Automatic Identification of Aurora Fold Structure in All-Sky Images
Abstract
:1. Introduction
2. Methods
2.1. Aurora Shape Knowledge Extraction
2.2. Skeleton Representation of Aurora
2.3. Identification of Fold Structure
Algorithm 1: Aurora fold structure automatic identification. |
3. Data
3.1. Observation Data
3.2. F-Dataset
4. Experimental Results and Analysis
4.1. Setting and Preprocessing
4.2. Performance of Aurora Fold Structure Identification
4.3. Statistical Study of Aurora Fold Structures
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Liang, J.; Hu, Z.; Hu, H.; Zhao, H.; Hu, H.; Gao, X.; Yang, H. Spatial texture based automatic classification of dayside aurora in all-sky images. J. Atmos. Sol.-Terr. Phys. 2010, 72, 498–508. [Google Scholar] [CrossRef]
- Akasofu, S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Akasofu, S.I. Dynamic morphology of auroras. Space Sci. Rev. 1965, 4, 498–540. [Google Scholar] [CrossRef]
- Nanjo, S.; Hozumi, Y.; Hosokawa, K.; Kataoka, R.; Miyoshi, Y.; Oyama, S.i.; Ozaki, M.; Shiokawa, K.; Kurita, S. Fine-Scale Visualization of Aurora in a Wide Area Using Color Digital Camera Images From the International Space Station. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027729. [Google Scholar] [CrossRef]
- Motoba, T.; Kadokura, A.; Ebihara, Y.; Frey, H.U.; Weatherwax, A.T.; Sato, N. Simultaneous ground-satellite optical observations of postnoon shock aurora in the Southern Hemisphere. J. Geophys. Res. Space Phys. 2009, 114, A07209. [Google Scholar] [CrossRef]
- Syrjäsuo, M.T.; Kauristie, K.; Pulkkinen, T.I. A search engine for auroral forms. Adv. Space Res. 2001, 28, 1611–1616. [Google Scholar] [CrossRef]
- Syrjäsuo, M.T.; Donovan, E.F. Diurnal auroral occurrence statistics obtained via machine vision. Ann. Geophys. 2004, 22, 1103–1113. [Google Scholar] [CrossRef]
- Fu, R.; Gao, X.; Li, X.; Tao, D.; Jian, Y.; Li, J.; Hu, H.; Yang, H. An integrated aurora image retrieval system: AuroraEye. J. Vis. Commun. Image Represent. 2010, 21, 787–797. [Google Scholar] [CrossRef]
- Syrjäsuo, M.T.; Partamies, N. Numeric Image Features for Detection of Aurora. IEEE Geosci. Remote Sens. Lett. 2012, 9, 176–179. [Google Scholar] [CrossRef]
- Rao, J.; Partamies, N.; Amariutei, O.; Syrjäsuo, M.; Sande, K.E.A.v.d. Automatic Auroral Detection in Color All-Sky Camera Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4717–4725. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, J.; Hu, Z.; Zhao, H. Auroral Sequence Representation and Classification Using Hidden Markov Models. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5049–5060. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, J.; Hu, Z.; Xing, Z.; Zhao, H. Automatic recognition of poleward moving auroras from all-sky image sequences based on HMM and SVM. Planet. Space Sci. 2012, 69, 40–48. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, J.; Hu, Z. Auroral event detection using spatiotemporal statistics of local motion vectors. Adv. Polar Sci. 2013, 24, 175–182. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, H.; Hu, Z.; Qiu, Q. A method for detecting the change of auroral activities based on the All-sky image sequence. Chin. J. Geophys. 2015, 58, 451–460. [Google Scholar] [CrossRef]
- Han, B.; Song, Y.; Gao, X.; Wang, X. Dynamic aurora sequence recognition using Volume Local Directional Pattern with local and global features. Neurocomputing 2016, 184, 168–175. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Hu, Z.; Liu, M. Auroral event representation based on the n-ary fusion of multiple oriented energies. Neurocomputing 2017, 253, 42–48. [Google Scholar] [CrossRef]
- Zhu, L.; Sojka, J.J.; Schunk, R.W. Active ionospheric role in small-scale aurora structuring. J. Atmos. Sol.-Terr. Phys. 2005, 67, 687–700. [Google Scholar] [CrossRef]
