Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions
Abstract
:1. Introduction
2. Nuclear Potentials and the Quantum Problem
2.1. Adding Pauli Blocking to a Potential
2.2. The Potential
3. Nuclei
4. Symmetry Energy
5. Collisions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- The chosen model was , where , , and . This is a linear model with the parameters , , , and to be estimated. We intentionally avoided nonlinear models since these may lead to sub-optimal estimates. Notice, however, that the estimation is conditioned to the chosen isotopes ( values);
- The estimation was carried out by means of a least-trimmed-square estimator, which corresponds to the class of robust estimators, and is known to be more insensitive to outliers;
- The fitting shown in Figure 3 corresponds to the evaluation of the model at the data set. The values in between correspond to splines of order 2.
References
- Colonna, M.; Zhang, Y.X.; Wang, Y.J.; Cozma, D.; Danielewicz, P.; Ko, C.M.; Zhang, F.S. Comparison of Heavy-Ion Transport Simulations: Mean-field Dynamics in a Box. Phys. Rev. C 2021, 104, 024603. [Google Scholar] [CrossRef]
- Bertsch, G.F.; Gupta, S.D. A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 1988, 160, 190. [Google Scholar] [CrossRef]
- Danielewicz, P. Determination of the mean-field momentum-dependence using elliptic flow. Nucl. Phys. A 2000, 673, 375. [Google Scholar] [CrossRef]
- Li, B.-A. Neutron-proton differential flow as a probe of isospin-dependence of the nuclear equation of state. Phys. Rev. Lett. 2000, 85, 4221. [Google Scholar] [CrossRef] [PubMed]
- Aichelin, J.; Stöcker, H. Quantum molecular dynamics—A novel approach to N-body correlations in heavy ion collisions. Phys. Lett. 1986, B176, 14. [Google Scholar] [CrossRef]
- Ono, A.; Danielewicz, P.; Friedman, W.A.; Lynch, W.G.; Tsang, M.B. Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 2003, 68, 051601(R). [Google Scholar] [CrossRef]
- Bondorf, J.P.; Botvina, A.S.; Iljinov, A.S.; Mishustin, l.N.; Sneppen, K. Statistical multifragmentation of nuclei. Phys. Rep. 1995, 257, 133. [Google Scholar] [CrossRef]
- Ono, A.; Horiuchi, H.; Maruyama, T.; Ohnishi, A. Antisymmetrized Version of Molecular Dynamics with Two Nucleon Collisions and Its Application to Heavy Ion Reactions. Prog. Theor. Phys 1992, 87, 1185. [Google Scholar] [CrossRef]
- Lee, J.W.; Tsang, M.B.; Tsang, C.Y.; Wang, R.; Barney, J.; Estee, J.; Isobe, T.; Kaneko, M.; Kurata-Nishimura, M.; Lynch, W.G. Isoscaling in central Sn+Sn collisions at 270 MeV/u. Eur. Phys. J. A 2022, 58, 201. [Google Scholar] [CrossRef]
- Chernomoretz, A.; Gingras, L.; Larochelle, Y.; Beaulieu, L.; Roy, R.; St-Pierre, C.; Dorso, C.O. Quasiclassical model of intermediate velocity particle production in asymmetric heavy ion reactions. Phys. Rev. C 2002, 65, 054613. [Google Scholar] [CrossRef]
- Barrañón, A.; Dorso, C.O.; López, J.A. Searching for criticality in nuclear fragmentation. Rev. Mex. Fís. 2001, 47 (Suppl. 2), 93. [Google Scholar]
- Barrañón, A.; Cárdenas, R.; Dorso, C.O.; López, J.A. The critical exponent of nuclear fragmentation. Acta Phys. Hung. A Heavy Ion Phys. 2003, 17, 59. [Google Scholar] [CrossRef]
- Barrañón, A.; Dorso, C.O.; López, J.A. Cooling of Caloric Curves in Heavy Ion Collisions. Información Tecnológica 2003, 14, 31–34. [Google Scholar]
- Barrañón, A.; Escamilla, J.; López, J.A. Entropy in the nuclear caloric curve. Phys. Rev. C. 2004, 69, 014601. [Google Scholar] [CrossRef]
- Barrañón, A.; Escamilla, J.; López, J.A. The transition temperature of the nuclear caloric curve. Bras. J. Phys. 2004, 34, 904. [Google Scholar] [CrossRef]
- Dorso, C.O.; Escudero, C.R.; Ison, M.; López, J.A. Dynamical aspects of isoscaling. Phys. Rev. C 2006, 73, 044601. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Pérez-García, M.A.; Berry, D.K.; Piekarewicz, J. Dynamical response of the nuclear “pasta” in neutron star crusts. Phys. Rev. C 2005, 72, 035801. [Google Scholar] [CrossRef]
