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Abstract: Casimir energy is always suggested as a possible source to create a traversable wormhole.
It is also used to demonstrate the existence of negative energy, which can be created in a lab. To gen-
eralize this idea, Yukawa modification of a Casimir source has been considered in Remo Garattini
(Eur. Phys. J. C 81 no.9, 824, 2021). In this work, we explore the Yukawa–Casimir wormholes in
symmetric teleparallel gravity. We have taken four different forms of f (Q) to obtain wormhole
solutions powered by the original Casimir energy source and Yukawa modification of the Casimir
energy source. In power law form f (Q) = αQ2 + β and quadratic form f (Q) = αQ2 + βQ + γ,
where α, β, γ are constants and Q is non-metricity scalar, we analyze that wormhole throat is filled
with non-exotic matter. We find self-sustained traversable wormholes in the Casimir source where
null energy conditions are violated in all specific forms of f (Q), while after Yukawa modification,
it is observed that violation of null energy conditions is restricted to some regions in the vicinity of
the throat.

Keywords: Yukawa–Casimir; wormholes; f (Q) gravity; ECs
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1. Introduction

One of the greatest desires of mankind is to explore and to travel to the distant regions
in the universe, which is only possible by faster-than-light travel, and this is where the
concept of a wormhole comes into play, which can be considered as a tool, hypothetically,
to provide faster than light inter-universe, as well intra-universe travel. Additionally, this
the idea of a wormhole is associated with the probability of time-travel. The classical
solution to the Einstein field equations define the wormhole, which is free from horizon
and singularity. Wormholes are hypothetical structures that are supposed to be tunnel-
like in shape and have two openings at each end connected with a throat. Although the
wormholes are completely hypothetical up until now and there is no experimental proof of
their existence, still the curiosity regarding them is exponentially increasing, as they are
assumed to be a potential instrument for time travel and interstellar travel in an affordable
time span, where affordable signifies being within the human life time. The lensing and
light deflection caused by wormholes are investigated in this regard [1–3].

The idea of static wormholes in the form of Schwarschild solutions, joining two
asymptotically flat regions in space-time, was first given by Flamm [4]. The solution of
Einstein field equations coincides with the solution of traversable wormholes [5]. The idea
of traversable wormholes, also called Einstein Rosen bridges, was first conceived by Ein-
stein and Nathan Rosen [6]. Eventually, the solutions close to the Einstein Rosen bridge
connecting two Schwarschild solutions were also achieved [7,8]. Morrice and Thorne
worked on the physical requirements to construct such an apparatus and presented the
idea of spherically symmetric traversable wormholes, which subsequently proved to be in
synchronization with tachyonic massless scalar fields. Later on, Yurtsever, along with them,
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introduced the concept of a time machine, thus giving a possible solution of a traversable
wormhole [9–14].

It is evident that the most astounding theories in science are associated with Einstein,
and the most revolutionary is the general theory of relativity. With the emergence of the
techniques such as EHT, VIRGO, and gravitational lenses, it is experimentally proven to
be an eighty percent correct theory of gravity [15–18]. From September 2015 to January
2016, advanced LIGO, for the first time, detected the gravitational waves from the merger
of black-holes [19], justifying another conjecture of general relativity that gravitational
waves are the result of the distortion in the curvature of space time. The general relativity
is inconsistent with the present acceleration of the universe [20]. Within the framework of
general relativity, only with the help of extremely fine-tuned cosmological or a typical dark
energy source, this phenomenon of the universe can be described [21]. This inconsistency
leads to the evolution of extensions of general relativity in the form of modified theories
of gravity. The most simple theories among these extensions are the scalar tensor theories
that can justify the accelerated expansion of the universe [22,23]. Secondly, nowadays,
researchers are more interested in the solution of traversable wormholes free from any
kind of singularity and any event horizon, as the Schwarzschild metric shatters close
to the event horizon. Hence, some adjustments have to be made in the metric, along
with some restrictions on the wormhole throat by implementing Birkho theorem [24],
in which case, mass energy becomes less than the radial tension [25–28], leading to the
violation of null energy conditions (NEC). This violation, in turn, leads to the presence of
exotic matter. To avoid this presence of exotic matter in space-time or wormholes, various
modified theories of gravity were evolved, where higher order curvature terms account for
the violation of null energy conditions. A thin shell traversable wormhole solution was
produced in the framework of f (R) gravity. The coupling of geometry with the matter
terms gave rise to the f (R, T) theory of gravity, and several wormhole solutions were
studied for several forms of f (R, T) [29–47].

Teleparallel and other modified theories of gravity also played a major role in exploring
the solutions of traversable wormholes [48–53]. Teleparallel theory [54,55] has been proven
to be one of the potential alternatives of general relativity. Here, the geometry is free from
torsion and curvature, while the gravitational interactions of the space-time are portrayed
by the non-metricity term Q. The Lagrangian of f (Q) gravity is reformed in explicit
function of red-shift, f (z) to justify these teleparallel gravity models by means of various
observational tools, such as gamma ray bursts, cosmic microwave background, Baryon
acoustic oscillations data, quasars etc [56,57]. Various researchers established different
gravitational modification classes implementing different function forms of f (Q) and
discussed the wormhole solutions and other cosmographical results [58–67].

