1.018542316 1.556680857

q = 0.5 1.030853871 1.735101349

q = 0.6 1.048441617 1.968141982

q = 0.7 1.074381275 2.300739449

q = 0.8 1.116040824 2.847940559

q = 0.9 1.199071557 4.065240094

q = 0.99 1.582835645 12.95139687

η = 0.5 ξ−E ξ+E
q = 0.1 1.000942959 1.145711749

q = 0.2 1.003839312 1.255796218

q = 0.3 1.008907327 1.372470620

q = 0.4 1.016571816 1.506905323

q = 0.5 1.027592411 1.671872531

q = 0.6 1.043359026 1.888305850

q = 0.7 1.066659976 2.198498272

q = 0.8 1.104191334 2.710885041

q = 0.9 1.179350835 3.855211805

q = 0.99 1.531038595 12.24229644
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Table A2. Cont.

η = 0.6 ξ−E ξ+E
q = 0.1 1.000804714 1.125521784

q = 0.2 1.003277132 1.221635761

q = 0.3 1.007605846 1.324413020

q = 0.4 1.014158229 1.443739929

q = 0.5 1.023592070 1.591184450

q = 0.6 1.037113145 1.785888145

q = 0.7 1.057146248 2.066679326

q = 0.8 1.089533626 2.533323122

q = 0.9 1.154790469 3.581824704

q = 0.99 1.465246589 11.31543172

Table A3. Typical values of ξ±E in prolate spheroidal coordinates for 0.1 ≤ q ≤ 0.99 and 0.7 ≤ η ≤ 0.9.

η = 0.7 ξ−E ξ+E
q = 0.1 1.000641309 1.101183763

q = 0.2 1.002612332 1.179990007

q = 0.3 1.006065563 1.265266537

q = 0.4 1.011298381 1.365327537

q = 0.5 1.018844145 1.490203770

q = 0.6 1.029682805 1.656706163

q = 0.7 1.045791176 1.899133583

q = 0.8 1.071952509 2.305916399

q = 0.9 1.125073556 3.229025779

q = 0.99 1.383464435 10.11109287

η = 0.8 ξ−E ξ+E
q = 0.1 1.000452731 1.072415310

q = 0.2 1.001844706 1.130031675

q = 0.3 1.004285376 1.193383547

q = 0.4 1.007988474 1.268844574

q = 0.5 1.013338126 1.364432382

q = 0.6 1.021042148 1.493832491

q = 0.7 1.032534010 1.685238687

q = 0.8 1.051301327 2.011832721

q = 0.9 1.089778339 2.766600056

q = 0.99 1.282637129 8.512310772
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Table A3. Cont.

η = 0.9 ξ−E ξ+E
q = 0.1 1.000238967 1.038848419

q = 0.2 1.000974018 1.070597706

q = 0.3 1.002264010 1.106284089

q = 0.4 1.004224058 1.149750752

q = 0.5 1.007061581 1.206139834

q = 0.6 1.011160146 1.284514335

q = 0.7 1.017300392 1.403968178

q = 0.8 1.027394968 1.615050284

q = 0.9 1.048341544 2.124117081

q = 0.99 1.157799663 6.222113920
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15. Boyda, E.K.; Ganguli, S.; Hořava, P.; Varadarajan, U. Holographic protection of chronology in universes of the Gödel type. Phys.

Rev. D 2003, 67, 106003. [CrossRef]
16. Israel, D. Quantization of heterotic strings in a Godel/anti-de Sitter space–time and chronology protection. J. High Energy Phys.

2004, 1, 042. [CrossRef]
17. Drukker, N. Supertube domain-walls and elimination of closed time-like curves in string theory. Phys. Rev. D 2004, 70, 084031.

[CrossRef]
18. Lewis, T. Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. Proc. R. Soc. Lond. A 1932, 136, 176.
19. Papapetro, A. Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Ann. Phys. 1953, 12, 309. [CrossRef]
20. Islam, J.N. Rotating Fields in General Relativity; Cambridge University Press: Cambridge, UK, 2009.
21. Cosgrove, C.M. A new formulation of the field equations for the stationary axisymmetric vacuum gravitational field. I. General

theory. J. Phys. A Math. Gen. 1978, 11, 2389. [CrossRef]
22. Cosgrove, C.M. A new formulation of the field equations for the stationary axisymmetric vacuum gravitational field. II. Separable

solutions. J. Phys. A Math. Gen. 1978, 11, 2405. [CrossRef]
23. Ernst, F.J. New Formulation of the Axially Symmetric Gravitational Field Problem. Phys. Rev. 1968, 167, 1175. [CrossRef]
24. Voorhees, B.H. Static Axially Symmetric Gravitational Fields. Phys. Rev. D 1970, 2, 2119. [CrossRef]
25. Kodama, H.; Hikida, W. Global structure of the Zipoy-Voorhees-Weyl spacetime and the δ = 2 Tomimatsu–Sato spacetime. Class.

