A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments
Abstract
:1. Introduction
2. Low Energy SUSY
2.1. A Light Higgs Boson in SUSY
2.2. DM, Muon and W-Mass in SUSY
3. Little Higgs Models
3.1. A Light Higgs in Little Higgs Models
3.2. DM and W-Mass in Little Higgs Models
4. Two-Higgs-Doublet Extensions
4.1. Simplicity of 2HDMs
4.2. DM, Muon and W-Mass in 2HDMs
5. Singlet Scalar Extensions
5.1. Cosmic Phase Transition in Singlet Scalar Extensions
5.2. Vacuum Stability and DM in Singlet Scalar Extensions
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BSM | beyond the standard model |
LHC | Large Hadron Collider |
SM | standard model |
SUSY | supersymmetry |
2HDM | two-Higgs-doublet model |
EWPT | electroweak phase transition |
FOPT | first-order phase transition |
MSSM | minimal supersymmetric standard model |
UV | ultraviolet |
NMSSM | next-to-minimal supersymmetric standard model |
HL-LHC | High-luminosity Large Hadron Collider |
LSP | lightest supersymmetric particle |
NLSP | next-to-lightest sparticle |
WIMP | weakly interacted massive particle |
DM | dark matter |
GUT | grand unification theory |
CMSSM | constrained minimal supersymmetric standard model |
mSUGRA | minimal supergrivity |
2HDM+S | 2HDM plus a singlet |
LHT | littlest Higgs model with T-parity |
vev | vacuum expectation value |
LFV | lepton flavor violation |
xSM | SM plus a singlet |
1 | Neutrinos in the SM (the active neutrinos) are massless. However, the explanation of the neutrino mass by introducing right-handed neutrino via the Yukawa interaction like other fermion fields might not be the whole story of nature. Since is sterile, the gauge symmetry allows to acquire the Majorana mass M, and therefore it does not pair up with the active neutrino to make up a Dirac fermion. carries the lepton number, so the neutrino mass is often related to the flavor physics. If M is very large, the only dimension-5 operator allowed by the SM symmetries can generate the active neutrino mass of order , where v is the SM Higgs vev. This idea is called the “seesaw” mechanism. The neutrino masses may be also closely related to the origin of flavor mixings, the CP violation and the fermion mass hierarchy, and the neutrino phenomenology is relatively far from the Higgs field. So, in this review, we will not discuss neutrinos further. For the reviews on neutrinos, see, e.g., [3,4,5,6]. |
2 | |
3 | The combined explanation often requires the introduction of a flavor violation, see Ref. [84]. |
4 | However, an analysis [109] gave a ten percent level fine-tuning for low-energy SUSY. |
5 | In fact, all terms in the Higgs scalar potential have an effect on the thermal history, such as the Higgs diagonal mass terms and . |
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Fritzsch, H.; Xing, Z.Z. Mass and flavor mixing schemes of quarks and leptons. Prog. Part. Nucl. Phys. 2000, 45, 1–81. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.Z. Flavor mixing and CP violation of massive neutrinos. Int. J. Mod. Phys. A 2004, 19, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.N.; Smirnov, A.Y. Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Feruglio, F. Models of neutrino masses and mixings. New J. Phys. 2004, 6, 106. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Gupta, A.; Kaplan, D.E.; Weiner, N.; Zorawski, T. Simply Unnatural Supersymmetry. arXiv 2012, arXiv:1212.6971. [Google Scholar]
- Kawamura, Y. Gauge hierarchy problem, supersymmetry and fermionic symmetry. Int. J. Mod. Phys. A 2015, 30, 1550153. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.L. Naturalness and the Status of Supersymmetry. Ann. Rev. Nucl. Part. Sci. 2013, 63, 351–382. [Google Scholar] [CrossRef] [Green Version]
- Haber, H.E.; Kane, G.L. The Search for Supersymmetry: Probing Physics Beyond the Standard Model. Phys. Rept. 1985, 117, 75–263. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Salam, S.; Sengupta, D.; Sinha, K. Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches. Eur. Phys. J. ST 2020, 229, 3085–3141. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.; Zhang, Y.; Zhu, B. Low Energy Supersymmetry Confronted with Current Experiments: An Overview. Universe 2022, 8, 178. [Google Scholar] [CrossRef]
- Yang, J.M.; Zhu, P.; Zhu, R. A brief survey of low energy supersymmetry under current experiments. arXiv 2022, arXiv:2211.06686. [Google Scholar]
- Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett. B 2001, 513, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Cohen, A.G.; Katz, E.; Nelson, A.E.; Gregoire, T.; Wacker, J.G. The Minimal moose for a little Higgs. J. High Energy Phys. 2002, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A. High-precision measurement of the W boson mass with the CDF II detector. Science 2022, 376, 170–176. [Google Scholar] [CrossRef]