As stated earlier, an unfortunate consequence in general relativity is the unavoidable
association of wormhole traversability of wormhole with the violation of NEC, which
implies the exotic matter treading toward the wormhole throat which has negative energy.
As the classical matter justifies the null energy condition, the wormhole solution can be
obtained in the framework of a semi-classical or quantum field. In that case Casimir energy
density of the Casimir device could be an appropriate source of exotic energy, as until
now, Casimir energy was the only artificial source of negative energy [68]. The Casimir
energy arises in a vacuum between two closely placed, uncharged, plane parallel metallic
plates. An attractive force appears in this event, which was predicted in 1948 and later on
confirmed experimentally in the Philips Laboratories [69,70] and by other investigators in
recent years [71–73].

A modification to the original Casimir shape function [74] is made by implementing
the Yukawa term. The zero tidal force condition (ZTF) was imposed by modifying the
original profile with Yukawa-type modifications to procure different solutions to obtain
the signals of traversable wormholes and the possibility of obtaining negative energy
density more concentrated in the proximity of throat, as they stated in their article [75].
Following [62,76], in the current work, we are interested in the probable solutions of
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traversable wormholes with ordinary matter devising the Yukawa–Casimir shape function
in the backdrop of symmetric teleparallel gravity. In [62,76,77], the authors explored the
possible existence of wormhole solutions in a recently proposed symmetric teleparallel
gravity, or f (Q) gravity, as the WHs are supported by the exotic matter, and that is an
entirely unsolved problem. The key difference between symmetric teleparallel gravity
and general relativity (GR) is the role played by the affine connection, Γα

µν, rather than the
physical manifold. Most remarkably, f (Q) gravity is equivalent to GR in flat space [55]. It
is important to keep in mind that, similar to the f (T) gravity, f (Q) gravity also features
in second order field equations, while gravitational field equations of f (R) gravity are of
the fourth-order [78]. Therefore, f (Q) gravity provides a different geometric description of
gravity, which is nevertheless equivalent to GR [76]. However, this work is different from
the work [62,76,77] in different ways. Here, we investigate traversable wormhole solutions
with the Yukawa–Casimir shape function in the backdrop of f (Q) gravity, which has not
been performed previously. We focused on exploring the solution of traversable wormhole
space-time threaded by the ordinary matter. We tried to find such a solution where the
negative energy required holding the throat open for requisite time can be sourced from
some other source of negative energy. We studied four different functional forms of f (Q)
gravity. The first case showcases the linear form. The second and third cases analyze
Yukawa–Casimir wormhole solutions for power law forms. The fourth case is the inverse
power law form of teleparallel gravity.

2. Symmetric Teleparallel Gravity i.e., f (Q)-Gravity

The action corresponding to the symmetric teleparallel gravity, taken in this article,
is [79]

S =
1
2

∫ [
f (Q) + 2Lµ

]√
−gd4x. (1)

Here, the function f (Q) regards to the non-metricity term Q, whereas the matter
Lagrangian density can be described as Lµ, and the determinant of the metric gxy is given
as g. The equation for non-metricity tensor is written as

Qλxy = ∇λgxy. (2)

The two independent traces corresponding to non-metricity tensor come out to be

Qφ = Qφ
x

x, Q̄φ = Qx
φx. (3)

Jiminez et al. [55] addressed this new geometry as new general relativity. Additionally,
they defined the non-metricity conjugate related to the super-potential of this so-called new
general relativity as

Pφ
xy =

1
4

[
−Qφ

xy + 2Qφ
xy + Qφgxy − Q̄φgxy − δ

φ

(xQy)

]
, (4)

which can be snatched by contemplating the following form of non-metricity tensor

Q = −QφxyPφxy. (5)

The features of matter threading the space-time are defined by the energy momentum
tensor, which is stated as

Txy = − 2√−g
δ
(√−gLµ

)
δgxy . (6)

We obtain the motion equations by varying the action (1), with respect to the metric
tensor gxy, as

2∇η√−g
(√
−g fQPη

xy
)
+

1
2

gxy f + fQ

(
Pxηζ Qy

ηζ − 2QηζxPηζy

)
= −Txy. (7)
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Here, fQ represents the total derivative of f , with respect to Q. The variation of
Equation (1), regarding the connections, gives the following relation

∇x∇y
(√
−g fQPη

xy
)
= 0. (8)

The field equations assert conserving the energy momentum tensor with the confor-
mity of specified f (Q) gravity. In the present study, we focus on specifying the gravitational
field equations commanding the static and spherically symmetric solutions [80] to the
wormhole geometry.

3. Wormhole Geometry and Solution of Field Equations in f (Q) Gravity

The usual spherically symmetric and static line element of Morris–Thorne class to
specify the wormhole geometry is written as

ds2 = − exp(2φ(r))dt2 +

(
r− b(r)

r

)−1
dr2 + r2dθ2 + r2sin2θdφ2. (9)

Here, the redshift function of the intervening object with regards to the radial co-
ordinate r is given by φ(r). By the definition of radial coordinate r as 0 < r0 ≤ r ≤ ∞,
its non-monotonic behavior is indicated. One can easily collect that r falls from ∞ and
approaches b(r0), which is the minimum value r0 and after attaining this minimum value,
it again proceeds to infinity. This minimum r0 is the throat radius. To comply with the
traversability of a wormhole, it has to be prevented from any event horizon or the presence
of singularity. The redshift function, therefore, is restricted to attain only a non-zero finite
value to avoid such occurrence. In our present article, we are examining the Yukawa–
Casimir wormhole [75] solutions for which the shape function and redshift functions are
fixed and are obtained by introducing Yukawa terms in the original Casimir wormhole [81].
Therefore, the shape function also satisfies all the required constraints, such as the flaring
out condition, throat condition, asymptotically flatness condition, etc.

