Dynamically Implementing the -Scheme in Cosmological and Spherically Symmetric Models in an Extended Phase Space Model
Abstract
:1. Introduction
2. Implementing the -Scheme in Cosmology
2.1. Extended Phase Space for Cosmology: Canonical Transformation and Dirac Observables
2.2. Gauge-Fixed Model for Cosmology
3. Implementing the -Scheme in Spherically Symmetric Models
3.1. Extended Phase Space for Spherically Symmetric Models: Canonical Transformation and Dirac Observables
3.2. Gauge-Fixed Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. and Its Poisson Bracket
Appendix B. Explicit Form of the Dirac Matrix in BH
Appendix C. Proof of Lemma 1
Appendix D. Kuchař Decomposition for the Spherically Symmetric Model
References
- Ashtekar, A.; Bojowald, M. Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 2006, 23, 391–411. [Google Scholar] [CrossRef] [Green Version]
- Modesto, L. Loop quantum black hole. Class. Quant. Grav. 2006, 23, 5587–5602. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.G.; Vandersloot, K. Loop Quantum Dynamics of the Schwarzschild Interior. Phys. Rev. D 2007, 76, 104030. [Google Scholar] [CrossRef] [Green Version]
- Chiou, D.W.; Ni, W.T.; Tang, A. Loop quantization of spherically symmetric midisuperspaces and loop quantum geometry of the maximally extended Schwarzschild spacetime. arXiv 2012, arXiv:1212.1265. [Google Scholar]
- Gambini, R.; Olmedo, J.; Pullin, J. Quantum black holes in Loop Quantum Gravity. Class. Quant. Grav. 2014, 31, 095009. [Google Scholar] [CrossRef]
- Brahma, S. Spherically symmetric canonical quantum gravity. Phys. Rev. D 2015, 91, 124003. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Singh, P. Loop quantization of the Schwarzschild interior revisited. Class. Quant. Grav. 2016, 33, 055006. [Google Scholar] [CrossRef] [Green Version]
- Dadhich, N.; Joe, A.; Singh, P. Emergence of the product of constant curvature spaces in loop quantum cosmology. Class. Quant. Grav. 2015, 32, 185006. [Google Scholar] [CrossRef] [Green Version]
- Tibrewala, R. Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance. Class. Quant. Grav. 2014, 31, 055010. [Google Scholar] [CrossRef] [Green Version]
- Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K. Non-singular black holes and the Limiting Curvature Mechanism: A Hamiltonian perspective. J. Cosmol. Astropart. Phys. 2018, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Yonika, A.; Khanna, G.; Singh, P. Von-Neumann Stability and Singularity Resolution in Loop Quantized Schwarzschild Black Hole. Class. Quant. Grav. 2018, 35, 045007. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, F.; Christodoulou, M.; Martin-Dussaud, P.; Rovelli, C.; Soltani, F. The End of a Black Hole’s Evaporation—Part I. arXiv 2020, arXiv:2009.05016. [Google Scholar]
- Olmedo, J.; Saini, S.; Singh, P. From black holes to white holes: A quantum gravitational, symmetric bounce. Class. Quant. Grav. 2017, 34, 225011. [Google Scholar] [CrossRef]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett. 2018, 121, 241301. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum extension of the Kruskal spacetime. Phys. Rev. 2018, D98, 126003. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S.; Yeom, D.H. Effective line elements and black-hole models in canonical loop quantum gravity. Phys. Rev. 2018, D98, 046015. [Google Scholar] [CrossRef] [Green Version]
- Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K. Polymer Schwarzschild black hole: An effective metric. EPL 2018, 123, 20006. [Google Scholar] [CrossRef] [Green Version]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class. Quant. Grav. 2019, 36, 195015. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Bahrami, S.; Pranzetti, D. Quantum gravity predictions for black hole interior geometry. Phys. Lett. B 2019, 797, 134908. [Google Scholar] [CrossRef]
- Assanioussi, M.; Dapor, A.; Liegener, K. Perspectives on the dynamics in a loop quantum gravity effective description of black hole interiors. Phys. Rev. D 2020, 101, 026002. [Google Scholar] [CrossRef] [Green Version]
- Benitez, F.; Gambini, R.; Lehner, L.; Liebling, S.; Pullin, J. Critical collapse of a scalar field in semiclassical loop quantum gravity. Phys. Rev. Lett. 2020, 124, 071301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, W.C.; Santos, N.O.; Shu, F.W.; Wang, A. Properties of the spherically symmetric polymer black holes. Phys. Rev. D 2020, 102, 124030. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Loop Quantum Black Hole Extensions Within the Improved Dynamics. Front. Astron. Space Sci. 2021, 8, 74. [Google Scholar] [CrossRef]
- Husain, V.; Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Fate of quantum black holes. Phys. Rev. D 2022, 106, 024014. [Google Scholar] [CrossRef]