- Abi, B.; Albahri, T.; Al-Kilani, S.; Allspach, D.; Alonzi, L.P.; Anastasi, A.; Anisenkov, A.; Azfar, F.; Badgley, K.; Baeßler, S.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Abe, F.; Albrow, M.G.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Atac, M.; Auchincloss, P.; Azfar, F.; et al. Measurement of the W boson mass. J. High Energy Phys. 2022, 1, 036. [Google Scholar] [CrossRef]
- Workman, R.L. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Colangelo, G.; El-Khadra, A.X.; Hoferichter, M.; Keshavarzi, A.; Lehner, C.; Stoffer, P.; Teubner, T. Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization. Phys. Lett. B 2022, 833, 137313. [Google Scholar] [CrossRef]
- Cè, M.; Gèrardin, A.; von Hippel, G.; Hudspith, R.J.; Kuberski, S.; Meyer, H.B.; Miura, K.; Mohler, D.; Ottnad, K.; Paul, S.; et al. Window observable for the hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD. Phys. Rev. D 2022, 106, 114502. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.N.; Hoelbling, C.; Katz, S.D.; Lellouch, L.; Lippert, T.; Miura, K.; Parato, L.; Szabo, K.K.; et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 2021, 593, 51–55. [Google Scholar] [CrossRef]
- Fermilab Lattice; HPQCD; MILC Collaborations; Davies, C.T.; DeTar, C.; El-Khadra, A.X.; Gottlieb, S.; Hatton, D.; Kronfeld, A.S.; Lahert, S.; et al. Windows on the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. Phys. Rev. D 2022, 106, 074509. [Google Scholar] [CrossRef]
- Alexandrou, C.; Bacchio, S.; Dimopoulos, P.; Finkenrath, J.; Frezzotti, R.; Gagliardi, G.; Garofalo, M.; Hadjiyiannakou, K.; Kostrzewa, B.; Jansen, K.; et al. Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions. arXiv 2022, arXiv:2206.15084. [Google Scholar]
- Yang, J.M.; Zhang, Y. Low energy SUSY confronted with new measurements of W-boson mass and muon g-2. Sci. Bull. 2022, 67, 1430–1436. [Google Scholar] [CrossRef]
- Domingo, F.; Ellwanger, U.; Hugonie, C. MW, dark matter and aμ in the NMSSM. Eur. Phys. J. C 2022, 82, 1074. [Google Scholar] [CrossRef]
- Tang, T.P.; Abdughani, M.; Feng, L.; Tsai, Y.L.S.; Wu, J.; Fan, Y.Z. NMSSM neutralino dark matter for W-boson mass and muon g − 2 and the promising prospect of direct detection. arXiv 2022, arXiv:2204.04356. [Google Scholar] [CrossRef]
- Han, X.F.; Wang, F.; Wang, L.; Yang, J.M.; Zhang, Y. Joint explanation of W-mass and muon g-2 in the 2HDM. Chin. Phys. C 2022, 46, 103105. [Google Scholar] [CrossRef]
- Babu, K.S.; Jana, S.; P. K., V. Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model. Phys. Rev. Lett. 2022, 129, 121803. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Sanyal, P.; Song, J. CDF W-boson mass and muon g-2 in a type-X two-Higgs-doublet model with a Higgs-phobic light pseudoscalar. Phys. Rev. D 2022, 106, 035002. [Google Scholar] [CrossRef]
- Arcadi, G.; Benincasa, N.; Djouadi, A.; Kannike, K. The 2HD+a model: Collider, dark matter and gravitational wave signals. arXiv 2022, arXiv:2212.14788. [Google Scholar]
- Chen, C.H.; Chiang, C.W.; Su, C.W. Top-quark FCNC decays, LFVs, lepton g − 2, and W mass anomaly with inert charged Higgses. arXiv 2023, arXiv:2301.07070. [Google Scholar]
- Wang, L.; Yang, J.M.; Zhang, Y. Two-Higgs-doublet models in light of current experiments: A brief review. Commun. Theor. Phys. 2022, 74, 097202. [Google Scholar] [CrossRef]
- Arcadi, G.; Djouadi, A.; Raidal, M. Dark Matter through the Higgs portal. Phys. Rept. 2020, 842, 1–180. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Lee, H.M.; Yamashita, K. Positivity Bounds on Higgs-Portal Dark Matter. arXiv 2023, arXiv:2302.02879. [Google Scholar]
- Cohen, A.G.; Kaplan, D.B.; Nelson, A.E. Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 1993, 43, 27–70. [Google Scholar] [CrossRef]
- Dine, M.; Kusenko, A. The Origin of the matter - antimatter asymmetry. Rev. Mod. Phys. 2003, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M. Baryogenesis. In Proceedings of the Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches, France, 31 July–25 August 2006. [Google Scholar]
- Morrissey, D.E.; Ramsey-Musolf, M.J. Electroweak baryogenesis. New J. Phys. 2012, 14, 125003. [Google Scholar] [CrossRef]
- Elor, G.; Harz, J.; Ipek, S.; Shakya, B.; Blinov, N.; Co, R.T.; Cui, Y.; Dasgupta, A.; Davoudiasl, H.; Elahi, F.; et al. New Ideas in Baryogenesis: A Snowmass White Paper. In Proceedings of the 2022 Snowmass Summer Study, Seattle, DC, USA, 16–26 July 2022. [Google Scholar]
- Witten, E. Witten Reflects. 2021. Available online: http://cerncourier.com/a/witten-reflects (accessed on 10 February 2023).
- Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle. Eur. Phys. J. C 2013, 73, 2552. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Weiglein, G. FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 2000, 124, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Isidori, G. Lower limit on the Higgs mass in the standard model: An Update. Phys. Lett. B 1994, 337, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Casas, J.A.; Espinosa, J.R.; Quiros, M. Improved Higgs mass stability bound in the standard model and implications for supersymmetry. Phys. Lett. B 1995, 342, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Hambye, T.; Riesselmann, K. Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D 1997, 55, 7255–7262. [Google Scholar] [CrossRef] [Green Version]
- Riesselmann, K. Limitations of a standard model Higgs boson. In Proceedings of the International School of Subnuclear Physics, 35th Course: Highlights: 50 Years Later, Erice, Italy, 26 August–4 September 1997; pp. 584–592. [Google Scholar]
- Cao, J.J.; Heng, Z.X.; Yang, J.M.; Zhang, Y.M.; Zhu, J.Y. A SM-like Higgs near 125 GeV in low energy SUSY: A comparative study for MSSM and NMSSM. J. High Energy Phys. 2012, 3, 086. [Google Scholar] [CrossRef] [Green Version]
- Norberg, S. Strong SUSY at ATLAS and CMS. In Proceedings of the 55th Rencontres de Moriond - 2021 Electroweak Interactions and Unified Theories, Online, 21–27 March 2021; pp. 73–78. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. Improved (g − 2)μ Measurements and Supersymmetry. Eur. Phys. J. C 2020, 80, 984. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. Improved (g − 2)μ measurements and wino/higgsino dark matter. Eur. Phys. J. C 2021, 81, 1069. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. The new “MUON G-2” result and supersymmetry. Eur. Phys. J. C 2021, 81, 1114. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. Improved (g − 2)μ Measurements and Supersymmetry: Implications for e+e− colliders. In Proceedings of the International Workshop on Future Linear Colliders, online, 15–18 March 2021. [Google Scholar]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. SUSY in the light of the new “MUON G-2” Result. arXiv 2022, arXiv:2111.00322. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I.; Schappacher, C. (g − 2)μ and SUSY dark matter: Direct detection and collider search complementarity. Eur. Phys. J. C 2022, 82, 483. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. SUSY Dark Matter Direct Detection Prospects Based on (g − 2)μ. Moscow Univ. Phys. Bull. 2022, 77, 116–119. [Google Scholar] [CrossRef]
- Abdughani, M.; Hikasa, K.I.; Wu, L.; Yang, J.M.; Zhao, J. Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond. J. High Energy Phys. 2019, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Cox, P.; Han, C.; Yanagida, T.T. Muon g − 2 and dark matter in the minimal supersymmetric standard model. Phys. Rev. D 2018, 98, 055015. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Balázs, C.; Jacob, D.H.J.; Kotlarski, W.; Stöckinger, D.; Stöckinger-Kim, H. New physics explanations of g-2 in light of the FNAL muon g-2 measurement. J. High Energy Phys. 2021, 9, 80. [Google Scholar] [CrossRef]
- Wang, F.; Wu, L.; Xiao, Y.; Yang, J.M.; Zhang, Y. GUT-scale constrained SUSY in light of new muon g-2 measurement. Nucl. Phys. B 2021, 970, 115486. [Google Scholar] [CrossRef]
- Ning, X.; Wang, F. Solving the muon g-2 anomaly within the NMSSM from generalized deflected AMSB. J. High Energy Phys. 2017, 8, 89. [Google Scholar] [CrossRef]
- Abdughani, M.; Fan, Y.Z.; Feng, L.; Tsai, Y.L.S.; Wu, L.; Yuan, Q. A common origin of muon g-2 anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM. Sci. Bull. 2021, 66, 2170–2174. [Google Scholar] [CrossRef]
- Cao, J.; Lian, J.; Pan, Y.; Zhang, D.; Zhu, P. Improved g-2 measurement and singlino dark matter in mu-term extended Z3-NMSSM. J. High Energy Phys. 2021, 9, 175. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, J. A smuon in the NMSSM confronted with the muon g-2 and SUSY searches. arXiv 2021, arXiv:2112.14576. [Google Scholar] [CrossRef]
- Cao, J.; Li, F.; Lian, J.; Pan, Y.; Zhang, D. Impact of LHC probes of SUSY and recent measurement of (g-2) on Z3-NMSSM. Sci. China Phys. Mech. Astron. 2022, 65, 291012. [Google Scholar] [CrossRef]
- Cao, J.; He, Y.; Shang, L.; Zhang, Y.; Zhu, P. Current status of a natural NMSSM in light of LHC 13 TeV data and XENON-1T results. Phys. Rev. D 2019, 99, 075020. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Lian, J.; Pan, Y.; Yue, Y.; Zhang, D. Impact of recent (g − 2)μ measurement on the light CP-even Higgs scenario in general Next-to-Minimal Supersymmetric Standard Model. J. High Energy Phys. 2022, 3, 203. [Google Scholar] [CrossRef]
- Cao, J.; Jia, X.; Meng, L.; Yue, Y.; Zhang, D. Status of the singlino-dominated dark matter in general Next-to-Minimal Supersymmetric Standard Model. arXiv 2022, arXiv:2210.08769. [Google Scholar] [CrossRef]