The matter fluid that threads the wormhole throat is considered anisotropic, which
has the stress–energy–momentum tensor

Ty
x = (ρ + pt)uxuy − ptδ

y
x + (pr − pt)vxvy. (10)

Here, vx and ux are unitary space-like vectors in radial direction, and four velocities,
respectively, ρ, pr, pt, represent the energy density and principal pressures, respectively.
The trace Q of non-metricity tensor for the line element Equation (9), within F(Q) gravity
is given by

Q = − 2
r3 [r− b(r)]

[
2.r.φ′(r) + 1

]
. (11)

We solve Equations (7), (9), and (10) to obtain the expressions for energy density (ρ),
radial pressure (pr), and tangential pressure (pt), in terms of radial coordinate r, as

ρ =

[
1
r3

(
2r
(
r− b(r)φ′(r)− rb′(r)− b(r) + r

))]
fQ −

2
r2 (b(r)− r) f

′
Q +

f
2

, (12)

pr = −
1
r3

[
2(r− b(r))

(
2rφ′(r) + 1

)
− 1
]

fQ −
f
2

, (13)

pt = −
[

1
r3

([
r2φ′′(r) + rφ′(r)

(
rφ′(r) + 3

)
+ 1
]
[r− b(r)]

− 1
2
[
rφ′(r) + 1

][
rb′(r)− b(r)

])]
fQ −

1
r2

[
rφ′(r) + 1

]
[r− b(r)] f

′
Q −

f
2

. (14)
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With appropriate choices of the shape function b(r) and the redshift function φ(r), one
can analyze the plausible solutions for wormhole geometry in the backdrop of modified
gravity. In this paper, we take the specified Yukawa–Casimir shape function and redshift
function to acknowledge the negative energy in the wormhole geometry.

The Energy Conditions

The exotic properties of the matter field are the necessary requirements of wormhole
space-time. The energy conditions are the tools that play the prime role in defining
these exotic properties. These energy conditions are particular constraints made on the
matter from the stress–energy–momentum tensor, which demonstrates the basic features of
various forms of matter. The idea of energy conditions and their various implications are
summarized in [82]. These constraints are extracted from the Raychaudhuri equations that
narrate the temporal evolution of expansion scalar θ for the congruences of the time-like
vectors ul and kl , which, in turn, describes the null geodesics as

dθ

dτ
−ωlmωlm + σlmσlm +

1
3

θ2 + Rlmulum = 0, (15)

dθ

dτ
−ωlmωlm + σlmσlm +

1
2

θ2 + Rlmklkm = 0. (16)

These conditions are used to obtain an idea about the basic features of fluid threading
the wormhole throat. The energy conditions are normally examined with regard to principle
pressures and energy density. The justification or infringement of energy conditions
are responsible for the occurrence, existence, and stability of the traversable wormholes.
These conditions coincide with the Rai Chaudhary conditions for θ < 0, i.e., for attractive
geometry or, in other words, for positive energy.

Rlmulum ≥ 0, (17)

Rlmklkm ≥ 0. (18)

Here, the energy conditions are discussed for the anisotropic matter fluid. The en-
ergy conditions can be expressed in terms of energy density ρ, radial pressure pr, and
tangential pressure pt as ∀i, ρ(r) + pi ≥ 0. The tensor form of NEC (null energy condition)
is given as Tlmklkm ≥ 0. The NEC implies the non-negativity of the principle pressures.
The traversability of wormholes is unfortunately consequent to the violation of the NEC
in GR. The weak energy condition or WEC assures that the energy density of a time-like
vector can not be negative. With regard to principle pressures, WEC is given as ρ(r) ≥ 0
and ∀i, ρ(r) + pi ≥ 0, while the tensor form of WEC is Tlmklkm ≥ 0. (Tlm − T

2 glm)klkm ≥ 0
is the tensor form of strong energy condition, whereas in principle pressures SEC can be
written as T = −ρ(r) + ∑j pj and ∀j, ρ(r) + pj ≥ 0, ρ(r) + ∑j pj ≥ 0, whose violation is
mandatory for the inflation of the universe. The dominant energy condition (DEC) is the
one that puts a restriction on the transmission of energy and limits its rate to the speed of
light. Both the tensor and principle pressure forms of DEC are expressed as Tlmklkm ≥ 0
and ρ(r) ≥ 0 and ∀i, ρ± pi ≥ 0, respectively.

4. The Yukawa–Casimir Wormhole Model

In this article, we examine the Yukawa–Casimir wormhole solutions in the backdrop
of four different form functions of f (Q) representing the symmetric teleparallel gravity.
For the Yukawa–Casimir wormhole model, it is assumed that the exotic matter is substituted
by the Casimir energy density. Thus far, Casimir energy is the only known artificial negative
energy source, which has the energy density ρ0 = − hcπ2

720d4 .
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The stress–energy–tensor (SET) for Yukawa–Casimir energy is