Quantum Gravity 2003, 20, 5121. [CrossRef]
26. Bronstein, I.N.; Semendjajew, K.A.; Musiol, G.; Mülig, H. Taschenbuch der Mathematik; Verlag Harri Deutsch: Frankfurt am Main,

Germany, 2005.

http://doi.org/10.1103/PhysRevLett.29.1344
http://dx.doi.org/10.1143/PTP.50.95
http://dx.doi.org/10.1143/PTP.57.1951
http://dx.doi.org/10.1063/1.523213
http://dx.doi.org/10.1143/PTP.59.1870
http://dx.doi.org/10.1143/PTP.100.523
http://dx.doi.org/10.1103/PhysRevLett.30.398
http://dx.doi.org/10.1088/0264-9381/3/6/001
http://dx.doi.org/10.12942/lrr-2007-5
http://www.ncbi.nlm.nih.gov/pubmed/28179820
http://dx.doi.org/10.1143/PTP.107.449
http://dx.doi.org/10.1103/PhysRevD.67.106003
http://dx.doi.org/10.1088/1126-6708/2004/01/042
http://dx.doi.org/10.1103/PhysRevD.70.084031
http://dx.doi.org/10.1002/andp.19534470412
http://dx.doi.org/10.1088/0305-4470/11/12/007
http://dx.doi.org/10.1088/0305-4470/11/12/008
http://dx.doi.org/10.1103/PhysRev.167.1175
http://dx.doi.org/10.1103/PhysRevD.2.2119
http://dx.doi.org/10.1088/0264-9381/20/23/011


Universe 2023, 9, 77 18 of 18

27. Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984.
28. Bambi, C.; Yoshida, N. Shape and position of the shadow in the δ = 2 Tomimatsu–Sato space–time. Class. Quantum Gravity 2010,

27, 205006. [CrossRef]
29. Bose, S.K.; Wang, M.Y. Geodesic Motions in the Tomimatsu–Sato Metric. Phys. Rev. D 1973, 8, 361. [CrossRef]
30. Batic, D.; Chanda, S.; Guha, P. Optical properties of null geodesics emerging from dynamical systems. Eur. Phys. J. C 2022, 82, 422.

[CrossRef]
31. Doeleman, S.; Weintroub, J.; Rogers, A.E.E.; Plambeck, R.; Freund, R.; Tilanus, R.P.J.; Friberg, P.; Ziurys, L.M.; Moran, J.M.; Corey,

B.; et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 2008, 455, 78.
[CrossRef]

32. Doeleman, S.; Agol, E.; Backer, D.; Baganoff, F.; Bower, G.C.; Broderick, A.; Fabian, A.; Fish, V.; Gammie, C.; Ho, P.; et al. Imaging
an Event Horizon: Submm-VLBI of a Super Massive Black Hole. Science White Paper submitted to the ASTRO2010 Decadal
Review Panels. arXiv 2009, arXiv:0906.3899.

33. Alawadi, M.A.; Batic, D.; Nowakowski, M. Light bending in a two black hole metric. Class. Quantum Grav. 2021, 38, 045003.
[CrossRef]

34. Batic, D.; Kittaneh, H.A.; Nowakowski, M. Relevant scales for the C-metric with positive cosmological constant. Phys. Rev. D
2021, 104, 124029. [CrossRef]

35. Charmousis, C.; Langlois, D.; Steer, D.; Zegers, R. Rotating spacetimes with a cosmological constant. J. High Energy Phys. 2007,
702, 064. [CrossRef]

36. Astorino, M. Charging axisymmetric space–times with cosmological constant. J. High Energy Phys. 2012, 6, 086. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/0264-9381/27/20/205006
http://dx.doi.org/10.1103/PhysRevD.8.361
http://dx.doi.org/10.1140/epjc/s10052-022-10392-z
http://dx.doi.org/10.1038/nature07245
http://dx.doi.org/10.1088/1361-6382/abce6c
http://dx.doi.org/10.1103/PhysRevD.104.124029
http://dx.doi.org/10.1088/1126-6708/2007/02/064
http://dx.doi.org/10.1007/JHEP06(2012)086

	Introduction
	Derivation of the Tomimatsu–Sato Metric with Deformation Parameter =2
	Analysis of the Metric
	Conclusions and Outlook
	Numerical Tables
	References