- Zhao, S.M.; Su, L.H.; Dong, X.X.; Wang, T.T.; Feng, T.F. Study muon g − 2 at two-loop level in the U(1)XSSM. J. High Energy Phys. 2022, 3, 101. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, H.B.; Liu, C.X.; Dong, X.X.; Feng, T.F. Muon (g − 2) in the B-LSSM. J. High Energy Phys. 2021, 8, 086. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liu, C.X.; Yang, J.L.; Feng, T.F. Muon anomalous magnetic dipole moment in the μνSSM *. Chin. Phys. C 2022, 46, 093107. [Google Scholar] [CrossRef]
- Cao, J.; Lian, J.; Meng, L.; Yue, Y.; Zhu, P. Anomalous muon magnetic moment in the inverse seesaw extended next-to-minimal supersymmetric standard model. Phys. Rev. D 2020, 101, 095009. [Google Scholar] [CrossRef]
- Cao, J.; He, Y.; Lian, J.; Zhang, D.; Zhu, P. Electron and muon anomalous magnetic moments in the inverse seesaw extended NMSSM. Phys. Rev. D 2021, 104, 055009. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.M.; Long, X.X.; Wang, Y.T.; Wang, T.T.; Zhang, H.B.; Feng, T.F. Study on muon anomalous magnetic dipole moment in BLMSSM via the mass insertion approximation. arXiv 2022, arXiv:2211.10848. [Google Scholar]
- Li, T.; Pei, J.; Zhang, W. Muon anomalous magnetic moment and Higgs potential stability in the 331 model from SU(6). Eur. Phys. J. C 2021, 81, 671. [Google Scholar] [CrossRef]
- Barman, R.K.; Bélanger, G.; Bhattacherjee, B.; Godbole, R.M.; Sengupta, R. Is the light neutralino thermal dark matter in the MSSM ruled out? arXiv 2022, arXiv:2207.06238. [Google Scholar]
- Zhao, J.; Zhu, J.; Zhu, P.; Zhu, R. Light higgsino scenario confronted with muon g-2. arXiv 2022, arXiv:2211.14587. [Google Scholar] [CrossRef]
- Ajaib, M.A.; Nasir, F. Muon g-2 and Dark Matter in the NUGM + NUHM2 model. arXiv 2023, arXiv:2302.02047. [Google Scholar]
- Cirelli, M.; Fornengo, N.; Strumia, A. Minimal dark matter. Nucl. Phys. B 2006, 753, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M.; Strumia, A. Minimal Dark Matter: Model and results. New J. Phys. 2009, 11, 105005. [Google Scholar] [CrossRef]
- Di Luzio, L.; Gröber, R.; Panico, G. Probing new electroweak states via precision measurements at the LHC and future colliders. J. High Energy Phys. 2019, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Crivellin, A.; Hoferichter, M.; Schmidt-Wellenburg, P. Combined explanations of (g − 2)μ,e and implications for a large muon EDM. Phys. Rev. D 2018, 98, 113002. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiao, Y.; Yang, J.M. Can electron and muon g − 2 anomalies be jointly explained in SUSY? Eur. Phys. J. C 2022, 82, 276. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Wang, F.; Yang, J.M. Explanation of electron and muon g − 2 anomalies in AMSB. Nucl. Phys. B 2022, 983, 115927. [Google Scholar] [CrossRef]
- Hanneke, D.; Fogwell, S.; Gabrielse, G. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 2008, 100, 120801. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the Anomalous Magnetic Moment of the Electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carena, M.; Nardini, G.; Quiros, M.; Wagner, C.E.M. MSSM Electroweak Baryogenesis and LHC Data. J. High Energy Phys. 2013, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Quiros, M.; Wagner, C.E.M. Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron. Nucl. Phys. B 1998, 524, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.; Morrissey, D.E. Higgs Boson Signatures of MSSM Electroweak Baryogenesis. Phys. Rev. D 2009, 79, 115020. [Google Scholar] [CrossRef]
- Akula, S.; Nath, P. Gluino-driven radiative breaking, Higgs boson mass, muon g-2, and the Higgs diphoton decay in supergravity unification. Phys. Rev. D 2013, 87, 115022. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, W.; Yang, J.M. Reconcile muon g-2 anomaly with LHC data in SUGRA with generalized gravity mediation. J. High Energy Phys. 2015, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, K.; Yang, J.M.; Zhu, J. Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses. J. High Energy Phys. 2018, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, G.L.; Wang, F.; Yang, J.M.; Zhang, Y. Gluino-SUGRA scenarios in light of FNAL muon g-2 anomaly. J. High Energy Phys. 2021, 12, 219. [Google Scholar] [CrossRef]
- Ellwanger, U.; Hugonie, C.; Teixeira, A.M. The Next-to-Minimal Supersymmetric Standard Model. Phys. Rept. 2010, 496, 1–77. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Meng, L.; Yue, Y.; Zhou, H.; Zhu, P. Suppressing the scattering of WIMP dark matter and nucleons in supersymmetric theories. Phys. Rev. D 2020, 101, 075003. [Google Scholar] [CrossRef] [Green Version]
- Pietroni, M. The Electroweak phase transition in a nonminimal supersymmetric model. Nucl. Phys. B 1993, 402, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.T.; Froggatt, C.D.; Moorhouse, R.G. Electroweak baryogenesis in the next-to-minimal supersymmetric model. Phys. Lett. B 1996, 372, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.J.; Konstandin, T.; Prokopec, T.; Schmidt, M.G. Electroweak Phase Transition and Baryogenesis in the nMSSM. Nucl. Phys. B 2006, 757, 172–196. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Kang, Z.; Shu, J.; Wu, P.; Yang, J.M. New insights in the electroweak phase transition in the NMSSM. Phys. Rev. D 2015, 91, 025006. [Google Scholar] [CrossRef] [Green Version]