Tµν =
1

r0κ

[
diag

(
− 1

3r0
− µ,− 1

r0
,

1
2

(
4

3r0
+ µ

)
,

1
2

(
4

3r0
+ µ

))]
, (19)

and stress–energy–tensor (SET) in the limit µ→ 0, i.e., for Casimir energy is

Tµν =
1

3r2
0κ

[dia(−1,−3, 2, 2)] =
hcπ2

720d4 [dia(−1,−3, 2, 2)], (20)

here, d represents the plate separation, which is traceless and whose divergence is also null.
By establishing the connection between above SET and the space-time metric, the Casimir
shape function b(r) and redshift function φ(r) are obtained as [74]

b(r) =
2r0

3
+

r0
2

3r
, φ(r) = ln

(
3r

3r + r0

)
. (21)

The Casimir wormhole described by the above shape function does not satisfy the
zero tidal force (ZTF) condition. In [75], the authors deformed the Casimir wormhole shape
function by inducing the Yukawa profile of the form exp(−µ(r− r0)), which also satisfy
the ZTF condition. They found a possibility of a new family of solutions having vanishing
redshift function. The Yukawa–Casimire shape function is, thus, obtained as

b(r) =
2r0

3
+

r0
2

3r
exp(−µ(r− r0)), (22)

here, µ is a positive mass scale and the original Casimir profile is achieved again by putting
µ = 0.

4.1. Linear Form: f (Q) = αQ

The linear functional form f (Q) = αQ (where α is constant) is considered here to ana-
lyze the Yukava-Casimir wormhole solution. This particular form helps in comparing the
wormhole solutions with the usual wormholes and identifies with the symmetric teleparal-
lel equivalent of general relativity. The energy density ρ and energy conditions regarding
the Casimir energy source, i.e., for µ = 0, and Yukawa–Casimir energy source, i.e., for
µ = 1, 2, 3, are plotted against the radial coordinate r and throat radius r0 in Figure 1–3.
To investigate the Yukawa–Casimir wormhole geometry, we analyze the implications of
these figures. From Figure 1a, it is evident that energy density ρ is non-negative for all
values µ = 0, 1, 2, 3 in the region r ≥ 1.6. The radial and tangential NECs are mapped in
Figures 1b and 2a, which shows that ρ + pr ≥ 0 for r ∈ (1.6, ∞), while ρ + pl < 0 for r ≥ r0
for µ = 0, 1, 2, but only for µ = 3; the tangential NEC is also validated for radial parameter
r ∈ (3.5, ∞). Therefore it is gathered that both the null energy conditions are satisfied
only for the particular value µ = 3 for the region r > 3.5, which indicates that Yukawa
modification in the Casimir source is useful to minimize the exotic matter in wormhole
formation. For this particular case, a solution with ordinary matter threading the throat is
obtained, and it can be the Casimir energy that is providing the required exotic or negative
energy to sustain the wormhole. For other cases, even in the case of µ = 0, when the system
reduces to the Casimir wormhole, the NECs are violated, and this violation indicates the
existence of exotic matter near the throat, which supports the wormhole geometry. The SEC
and DECs are also plotted in Figures 2b and 3, which are also violated.
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Figure 1. Plots: (a) Energy density (ρ) and (b) Radial NEC (ρ + pr) with throat radius r0 = 1 and
α = 1 in f (Q) = αQ gravity.
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Figure 2. Plots: (a) Tangential NEC (ρ + pt) and (b) SEC (ρ + pr + 2pt) with throat radius r0 = 1 and
α = 1 in f (Q) = αQ gravity.
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Figure 3. Plots: (a) Radial DEC (ρ− |pr|) and (b) Tangential DEC (ρ− |pt|) with throat radius r0 = 1
and α = 1 in f (Q) = αQ gravity.
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4.2. Power Law Form: f (Q) = αQ2 + β

As we saw in the above linear case that, only for a particular case, the traversable
wormhole geometry filled with ordinary matter is found, we further proceed to investigate
the Yukawa–Casimir wormhole solution with ordinary matter in the framework of power
law form f (Q) = αQ2 + β, where α and β are constants. The radiation and CDM dominated
background has already been acknowledged by this power law form. The energy density
ρ and the energy conditions for this case are mapped again for µ = 0, 1, 2, 3. The energy
density for this case, as depicted in Figure 4a, is positive for all four values of µ and ∀r ≥ r0.
Here, we are concerned about the solutions that are supported by the ordinary matter,
which is achieved by the non-violation of NECs. From Figure 4b, we found the radial NEC
is satisfied for the Yukawa–Casimir energy source at the throat and in r ∈ (1, 1.65). It is
interesting to see that radial NEC is violated in the case of Casimir energy for ∀r ≥ r0.
From Figure 5a, one can clearly see that the tangential NEC is satisfied throughout the
region for every value of µ, including the case of the Casimir wormhole, where µ = 0,
which signifies that, except for the case of µ = 0, the wormhole solutions with ordinary
matter near the throat are obtained. The SEC is plotted in Figure 5b, which is violated at
the throat in each case. The DECs are also shown in Figure 6, which are also satisfied at the
throat for µ = 1, 2, 3 and radial DEC is violated for µ = 0.
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Figure 4. Plots: (a) Energy density (ρ) and (b) radial NEC (ρ + pr) with throat radius r0 = 1, α = 1,
and β = 2 in f (Q) = αQ2 + β gravity.