- Li, B.F.; Singh, P. Does the Loop Quantum μo Scheme Permit Black Hole Formation? Universe 2021, 7, 406. [Google Scholar] [CrossRef]
- Gan, W.C.; Ongole, G.; Alesci, E.; An, Y.; Shu, F.W.; Wang, A. Understanding quantum black holes from quantum reduced loop gravity. Phys. Rev. D 2022, 106, 126013. [Google Scholar] [CrossRef]
- Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Black hole collapse and bounce in effective loop quantum gravity. arXiv 2020, arXiv:2006.09325. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Spherically symmetric loop quantum gravity: Analysis of improved dynamics. arXiv 2020, arXiv:2006.01513. [Google Scholar] [CrossRef]
- Han, M.; Liu, H. Improved effective dynamics of loop-quantum-gravity black hole and Nariai limit. Class. Quant. Grav. 2022, 39, 035011. [Google Scholar] [CrossRef]
- Zhang, C. Reduced Phase Space Quantization of Black Hole, Path Integral, and Effective Dynamics. arXiv 2021, arXiv:2106.08202. [Google Scholar] [CrossRef]
- Han, M.; Liu, H. Covariant -scheme effective dynamics, mimetic gravity, and non-singular black holes: Applications to spherical symmetric quantum gravity and CGHS model. arXiv 2022, arXiv:2212.04605. [Google Scholar]
- Münch, J.; Perez, A.; Speziale, S.; Viollet, S. Generic features of a polymer quantum black hole. arXiv 2022, arXiv:2212.06708. [Google Scholar]
- Ashtekar, A.; Olmedo, J.; Singh, P. Regular black holes from Loop Quantum Gravity. arXiv 2023, arXiv:2301.01309. [Google Scholar]
- Agullo, I.; Singh, P. Loop Quantum Cosmology. In Loop Quantum Gravity: The First 30 Years; Ashtekar, A., Pullin, J., Eds.; WSP: New York, NY, USA, 2017; pp. 183–240. [Google Scholar]
- Thiemann, T. Quantum spin dynamics (QSD). Class. Quant. Grav. 1998, 15, 839–873. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang. Phys. Rev. Lett. 2006, 96, 141301. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Effective loop quantum gravity framework for vacuum spherically symmetric spacetimes. Phys. Rev. D 2020, 102, 106024. [Google Scholar] [CrossRef]
- Han, M.; Liu, H. Effective Dynamics from Coherent State Path Integral of Full Loop Quantum Gravity. Phys. Rev. 2020, D101, 046003. [Google Scholar] [CrossRef] [Green Version]
- Dapor, A.; Liegener, K.; Pawlowski, T. Challenges in Recovering a Consistent Cosmology from the Effective Dynamics of Loop Quantum Gravity. Phys. Rev. 2019, D100, 106016. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Cianfrani, F. Improved regularization from Quantum Reduced Loop Gravity. arXiv 2016, arXiv:1604.02375. [Google Scholar]
- Han, M.; Liu, H. Improved -scheme effective dynamics of full loop quantum gravity. Phys. Rev. D 2020, 102, 064061. [Google Scholar] [CrossRef]
- Han, M.; Liu, H. Loop quantum gravity on dynamical lattice and improved cosmological effective dynamics with inflaton. Phys. Rev. D 2021, 104, 024011. [Google Scholar] [CrossRef]
- Rovelli, C. What Is Observable in Classical and Quantum Gravity? Class. Quant. Grav. 1991, 8, 297–316. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. The Physical Hamiltonian in nonperturbative quantum gravity. Phys. Rev. Lett. 1994, 72, 446–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, B. Partial and complete observables for Hamiltonian constrained systems. Gen. Rel. Grav. 2007, 39, 1891–1927. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, B. Partial and complete observables for canonical general relativity. Class. Quant. Grav. 2006, 23, 6155–6184. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, T. Reduced phase space quantization and Dirac observables. Class. Quant. Grav. 2006, 23, 1163–1180. [Google Scholar] [CrossRef] [Green Version]
- Kuchař, K. A Bubble-Time Canonical Formalism for Geometrodynamics. J. Math. Phys. 1972, 13, 768–781. [Google Scholar] [CrossRef]
- Hajicek, P.; Kijowski, J. Covariant gauge fixing and Kuchar decomposition. Phys. Rev. D 2000, 61, 024037. [Google Scholar] [CrossRef] [Green Version]
- Giesel, K.; Li, B.F.; Singh, P. Towards a reduced phase space quantization in loop quantum cosmology with an inflationary potential. Phys. Rev. D 2020, 102, 126024. [Google Scholar] [CrossRef]
- Fahn, M.J.; Giesel, K.; Kobler, M. A gravitationally induced decoherence model using Ashtekar variables. arXiv 2022, arXiv:2206.06397. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. 2006, D74, 084003. [Google Scholar] [CrossRef] [Green Version]
- Gambini, R.; Benítez, F.; Pullin, J. A Covariant Polymerized Scalar Field in Semi-Classical Loop Quantum Gravity. Universe 2022, 8, 526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giesel, K.; Liu, H.
Dynamically Implementing the
Giesel K, Liu H.
Dynamically Implementing the
Giesel, Kristina, and Hongguang Liu.
2023. "Dynamically Implementing the
Giesel, K., & Liu, H.
(2023). Dynamically Implementing the