- Kozaczuk, J.; Profumo, S.; Haskins, L.S.; Wainwright, C.L. Cosmological Phase Transitions and their Properties in the NMSSM. J. High Energy Phys. 2015, 1, 144. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Balazs, C.; Fowlie, A.; Pozzo, G.; White, G.; Zhang, Y. Strong first-order phase transitions in the NMSSM—A comprehensive survey. J. High Energy Phys. 2019, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.; Carena, M.; Shah, N.R.; Wagner, C.E.M.; Wang, Y. Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM. J. High Energy Phys. 2021, 3, 55. [Google Scholar] [CrossRef]
- Borah, P.; Ghosh, P.; Roy, S.; Saha, A.K. Electroweak Phase Transition in a Right-Handed Neutrino Superfield Extended NMSSM. arXiv 2023, arXiv:2301.05061. [Google Scholar]
- Wang, W.; Xie, K.P.; Xu, W.L.; Yang, J.M. Cosmological phase transitions, gravitational waves and self-interacting dark matter in the singlet extension of MSSM. Eur. Phys. J. C 2022, 82, 1120. [Google Scholar] [CrossRef]
- Han, C.; Hikasa, K.i.; Wu, L.; Yang, J.M.; Zhang, Y. Status of CMSSM in light of current LHC Run-2 and LUX data. Phys. Lett. B 2017, 769, 470–476. [Google Scholar] [CrossRef]
- Van Beekveld, M.; Caron, S.; Ruiz de Austri, R. The current status of fine-tuning in supersymmetry. J. High Energy Phys. 2020, 1, 147. [Google Scholar] [CrossRef] [Green Version]
- Cohen, T.; Craig, N.; Koren, S.; Mccullough, M.; Tooby-Smith, J. Supersoft Top Squarks. Phys. Rev. Lett. 2020, 125, 151801. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.B.; Georgi, H. SU(2) × U(1) Breaking by Vacuum Misalignment. Phys. Lett. B 1984, 136, 183–186. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H.; Dimopoulos, S. Composite Higgs Scalars. Phys. Lett. B 1984, 136, 187–190. [Google Scholar] [CrossRef]
- Georgi, H.; Kaplan, D.B. Composite Higgs and Custodial SU(2). Phys. Lett. B 1984, 145, 216–220. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. (De)constructing dimensions. Phys. Rev. Lett. 2001, 86, 4757–4761. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Csáki, C.; Serra, J. Composite Higgses. Eur. Phys. J. C 2014, 74, 2766. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Cohen, A.G.; Katz, E.; Nelson, A.E. The Littlest Higgs. J. High Energy Phys. 2002, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Cohen, A.G.; Gregoire, T.; Wacker, J.G. Phenomenology of electroweak symmetry breaking from theory space. J. High Energy Phys. 2002, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Low, I.; Skiba, W.; Tucker-Smith, D. Little Higgses from an antisymmetric condensate. Phys. Rev. D 2002, 66, 072001. [Google Scholar] [CrossRef] [Green Version]
- Chang, S. A ’Littlest Higgs’ model with custodial SU(2) symmetry. J. High Energy Phys. 2003, 12, 57. [Google Scholar] [CrossRef]
- Chang, S.; Wacker, J.G. Little Higgs and custodial SU(2). Phys. Rev. D 2004, 69, 035002. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.E.; Schmaltz, M. The Little Higgs from a simple group. J. High Energy Phys. 2003, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Schmaltz, M. The Simplest little Higgs. JHEP 2004, 08, 056. [Google Scholar] [CrossRef] [Green Version]
- Skiba, W.; Terning, J. A Simple model of two little Higgses. Phys. Rev. D 2003, 68, 075001. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Logan, H.E.; McElrath, B.; Wang, L.T. Phenomenology of the little Higgs model. Phys. Rev. D 2003, 67, 095004. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.H.; Chen, C.R.; Larios, F.; Yuan, C.P. Anomalous gtt couplings in the Littlest Higgs Model with T-parity. Phys. Rev. D 2009, 79, 015004. [Google Scholar] [CrossRef]
- Chen, C.R.; Tobe, K.; Yuan, C.P. Higgs boson production and decay in little Higgs models with T-parity. Phys. Lett. B 2006, 640, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, J.M. Higgs boson decays and production via gluon fusion at LHC in littlest Higgs models with T-parity. Phys. Rev. D 2009, 79, 055013. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, J.M. The LHC di-photon Higgs signal predicted by little Higgs models. Phys. Rev. D 2011, 84, 075024. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, W.; Yang, J.M.; Zhang, H. Higgs-pair production in littlest Higgs model with T-parity. Phys. Rev. D 2007, 76, 017702. [Google Scholar] [CrossRef] [Green Version]
- Han, X.F.; Wang, L.; Yang, J.M. Higgs-pair Production and Decay in Simplest Little Higgs Model. Nucl. Phys. B 2010, 825, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Han, X.F.; Wang, L.; Yang, J.M.; Zhu, J. Little Higgs theory confronted with the LHC Higgs data. Phys. Rev. D 2013, 87, 055004. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.H.; Li, C.S.; Yuan, C.P. Impact of Single-Top Measurement to Littlest Higgs Model with T-Parity. Phys. Lett. B 2008, 668, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.; Chen, C.R.; Tobe, K.; Yuan, C.P. Phenomenology of littlest Higgs model with T− parity: Including effects of T− odd fermions. Phys. Rev. D 2006, 74, 115020. [Google Scholar] [CrossRef] [Green Version]