4.3. Quadratic Form: f (Q) = αQ2 + βQ + γ

In this section, we take a more general quadratic form of function f (Q), i.e., f (Q) =
αQ2 + βQ + γ, where α, β, and γ are constants. We examine this case for the possible TWH
solution with non-exotic matter. Figure 7a depicts the energy density ρ against all four
values 0, 1, 2, 3 of scalar µ. As we interpret from the figure, energy density is positive near
the throat and throughout the region r ≥ r0. The NECs can be analyzed from the plots,
namely Figures 7b and 8a. It is very interesting to see that similar to the previous case,
both the NECs are satisfied near the throat implying the presence of non-exotic matter
near the wormhole throat, except for the case of the original Casimir wormhole, i.e., at
µ = 0. For µ = 0 only the radial null energy condition is satisfied, but the tangential NEC
is violated. Here, we also found the range of radial coordinates where the NEC terms
are satisfied. The radial NEC is satisfied for r ∈ (1.04, 1.65), and tangential NEC is also
satisfied in r ∈ (1.04, 2.1) for Yukawa–Casimir energy, but the tangential NEC is violated
everywhere in the region for Casimir source. The nature of SEC and both DECs are shown
in Figures 8b and 9.
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Figure 5. Plots: (a) Tangential NEC (ρ + pt) and (b) SEC (ρ + pr + 2pt) with throat radius r0 = 1,
α = 1, and β = 2 in f (Q) = αQ2 + β gravity.
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Figure 6. Plots: (a) Radial DEC (ρ− |pr|), and (b) Tangential DEC (ρ− |pt|) with throat radius r0 = 1,
α = 1, and β = 2 in f (Q) = αQ2 + β gravity.
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Figure 7. Plots: (a) Energy density (ρ) and (b) Radial NEC (ρ + pr) with throat radius r0 = 1, α = 1,
β = 1, and γ = 2 in f (Q) = αQ2 + βQ + γ gravity.
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Figure 8. Plots: (a) Tangential NEC (ρ + pt) and (b) SEC (ρ + pr + 2pt) with throat radius r0 = 1,
α = 1, β = 1, and γ = 2 in f (Q) = αQ2 + βQ + γ gravity.
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Figure 9. Plots: (a) Radial DEC (ρ− |pr|), and (b) Tangential DEC (ρ− |pt|) with throat radius r0 = 1,
α = 1, β = 1, and γ = 2 in f (Q) = αQ2 + βQ + γ gravity.

4.4. Inverse Power Law Form: f (Q) = Q + α
Q

This section is devoted to the results obtained on the stage of the inverse power
law form of teleparallel gravity [76]. In power law form, various energy conditions and
other profiles are coined in Figures 10–12. The graphs are plotted against µ = 0, 1, 2, 3.
The original Casimir energy density is found to be positive in the region r ∈ (1.3, ∞),
and Yukawa–Casimir energy density is also observed to be positive for every non-zero
value of µ in the region r ∈ (1.55, ∞), which is plotted in Figure 10a. The radial NEC is
validated everywhere in the region for Casimir energy, and it is also validated in the region
r ∈ (1.55, ∞) for Yukawa–Casimir energy. In the case of Casimir energy, the tangential
NEC is violated for ∀r ≥ r0 in the region, but it is satisfied for µ = 3, 4 when radial
coordinates r ∈ (4.3, ∞) and r ∈ (3.2, ∞), respectively. The SEC is violated in both the cases
in Figure 11b for all values of radial coordinates in the region. The radial DEC in Figure 12a
is validated in r ∈ (1.45, ∞) for µ = 0 and r ∈ (1.65, ∞) for µ = 1, 2, 3. In Figure 12b) the
tangential DEC is violated in both cases. One can see the expressions for energy density (ρ),
radial pressure (pr) and tangential pressure (pt) for all four forms of f (Q) gravity in the
Appendix A.
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Figure 10. Plots: (a) Energy density (ρ) and (b) Radial NEC (ρ + pr) with throat radius r0 = 1 and
α = −0.1 in f (Q) = Q + α

Q gravity.
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Figure 11. Plots: (a) Tangential NEC (ρ + pt) and (b) SEC (ρ + pr + 2pt) with throat radius r0 = 1 and
α = −0.1 in f (Q) = Q + α

Q gravity.
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Figure 12. Plots: (a) Radial DEC (ρ− |pr|), and (b) Tangential DEC (ρ− |pt|) with throat radius r0 = 1
and α = −0.1 in f (Q) = Q + α

Q gravity.
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5. Discussion and Conclusions

An unfortunate repercussion of general relativity, regarding the traversability of the
wormhole, is the unavoidable breach of null energy conditions, which leads to the presence
of exotic or non-ordinary matter in the WH throat. The focus nowadays is on finding the
solutions of traversable wormholes threaded by ordinary matter or with a minimal amount
of exotic matter by using the modified gravity framework. The usual energy conditions are
satisfied by the classical matter. Hence, it is possible that wormholes must come from the
domain of semi-classical or, more likely, a feasible quantum theory of the gravitational field.
It is a well-known fact that Casimir energy is the only source of negative or exotic energy
for various physical systems. In [83], the author conjectured that the traversability could
be supported by quantum fluctuations as an effective source of the semi-classical Einstein
equation. In this present work, we aim to find the solution for the traversable wormhole
with ordinary matter threading the wormhole throat. In this regard, we examine the static
and spherically symmetric wormhole in the backdrop of symmetric teleparallel gravity,
where the non-metricity term Q defines the gravitational interactions of space-time.