- Dorso, C.O.; Frank, G.; López, J.A. Symmetry energy in neutron star matter. Nucl. Phys. A 2019, 984, 77–98. [Google Scholar] [CrossRef]
- López, J.A.; Dorso, C.O.; Frank, G. Properties of nuclear pastas. Front. Phys. 2021, 16, 24301. [Google Scholar] [CrossRef]
- López, J.A.; Porras, S.T. Symmetry energy in the liquid–gas mixture. Nucl. Phys. A 2017, 957, 312–320. [Google Scholar] [CrossRef]
- Hagel, K.; Natowitz, J.B.; Röpke, G. The equation of state and symmetry energy of low-density nuclear matter. Eur. Phys. J. A 2014, 50, 39. [Google Scholar] [CrossRef]
- Wada, R.; Hagel, K.; Qin, L.; Natowitz, J.B.; Ma, Y.G.; Röpke, G.; Shlomo, S.; Bonasera, A.; Typel, S.; Chen, Z.; et al. Nuclear matter symmetry energy at 0.03 ≤ ρ/ρ0 ≤ 0.2. Phys. Rev. C 2012, 85, 064618. [Google Scholar] [CrossRef]
- Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; et al. Experimental determination of the symmetry energy of a low density nuclear gas. Phys. Rev. C 2007, 75, 014601. [Google Scholar] [CrossRef]
- López, J.A.; Ramírez-Homs, E.; González, R.; Ravelo, R. Isospin-asymmetric nuclear matter. Phys. Rev. C 2014, 89, 024611. [Google Scholar] [CrossRef]
- Wilets, L.; Henley, E.M.; Kraft, M.; Mackellar, A.D. Classical many-body model for heavy-ion collisions incorporating the Pauli principle. Nucl. Phys. A 1977, 282, 341–350. [Google Scholar] [CrossRef]
- Wilets, L.; Yariv, Y.; Chestnut, R. Classical many-body model for heavy-ion collisions (II). Nucl. Phys. A 1978, 301, 359–364. [Google Scholar] [CrossRef]
- López, J.A.; Lübeck, G. Nuclear spinodal decomposition. Phys. Lett. B 1989, 219, 215–221. [Google Scholar] [CrossRef]
- Dorso, C.; Randrup, J. Classical simulation of nuclear systems. Phys. Lett. B 1988, 215, 611–616. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Pérez-García, M.A.; Piekarewicz, J. Neutrino-“pasta” scattering: The opacity of nonuniform neutron-rich matter. Phys. Rev. C 2004, 69, 045804. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Pérez-García, M.A.; Carriere, J.; Berry, D.K.; Piekarewicz, J. Nonuniform neutron-rich matter and coherent neutrino scattering. Phys. Rev. C 2004, 70, 065806. [Google Scholar] [CrossRef]
- Piekarewicz, J.; Sánchez, G.T. Proton fraction in the inner neutron-star crust. Phys. Rev. C 2012, 85, 015807. [Google Scholar] [CrossRef]
- Dorso, C.O.; Frank, G.; López, J.A. Phase transitions and symmetry energy in nuclear pasta. Nucl. Phys. A 2018, 978, 35–64. [Google Scholar] [CrossRef]
- Nordheim, L.W. Transport phenomena in Einstein-Bose and fermi-dirac gases. Proc. R. Soc. 1928, 119, 689. [Google Scholar]
- Lenk, R.J.; Schlagel, T.J.; Pandharipande, V.R. Accuracy of the Vlasov-Nordheim approximation in the classical limit. Phys. Rev. C 1990, 42, 372. [Google Scholar] [CrossRef] [PubMed]
- Dorso, C.O.; Molinelli, P.A.G.; López, J.A. From nuclei to nuclear pasta. In Neutron Star Crust; Bertulani, C.A., Piekarewicz, J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 151–169. [Google Scholar]
- Dorso, C.O.; Molinelli, P.A.G.; López, J.A. Topological characterization of neutron star crusts. Phys. Rev. C 2012, 86, 055805. [Google Scholar] [CrossRef]
- López, J.A.; Ramírez-Homs, E. Effect of an electron gas on a neutron-rich nuclear pasta. Nuc. Sci. Tech. 2015, 26, S20502. [Google Scholar]
- Molinelli, P.A.G.; Nichols, J.I.; López, J.A.; Dorso, C.O. Simulations of cold nuclear matter at sub-saturation densities. Nucl. Phys. A 2014, 923, 31–50. [Google Scholar] [CrossRef]
- Dorso, C.O.; Molinelli, P.A.; López, J.A. Isoscaling and the nuclear EoS. J. Phys. G Nucl. Part. Phys. 2011, 38, 115101. [Google Scholar] [CrossRef]
- López, J.A.; Terrazas, A.G.; Porras, S.T. Isospin-dependent phase diagram of nuclear matter. Nucl. Phys. A 2020, 994, 121664. [Google Scholar] [CrossRef]