- Han, X.F.; Wang, L.; Yang, J.M. Top quark FCNC decays and productions at LHC in littlest Higgs model with T-parity. Phys. Rev. D 2009, 80, 015018. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Hubisz, J.; Kribs, G.D.; Meade, P.; Terning, J. Big corrections from a little Higgs. Phys. Rev. D 2003, 67, 115002. [Google Scholar] [CrossRef] [Green Version]
- Hewett, J.L.; Petriello, F.J.; Rizzo, T.G. Constraining the littlest Higgs. J. High Energy Phys. 2003, 10, 62. [Google Scholar] [CrossRef]
- Marandella, G.; Schappacher, C.; Strumia, A. Little-Higgs corrections to precision data after LEP2. Phys. Rev. D 2005, 72, 035014. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Low, I. TeV symmetry and the little hierarchy problem. J. High Energy Phys. 2003, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Low, I. Little hierarchy, little Higgses, and a little symmetry. J. High Energy Phys. 2004, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Low, I. T parity and the littlest Higgs. J. High Energy Phys. 2004, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Low, I.; Wang, L.T. Top partners in little Higgs theories with T-parity. Phys. Rev. D 2006, 74, 055001. [Google Scholar] [CrossRef] [Green Version]
- Hubisz, J.; Meade, P. Phenomenology of the littlest Higgs with T-parity. Phys. Rev. D 2005, 71, 035016. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, J.M.; Zhu, J. Dark matter in the little Higgs model under current experimental constraints from the LHC, Planck, and Xenon data. Phys. Rev. D 2013, 88, 075018. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J.; Akerib, D.S.; Akerlof, C.W.; Al Musalhi, A.K.; Alder, F.; Alqahtani, A.; Alsum, S.K.; Amarasinghe, C.S.; Ames, A.; Anderson, T.J.; et al. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. arXiv 2022, arXiv:2207.03764. [Google Scholar]
- Liu, Y. From the W Boson Mass Anomaly to Little Higgs Model. Master’s Thesis, Imperial College London, London, UK, 2022. [Google Scholar]
- Park, S.C.; Song, J.H. Phenomenology of the heavy BH in a littlest higgs model. Phys. Rev. D 2004, 69, 115010. [Google Scholar] [CrossRef] [Green Version]
- Tabbakh, F.; Liu, J.J.; Ma, W.G. Muon g-2 in the littlest Higgs model. Commun. Theor. Phys. 2006, 45, 894–900. [Google Scholar] [CrossRef]
- Blanke, M.; Buras, A.J.; Duling, B.; Poschenrieder, A.; Tarantino, C. Charged Lepton Flavour Violation and (g-2)(mu) in the Littlest Higgs Model with T-Parity: A Clear Distinction from Supersymmetry. JHEP 2007, 05, 013. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.R.; Losada, M.; Riotto, A. Symmetry nonrestoration at high temperature in little Higgs models. Phys. Rev. D 2005, 72, 043520. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.; Ghosh, B.; Dey, G. Broken electroweak phase at high temperature in the Littlest Higgs model with T-parity. Phys. Rev. D 2009, 79, 075001. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.; Ghosh, B. On electroweak baryogenesis in the littlest Higgs model with T parity. Mod. Phys. Lett. A 2012, 27, 1250190. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D. A Theory of Spontaneous T Violation. Phys. Rev. D 1973, 8, 1226–1239. [Google Scholar] [CrossRef] [Green Version]
- Haber, H.E.; Kane, G.L.; Sterling, T. The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables. Nucl. Phys. B 1979, 161, 493–532. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Wise, M.B. FLAVOR CHANGING HIGGS - BOSON COUPLINGS. Nucl. Phys. B 1981, 187, 397–408. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Li, L.F. Properties of Charged Higgs Bosons. Phys. Rev. D 1979, 19, 945. [Google Scholar] [CrossRef] [Green Version]
- Barger, V.D.; Hewett, J.L.; Phillips, R.J.N. New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models. Phys. Rev. D 1990, 41, 3421–3441. [Google Scholar] [CrossRef]
- Grossman, Y. Phenomenology of models with more than two Higgs doublets. Nucl. Phys. B 1994, 426, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Akeroyd, A.G.; Stirling, W.J. Light charged Higgs scalars at high-energy e+e− colliders. Nucl. Phys. B 1995, 447, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Akeroyd, A.G. Nonminimal neutral Higgs bosons at LEP-2. Phys. Lett. B 1996, 377, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Akeroyd, A.G. Fermiophobic and other nonminimal neutral Higgs bosons at the LHC. J. Phys. G 1998, 24, 1983–1994. [Google Scholar] [CrossRef] [Green Version]
- Aoki, M.; Kanemura, S.; Tsumura, K.; Yagyu, K. Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology. Phys. Rev. D 2009, 80, 015017. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.G.; Ma, E. Pattern of Symmetry Breaking with Two Higgs Doublets. Phys. Rev. D 1978, 18, 2574. [Google Scholar] [CrossRef]
- Barbieri, R.; Hall, L.J.; Rychkov, V.S. Improved naturalness with a heavy Higgs: An Alternative road to LHC physics. Phys. Rev. D 2006, 74, 015007. [Google Scholar] [CrossRef] [Green Version]