The motivation of this current study comes from [76], where various forms of f (Q)
gravity were discussed for the plausible solutions of traversable wormholes. The outcomes
in [76] indicate the wormhole solutions supported by exotic matter, which gives the req-
uisite negative energy to sustain the wormhole throat. As stated earlier in this section,
the violation of NEC is accountable for the traversability, which indicates the existence
of exotic matter in the wormhole throat. To circumvent this situation and to approach
a more realistic solution supported by ordinary matter, we induce the Yukawa- Casimir
wormhole apparatus in the backdrop of symmetric teleparallel gravity taking four function
forms of f (Q). The Yukawa modification of the Casimir wormhole is obtained where zero
tidal force is imposed with the help of the equation of state [75]. The Casimir energy is
the source of exotic energy, which is negative energy and can support the traversability of
the wormhole geometry. Introducing the Yukawa term in the original Casimir wormhole
the Yukawa–Casimir wormhole is constructed. We try to set up the wormhole geometry
threaded by the non-exotic matter, where the requisite negative energy is sourced from the
Casimir energy instead of exotic matter.

In the case of linear form f (Q) = αQ, we gather from the plots that, in all the cases of
original Casimir and Yukawa–Casimir, the energy density ρ is positive for r ≥ 1.6. We also
found that wormhole throat is filled with exotic matter, where NECs are violated in Casimir
energy source and Yukawa–Casimir energy source for µ = 1, 2, but for µ = 3, NECs are
satisfied in region r ∈ (3.5, ∞). In the second attempt of power law form f (Q) = αQ2 + β,
we observed that energy density ρ is positive for all values of radial coordinate in both cases.
We also found the wormhole throat is filled with the non-exotic matter, as both NECs are
satisfied at the throat, and in region r ∈ (1, ∞) after Yukawa modification in Casimir energy.
It is interesting to see that radial NEC is violated here in the original Casimir energy source.
In the next case, we have taken a more general quadratic form f (Q) = αQ2 + βQ + γ—we
again found energy density positive, and both NECs are satisfied in a specific region after
Yukawa modification. Radial NEC is satisfied in r ∈ (1.04, 1.65), and tangential NEC is also
satisfied in r ∈ (1.04, 2.1). We again analyzed the clear difference between Casimir energy
and Yukawa–Casimir energy as tangential NEC is violated in Casimir energy for ∀r ≥ r0.
In the last case we investigated inverse power law form f (Q) = Q + α

Q , we observed that
tangential NEC is violated in Casimir energy and Yukawa–Casimir for µ = 1 but it is also
satisfied for µ = 2, 3 in regions r ∈ (4.3, ∞) and r ∈ (3.2, ∞), respectively. Here, we again
found a specific region in which both NECs are satisfied after Yukawa modification in
Casimir energy.

In this investigation, we found, for all specific forms of f (Q) in Casimir-source, that
the null energy conditions are violated and wormholes are self-sustained and traversable,
but after the Yukawa modification in the Casimir energy source violation of the null energy
conditions is restricted to some regions in the vicinity of the throat. These results are
completely different from the previous wormhole solutions mentioned in [76], where
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the authors investigated traversable wormholes violating null energy conditions in f (Q)
gravity. Hence, we may conclude that, with semi-classical gravity theory, with appropriate
choices, the solution of traversable wormholes can be obtained, where the traversability is
achieved with the non-exotic matter.
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Appendix A

Appendix A.1. Linear Form: f (Q) = αQ

We devise the Yukawa–Casimir system in the Equations (12)–(14) to obtain the Yukawa–
Casimir energy density and principal pressures as

ρ =
1

3r4(3r + r0)

{
αeµ(−r)

(
6r2eµr

(
3r2 + r(r0 − 3)− 3r0

)
− r0eµr0

(
6(µ + 2)r3

+ r2(5(µ + 2)r0 − 12) + rr0((µ + 2)r0 − 15)− 5r0
2
))}

, (A1)

pr =
1

r4(3r + r0)

{
αr0eµ(r0−r)

(
−2r2

(
eµ(r−r0) − 1

)
+ 3rr0 + r0

2
)}

, (A2)

pt = − 1
6r4(3r + r0)2

{
αeµ(−r)

(
6r2eµr

(
9r3 + 9r2r0 + rr0(2r0 − 3) + r0

2
)

+ r0eµr0
(

18µr9 + 9r8(3µr0 + 2) + r7r0(13µr0 + 36) + 2r6r0
2(µr0 + 11)

+ 4r5r0
3 − 36r4 − 54r3r0 + 2r2r0(6− 13r0) + 2rr0

2(1− 2r0)− 2r0
3
))}

. (A3)

Appendix A.2. Power Law Form: f (Q) = αQ2 + β

For this case, the energy components are obtained by solving the field equations,
as given below

ρ =
1

6r8(3r + r0)2

{
e2µ(r0−r)

(
24αr2r0(r + r0)eµ(r−r0)

(
6(µ + 4)r3 + r2(5(µ + 4)r0 − 18)

+ rr0((µ + 4)r0 − 24)− 8r0
2
)
− 4αr0

2
(

2r2 + 3rr0 + r0
2
)(

12(µ + 2)r3

+ 2r2(5(µ + 2)r0 − 9) + rr0(2(µ + 2)r0 − 21)− 7r0
2
)
+ 3r4e2µ(r−r0)

(
9βr6

+ 6βr5r0 + βr4r0
2 − 144αr3 − 12αr2(16r0 − 9)− 24αrr0(2r0 − 9) + 108αr0

2
))}

, (A4)
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pr =
1

2r8(3r + r0)2

{
e2µ(r0−r)