- Dorso, C.O.; Duarte, S.; Randrup, J. Classical simulation of the Fermi gas. Phys. Lett. B 1987, 188, 287. [Google Scholar] [CrossRef]
- Boal, D.H.; Glosli, J.N. From binary breakup to multifragmentation: Computer simulation. Phys. Rev. C 1988, 37, 91. [Google Scholar] [CrossRef] [PubMed]
- Boal, D.H.; Glosli, J.N. Quasiparticle model for nuclear dynamics studies: Ground-state properties. Phys. Rev. C 1988, 38, 1870. [Google Scholar] [CrossRef] [PubMed]
- Dorso, C.O.; Frank, G.; López, J.A. Symmetry energy and the Pauli exclusion principle. Symmetry 2021, 13, 2116. [Google Scholar] [CrossRef]
- Maruyama, T.; Watanabe, G.; Chiba, S. Molecular dynamics for dense matter. Prog. Theor. Exp. Phys. 2012, 01A201. [Google Scholar] [CrossRef]
- Dorso, C.O.; Randrup, J. Quasi-Classical Simulation of Nuclear Dynamics: Phase Evolution of Disassembling Nuclei. Phys. Lett. B 1989, 232, 29–36. [Google Scholar] [CrossRef]
- Audi, G.; Wapstra, A.H.; Thibault, C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nuc. Phys. A 2003, 729, 337–676. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Lasses, A.; Conneryd, J. Explicit Symplectic Integrators for Non-Separable Hamiltonians in Molecular Dynamics. 2019. Available online: https://www.diva-portal.org/smash/get/diva2:1341307/FULLTEXT01.pdf (accessed on 12 February 2023).
- Alcain, P.N.; Dorso, C.O. Dynamics of fragment formation in neutron-rich matter. Phys. Rev. C 2018, 97, 015803. [Google Scholar] [CrossRef]
- Rohlf, J.W. Modern Physics from α to Z0; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Aldawdy, F.; Al-jomaily, F.M.A. Fitting the Nuclear Binding Energy Coefficients for Liquid Drop Model and Applying a Mathematical Terms to the Closed Shell of Magic Nuclei. Arab J. Nuc. Sci Appl. 2022, 55, 150–160. [Google Scholar]
- Li, B.A.; Chen, L.W.; Ko, C.M. Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 2008, 464, 113–281. [Google Scholar] [CrossRef]
- von Weizsäcker, C.F. Zur theorie der kernmassen. Z. Physik 1935, 96, 431–458. [Google Scholar] [CrossRef]
- Tsang, M.B.; Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.G.; Steiner, A.W. Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 2009, 102, 122701. [Google Scholar] [CrossRef] [PubMed]
- Barwinski, V.J.A. Radioactive Isotopes Database. Available online: http://barwinski.net/isotopes/query_select.php (accessed on 22 February 2023).
- Chen, L.W.; Ko, C.M.; Li, B.A. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Phys. Rev. C 2007, 76, 054316. [Google Scholar] [CrossRef]
Element | A | N | Z | E/A [MeV] | R [fm] |
---|---|---|---|---|---|
Helium | 4 | 2 | 2 | 5.23 | 1.5 |
Lithium | 6 | 3 | 3 | 5.58 | 1.7 |
Carbon | 12 | 6 | 6 | 6.64 | 2.19 |
Oxygen | 16 | 6 | 10 | 6.97 | 2.34 |
Neon | 20 | 10 | 10 | 7.38 | 2.58 |
Silicon | 28 | 14 | 14 | 7.78 | 2.86 |
Calcium | 40 | 20 | 20 | 8.10 | 3.21 |
Zinc | 64 | 34 | 30 | 8.76 | 3.72 |
Krypton | 82 | 46 | 36 | 8.51 | 4.06 |
Cesium | 137 | 82 | 55 | 8.30 | 4.80 |
Mercury | 197 | 117 | 80 | 7.98 | 5.41 |
Uranium | 235 | 143 | 92 | 7.65 | 5.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorso, C.O.; Frank, G.; López, J.A. Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions. Universe 2023, 9, 119. https://doi.org/10.3390/universe9030119
Dorso CO, Frank G, López JA. Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions. Universe. 2023; 9(3):119. https://doi.org/10.3390/universe9030119
Chicago/Turabian StyleDorso, Claudio O., Guillermo Frank, and Jorge A. López. 2023. "Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions" Universe 9, no. 3: 119. https://doi.org/10.3390/universe9030119
APA StyleDorso, C. O., Frank, G., & López, J. A. (2023). Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions. Universe, 9(3), 119. https://doi.org/10.3390/universe9030119