- Lopez Honorez, L.; Nezri, E.; Oliver, J.F.; Tytgat, M.H.G. The Inert Doublet Model: An Archetype for Dark Matter. J. Cosmol. Astropart. Phys. 2007, 2007, 028. [Google Scholar] [CrossRef]
- Cao, Q.H.; Ma, E.; Rajasekaran, G. Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders. Phys. Rev. D 2007, 76, 095011. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.; Papadopoulos, A. First order phase transition in a two Higgs doublet model with M(h) > M(W). Phys. Lett. B 1993, 314, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Dorsch, G.C.; Huber, S.J.; No, J.M. A strong electroweak phase transition in the 2HDM after LHC8. J. High Energy Phys. 2013, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Williams, A.G.; Zhang, M. Strong first order electroweak phase transition in 2HDM confronting future Z & Higgs factories. J. High Energy Phys. 2021, 4, 219. [Google Scholar] [CrossRef]
- Basler, P.; Krause, M.; Muhlleitner, M.; Wittbrodt, J.; Wlotzka, A. Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited. J. High Energy Phys. 2017, 2, 121. [Google Scholar] [CrossRef] [Green Version]
- Basler, P.; Mühlleitner, M.; Wittbrodt, J. The CP-Violating 2HDM in Light of a Strong First Order Electroweak Phase Transition and Implications for Higgs Pair Production. J. High Energy Phys. 2018, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Dolle, E.M.; Su, S. The Inert Dark Matter. Phys. Rev. D 2009, 80, 055012. [Google Scholar] [CrossRef]
- Lopez Honorez, L.; Yaguna, C.E. The inert doublet model of dark matter revisited. J. High Energy Phys. 2010, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Abouabid, H.; Arhrib, A.; Hmissou, A.; Rahili, L. Revisiting Inert Doublet Model Parameters. arXiv 2023, arXiv:2302.03767. [Google Scholar]
- He, X.G.; Tandean, J. Low-Mass Dark-Matter Hint from CDMS II, Higgs Boson at the LHC, and Darkon Models. Phys. Rev. D 2013, 88, 013020. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shi, R.; Han, X.F. Wrong sign Yukawa coupling of the 2HDM with a singlet scalar as dark matter confronted with dark matter and Higgs data. Phys. Rev. D 2017, 96, 115025. [Google Scholar] [CrossRef] [Green Version]
- Altmannshofer, W.; Maddock, B.; Profumo, S. Doubly Blind Spots in Scalar Dark Matter Models. Phys. Rev. D 2019, 100, 055033. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, M.E.; Casas, J.A.; Delgado, A.; Robles, S. Generalized Blind Spots for Dark Matter Direct Detection in the 2HDM. J. High Energy Phys. 2020, 2, 166. [Google Scholar] [CrossRef] [Green Version]
- He, X.G.; Li, T.; Li, X.Q.; Tandean, J.; Tsai, H.C. Constraints on Scalar Dark Matter from Direct Experimental Searches. Phys. Rev. D 2009, 79, 023521. [Google Scholar] [CrossRef] [Green Version]
- He, X.G.; Ren, B.; Tandean, J. Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches. Phys. Rev. D 2012, 85, 093019. [Google Scholar] [CrossRef] [Green Version]
- He, X.G.; Tandean, J. New LUX and PandaX-II Results Illuminating the Simplest Higgs-Portal Dark Matter Models. J. High Energy Phys. 2016, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.F.; He, X.G.; Tandean, J. Two-Higgs-Doublet-Portal Dark-Matter Models in Light of Direct Search and LHC Data. J. High Energy Phys. 2017, 04, 107. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, P.; Chun, E.J.; Mandal, R. Scalar Dark Matter in Leptophilic Two-Higgs-Doublet Model. Phys. Lett. B 2018, 779, 201–205. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.F. A light pseudoscalar of 2HDM confronted with muon g-2 and experimental constraints. J. High Energy Phys. 2015, 5, 039. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, J.M.; Zhang, M.; Zhang, Y. Revisiting lepton-specific 2HDM in light of muon g-2 anomaly. Phys. Lett. B 2019, 788, 519–529. [Google Scholar] [CrossRef]
- Han, X.F.; Li, T.; Wang, L.; Zhang, Y. Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model. Phys. Rev. D 2019, 99, 095034. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Toma, T.; Tsumura, K. A μ-τ-philic scalar doublet under Zn flavor symmetry. J. High Energy Phys. 2019, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.X.; Wang, L.; Zhang, Y. Muon g − 2 anomaly and μ–τ-philic Higgs doublet with a light CP-even component. Eur. Phys. J. C 2021, 81, 1007. [Google Scholar] [CrossRef]
- Abe, T.; Sato, R.; Yagyu, K. Muon specific two-Higgs-doublet model. J. High Energy Phys. 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Crivellin, A.; Heeck, J.; Stoffer, P. A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model. Phys. Rev. Lett. 2016, 116, 081801. [Google Scholar] [CrossRef] [Green Version]
- Ilisie, V. New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models. J. High Energy Phys. 2015, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Li, S.P.; Li, X.Q.; Yang, Y.D. Muon g − 2 in a U(1)-symmetric Two-Higgs-Doublet Model. Phys. Rev. D 2019, 99, 035010. [Google Scholar] [CrossRef] [Green Version]
- Li, S.P.; Li, X.Q.; Li, Y.Y.; Yang, Y.D.; Zhang, X. Power-aligned 2HDM: A correlative perspective on (g − 2)e,μ. J. High Energy Phys. 2021, 1, 34. [Google Scholar] [CrossRef]