(
12αr0

2
(

2r2 + 3rr0 + r0
2
)2
− 16αr2r0

(
6r3 + 17r2r0

+ 15rr0
2 + 4r0

3
)

eµ(r−r0) + r4
(
−e2µ(r−r0)

)(
9βr6 + 6βr5r0 + βr4r0

2 − 36αr2

− 120αrr0 − 84αr0
2
))}

, (A5)

pt =
1

6r8(3r + r0)3

{
e2µ(r0−r)

(
−3r4e2µ(r−r0)

(
27βr7 + 27βr6r0 + 9βr5r0

2

+ r4
(

βr0
3 − 216α

)
− 108r3(α + 4αr0)− 12αr2r0(22r0 + 15)− 12αrr0

2(4r0 + 11)

− 60αr0
3
)
+ 12αr2r0(r + r0)eµ(r−r0)

(
18µr9 + 9r8(3µr0 + 2) + r7r0(13µr0 + 36)

+ 2r6r0
2(µr0 + 11) + 4r5r0

3 − 72r4 − 36r3(3r0 + 1)− 2r2r0(26r0 + 21)

− 8rr0
2(r0 + 4)− 10r0

3
)
− 4αr0

2
(

2r2 + 3rr0 + r0
2
)(

18µr9 + 9r8(3µr0 + 2)

+ r7r0(13µr0 + 36) + 2r6r0
2(µr0 + 11) + 4r5r0

3 − 36r4 − 18r3(3r0 + 1)

− r2r0(26r0 + 21)− 4rr0
2(r0 + 4)− 5r0

3
))}

. (A6)

Appendix A.3. Quadratic Form: f (Q) = αQ2 + βQ + γ

Using this quadratic model with Yukawa–Casimir shape function, the field Equa-
tions (12)–(14) can be developed to give the stress energy components as

ρ =
1

6r8(3r + r0)2

{
e−2µr

(
−4αr0

2
(

2r2 + 3rr0 + r0
2
)

e2µr0
(

12(µ + 2)r3 + 2r2(5(µ + 2)r0 − 9)

+ rr0(2(µ + 2)r0 − 21)− 7r0
2
)
+ 3r4e2µr

(
9γr6 + 6r5(6β + γr0) + r4

(
γr0

2 + 12β(2r0 − 3)
)

− 4r3(36α− β(r0 − 12)r0)− 12r2
(

βr0
2 + α(16r0 − 9)

)
− 24αrr0(2r0 − 9) + 108αr0

2
)

− 2r2r0eµ(r+r0)
(

18β(µ + 2)r6 + 3βr5(7(µ + 2)r0 − 12) + r4(βr0(8(µ + 2)r0 − 57)

− 72α(µ + 4)) + r3
(

βr0
2((µ + 2)r0 − 30)− 12α(11(µ + 4)r0 − 18)

)
− r2r0

(
5βr0

2

+ 72α((µ + 4)r0 − 7))− 12αrr0
2((µ + 4)r0 − 32) + 96αr0

3
))}

, (A7)

pr =
1

2r8(3r + r0)2

{
e−2µr

(
12αr0

2
(

2r2 + 3rr0 + r0
2
)2

e2µr0 + 2r2r0

(
2r2 + 3rr0 + r0

2
)

× eµ(r+r0)
(

3βr3 + βr2r0 − 24αr− 32αr0

)
+ r4

(
−e2µr

)(
9γr6 + 6γr5r0 + γr4r0

26r8(3r + r0)
3

+ 12βr3r0 + 4r2
(

βr0
2 − 9α

)
− 120αrr0 − 84αr0

2
))}

, (A8)



Universe 2023, 9, 161 15 of 18

pt =
1

6r8(3r + r0)3

{
e2µ(r0−r)

(
−3r4e2µ(r−r0)

(
27γr7 + 27r6(2β + γr0) + 9r5r0(8β + γr0)

+ r4
(

r0

(
γr0

2 + 6β(5r0 − 3)
)
− 216α

)
+ 4r3

(
βr0

3 − 27α(4r0 + 1)
)
+ 2r2r0

(
βr0

2

− 6α(22r0 + 15))− 12αrr0
2(4r0 + 11)− 60αr0

3
)
− 4αr0

2
(

2r2 + 3rr0 + r0
2
)(

18µr9

+ 9r8(3µr0 + 2) + r7r0(13µr0 + 36) + 2r6r0
2(µr0 + 11) + 4r5r0

3 − 36r4 − 18r3(3r0 + 1)

− r2r0(26r0 + 21)− 4rr0
2(r0 + 4)− 5r0

3
)
− r2r0eµ(r−r0)

(
54βµr12 + 9βr11(11µr0 + 6)

+ 6r10
(
−36αµ + 11βµr0

2 + 21βr0

)
+ r9

(
βr0

2(19µr0 + 102)− 108α(5µr0 + 2)
)

+ 2r8r0

(
βr0

2(µr0 + 17)− 12α(20µr0 + 27)
)
+ 4r7

(
−27β + βr0

4 − 45αµr0
3 − 174αr0

2
)

− 6r6
(

4αµr0
4 + 52αr0

3 + 33βr0

)
− 12r5

(
4α
(

r0
4 − 18

)
+ βr0(11r0 − 3)

)
+ 2r4

(
β(9− 19r0)r0

2 + 216α(5r0 + 1)
)
− 4r3r0

(
βr0

2(r0 + 1)− 6α(80r0 + 39)
)