- Partamies, N.; Kauristie, K.; Pulkkinen, T.I.; Brittnacher, M. Statistical study of auroral spirals. J. Geophys. Res. Atmos. 2001, 106, 15415–15428. [Google Scholar] [CrossRef]
- Samson, J.C.; Cogger, L.L.; Pao, Q. Observations of field line resonances, auroral arcs, and auroral vortex structures. J. Geophys. Res. Phys. 1996, 101, 17373–17383. [Google Scholar] [CrossRef]
- Chaston, C.C.; Seki, K. Small-scale auroral current sheet structuring. J. Geophys. Res. Space Phys. 2010, 115, A11221. [Google Scholar] [CrossRef]
- Whiter, D.K.; Sundberg, H.; Lanchester, B.S.; Dreyer, J.; Partamies, N.; Ivchenko, N.; Di Fraia, M.Z.; Oliver, R.; Serpell-Stevens, A.; Shaw-Diaz, T.; et al. Fine-scale dynamics of fragmented aurora-like emissions. Ann. Geophys. 2021, 39, 975–989. [Google Scholar] [CrossRef]
- Dreyer, J.; Partamies, N.; Whiter, D.; Ellingsen, P.; Baddeley, L.J.; Buchert, S. Fragmented Aurora-like Emissions (FAEs) as a new type of aurora-like phenomenon. Ann. Geophys. Discuss. 2020, 2020, 1–19. [Google Scholar]
- Dahlgren, H.; Ivchenko, N.; Sullivan, J.; Lanchester, B.S.; Marklund, G.; Whiter, D. Morphology and dynamics of aurora at fine scale: First results from the ASK instrument. Ann. Geophys. 2008, 26, 1041–1048. [Google Scholar] [CrossRef]
- Wagner, J.S.; Sydora, R.D.; Tajima, T.; Hallinan, T.; Lee, L.C.; Akasofu, S.I. Small-scale auroral arc deformations. J. Geophys. Res. Space Phys. 1983, 88, 8013–8019. [Google Scholar] [CrossRef]
- Sandahl, I.; Sergienko, T.; Brändström, U. Fine structure of optical aurora. J. Atmos. Sol.-Terr. Phys. 2008, 70, 2275–2292. [Google Scholar] [CrossRef]
- Trondsen, T.S.; Cogger, L.L. Fine-scale optical observations of Aurora. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 179–188. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Granada, Spain, 20 September 2018; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 2019, 46, 576–589. [Google Scholar] [CrossRef]
- Danielides, M.A.; Kozlovsky, A. Auroral Vortex Structures as a Result of Disturbed Geomagnetic Conditions. COSPAR Colloquia Series. 2001, 11, 503–506. [Google Scholar]
- Asamura, K.; Chaston, C.C.; Itoh, Y.; Fujimoto, M.; Sakanoi, T.; Ebihara, Y.; Yamazaki, A.; Hirahara, M.; Seki, K.; Kasaba, Y.; et al. Sheared flows and small-scale Alfvén wave generation in the auroral acceleration region. Geophys. Res. Lett. 2009, 36, 503–506. [Google Scholar] [CrossRef]
- Ivchenko, N.; Blixt, E.M.; Lanchester, B.S. Multispectral observations of auroral rays and curls. Geophys. Res. Lett. 2005, 32, 1061–1064. [Google Scholar] [CrossRef]
- Kerschnitzki, M.; Kollmannsberger, P.; Burghammer, M.; Duda, G.N.; Weinkamer, R.; Wagermaier, W.; Fratzl, P. Architecture of the osteocyte network correlates with bone material quality. J. Bone Miner. Res. 2013, 28, 1837–1845. [Google Scholar] [CrossRef]
Annotation | Identification Result | |
---|---|---|
Positive | Negative | |
Positive | 1271 | 729 |
Negative | 137 | 863 |
Precise (%) | 90.27 | |
Recall (%) | 63.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Fang, H.; Li, B. Automatic Identification of Aurora Fold Structure in All-Sky Images. Universe 2023, 9, 79. https://doi.org/10.3390/universe9020079
Wang Q, Fang H, Li B. Automatic Identification of Aurora Fold Structure in All-Sky Images. Universe. 2023; 9(2):79. https://doi.org/10.3390/universe9020079
Chicago/Turabian StyleWang, Qian, Haonan Fang, and Bin Li. 2023. "Automatic Identification of Aurora Fold Structure in All-Sky Images" Universe 9, no. 2: 79. https://doi.org/10.3390/universe9020079
APA StyleWang, Q., Fang, H., & Li, B. (2023). Automatic Identification of Aurora Fold Structure in All-Sky Images. Universe, 9(2), 79. https://doi.org/10.3390/universe9020079