+ r2
(
−2βr0

4 + 720αr0
3 + 888αr0

2
)
+ 24αrr0

3(4r0 + 21) + 120αr0
4
))}

. (A9)

Appendix A.4. Inverse Power Law Form: f (Q) = Q + α
Q

The energy profile for stress-energy tensor, in terms of radial pressure pr, tangential
pressure pt, and the energy density ρ, is obtained from (12)–(14) as

ρ =
1

12r4(r + r0)2(3r + r0)
(
r0(2r + r0)− 3r2eµ(r−r0)

)2

{
eµ(r0−r)

(
24r2r0

2(r + r0)
2(2r

+ r0)eµ(r−r0)
(

6(µ + 3)r3 + r2(5(µ + 3)r0 − 18) + rr0((µ + 3)r0 − 24)− 8r0
2
)

− 4r0
3
(

2r2 + 3rr0 + r0
2
)2(

6(µ + 2)r3 + r2(5(µ + 2)r0 − 12) + rr0((µ + 2)r0 − 15)− 5r0
2
)

− 6r6
(

27αr8 + 27αr7r0 + 9αr6r0
2 + αr5r0

3 − 108r4 − 36r3(7r0 − 3)− 36r2r0(5r0 − 9)

− 36r(r0 − 9)r0
2 + 108r0

3
)

e3µ(r−r0) + r4r0e2µ(r−r0)
(

54α(µ + 2)r9 + 81α(µ + 2)r8r0

+ 9αr7r0(5(µ + 2)r0 + 3) + αr6r0
2(11(µ + 2)r0 + 27) + r5

(
−216(µ + 6) + α(µ + 2)r0

4

+ 9αr0
3
)
+ r4

(
αr0

4 − 612(µ + 6)r0 + 1296
)
− 36r3r0(17(µ + 6)r0 − 123)

− 36r2r0
2(7(µ + 6)r0 − 155)− 36rr0

3((µ + 6)r0 − 85) + 612r0
4
))}

, (A10)

pr =
1

4r4(r + r0)2(3r + r0)
(
r0(2r + r0)− 3r2eµ(r−r0)

)2

{
eµ(r0−r)

(
−8r2r0

2(3r + 4r0)
(

2r2

+ 3rr0 + r0
2
)2

eµ(r−r0) + 4r0
3
(

2r2 + 3rr0 + r0
2
)3
− 3r4r0

(
2r2 + 3rr0 + r0

2
)(

9αr6

+ 6αr5r0 + αr4r0
2 − 12r2 − 40rr0 − 28r0

2
)

e2µ(r−r0) + 2r6
(

27αr7 + 54αr6r0 + 27αr5r0
2

+ 4αr4r0
3 − 36r2r0 − 72rr0

2 − 36r0
3
)

e3µ(r−r0)
)}

, (A11)
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pt =
1

24r4(r + r0)2(3r + r0)2
(
r0(2r + r0)− 3r2eµ(r−r0)

)2

{
eµ(r0−r)

(
24r2r0

2(r + r0)
2(2r + r0)

× eµ(r−r0)
(

18µr9 + 9r8(3µr0 + 2) + r7r0(13µr0 + 36) + 2r6r0
2(µr0 + 11) + 4r5r0

3

− 54r4 − 81r3r0 + 3r2r0(6− 13r0) + 3rr0
2(1− 2r0)− 3r0

3
)
− 4r0

3
(

2r2 + 3rr0 + r0
2
)2

×
(

18µr9 + 9r8(3µr0 + 2) + r7r0(13µr0 + 36) + 2r6r0
2(µr0 + 11) + 4r5r0

3 − 36r4

− 54r3r0 + 2r2r0(6− 13r0) + 2rr0
2(1− 2r0)− 2r0

3
)
+ 6r6

(
81αr9 + 27αr8(5r0 + 6)

+ 27αr7r0(3r0 + 11) + 3αr6r0
2(7r0 + 69) + r5

(
2αr0

4 + 63αr0
3 − 324

)
+ r4r0

(
7αr0

3

− 972)− 36r3r0(29r0 − 3)− 36r2r0
2(13r0 − 5) + 36rr0

3(1− 2r0)− 36r0
4
)

e3µ(r−r0)

+ r4r0e2µ(r−r0)
(

162αµr15 + 27αr14(13µr0 + 6) + 27αr13r0(11µr0 + 16) + 3αr12r0
2(41µr0

+ 144) + r11
(
−648µ + 25αµr0

4 + 204αr0
3
)
+ 2r10

(
α
(

µr0
5 + 23r0

4 − 162
)
− 162(7µr0

+ 2)) + r9
(
−648α + 4αr0

5 − 3060µr0
2 − 54(13α + 48)r0

)
− 18r8r0

(
84α + 110µr0

2

+ (33α + 224)r0)− 6r7r0
2
(

237α + 102µr0
2 + (41α + 504)r0

)
− 2r6

(
36µr0

5 + 5(5α

+ 108)r0
4 + 333αr0

3 − 1944
)
− 2r5r0

(
2(α + 36)r0

4 + 77αr0
3 − 6804

)
− 2r4r0

(
7αr0

4

− 9180r0 + 648) + 216r3r0
2(55r0 − 13) + 216r2r0

3(17r0 − 7) + 216rr0
4(2r0 + 1)

+ 216r0
5
))}

. (A12)
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