- Dermisek, R. Muon g-2 and Other Observables in Models with Extended Higgs and Matter Sectors#. Moscow Univ. Phys. Bull. 2022, 77, 102–107. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Tang, T.P.; Tsai, Y.L.S.; Wu, L. Inert Higgs Dark Matter for CDF II W-Boson Mass and Detection Prospects. Phys. Rev. Lett. 2022, 129, 091802. [Google Scholar] [CrossRef]
- Song, H.; Su, W.; Zhang, M. Electroweak phase transition in 2HDM under Higgs, Z-pole, and W precision measurements. J. High Energy Phys. 2022, 10, 48. [Google Scholar] [CrossRef]
- Ghorbani, K.; Ghorbani, P. W-boson mass anomaly from scale invariant 2HDM. Nucl. Phys. B 2022, 984, 115980. [Google Scholar] [CrossRef]
- Anderson, G.W.; Hall, L.J. The Electroweak phase transition and baryogenesis. Phys. Rev. D 1992, 45, 2685–2698. [Google Scholar] [CrossRef]
- Csikor, F.; Fodor, Z.; Heitger, J. Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 1999, 82, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Is there a hot electroweak phase transition at mH ≳ mW? Phys. Rev. Lett. 1996, 77, 2887–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J. Gauge singlet scalars as cold dark matter. Phys. Rev. D 1994, 50, 3637–3649. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M.; Kainulainen, K.; Scott, P.; Weniger, C. Update on scalar singlet dark matter. Phys. Rev. D 2013, 88, 055025, Erratum in Phys. Rev. D 2015, 92, 039906. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Yang, J.M.; Zhang, Y.; Zheng, S. Collider Signatures of Higgs-portal Scalar Dark Matter. Phys. Lett. B 2016, 756, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Beniwal, A.; Lewicki, M.; Wells, J.D.; White, M.; Williams, A.G. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis. J. High Energy Phys. 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, A.; Cingiloglu, K.Y.; Frank, M. Vacuum stability in the Standard Model with vectorlike fermions. Phys. Rev. D 2023, 107, 036018. [Google Scholar] [CrossRef]
- Palit, P.; Shil, S. Probing Electroweak Phase Transition in Singlet scalar extension of Standard Model at HL-LHC through bbZZ channel using parameterized machine learning. arXiv 2023, arXiv:2302.04191. [Google Scholar]
- Athron, P.; Balázs, C.; Bringmann, T.; Buckley, A.; Chrząszcz, M.; Conrad, J.; Cornell, J.M.; Dal, L.A.; Edsjö, J.; Farmer, B.; et al. Status of the scalar singlet dark matter model. Eur. Phys. J. C 2017, 77, 568. [Google Scholar] [CrossRef]
- Athron, P.; Cornell, J.M.; Kahlhoefer, F.; Mckay, J.; Scott, P.; Wild, S. Impact of vacuum stability, perturbativity and XENON1T on global fits of ℤ2 and ℤ3 scalar singlet dark matter. Eur. Phys. J. C 2018, 78, 830. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; De, B.; Mitra, S. Cancellation in Dark Matter-Nucleon Interactions: The Role of Non-Standard-Model-like Yukawa Couplings. Phys. Lett. B 2021, 815, 136159. [Google Scholar] [CrossRef]
- Wang, W.; Xu, W.L.; Yang, J.M. A hidden self-interacting dark matter sector with first order cosmological phase transition and gravitational wave. arXiv 2022, arXiv:2209.11408. [Google Scholar]
- Jiang, X.M.; Cai, C.; Su, Y.H.; Zhang, H.H. Freeze-in Production of Pseudo-Nambu-Goldstone Dark Matter Model with a Real Scalar. arXiv 2023, arXiv:2302.02418. [Google Scholar]
- Balázs, C.; Xiao, Y.; Yang, J.M.; Zhang, Y. New vacuum stability limit from cosmological history. arXiv 2023, arXiv:2301.09283. [Google Scholar]
- Kurup, G.; Perelstein, M. Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model. Phys. Rev. D 2017, 96, 015036. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, P. Vacuum stability vs. positivity in real singlet scalar extension of the standard model. Nucl. Phys. B 2021, 971, 115533. [Google Scholar] [CrossRef]
- Cline, J.M.; Moore, G.D.; Servant, G. Was the electroweak phase transition preceded by a color broken phase? Phys. Rev. D 1999, 60, 105035. [Google Scholar] [CrossRef] [Green Version]
- Biekötter, T.; Heinemeyer, S.; No, J.M.; Olea, M.O.; Weiglein, G. Fate of electroweak symmetry in the early Universe: Non-restoration and trapped vacua in the N2HDM. J. Cosmol. Astropart. Phys. 2021, 6, 018. [Google Scholar] [CrossRef]
- Ghorbani, P. Vacuum structure and electroweak phase transition in singlet scalar dark matter. Phys. Dark Univ. 2021, 33, 100861. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, J.M.; Zhang, Y. Dilution of dark matter relic density in singlet extension models. arXiv 2022, arXiv:2207.14519. [Google Scholar] [CrossRef]
Naturalness | DM | FOPT | Muon | W-Mass | |
---|---|---|---|---|---|
xSM | ✗ | ✓ | ✓ | ✗ | ✗ |
2HDMs | ✗ | ✓ | ✓ | ✓ | ✓ |
low energy SUSY | ✓ 1 | ✓ | ✓ 2 | ✓ | ✓ |
little Higgs theory | ✓ 3 | ✓ | ✓ | ✗ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, J.M.; Zhang, Y.; Zhu, P.; Zhu, R. A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments. Universe 2023, 9, 178. https://doi.org/10.3390/universe9040178
Wang L, Yang JM, Zhang Y, Zhu P, Zhu R. A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments. Universe. 2023; 9(4):178. https://doi.org/10.3390/universe9040178
Chicago/Turabian StyleWang, Lei, Jin Min Yang, Yang Zhang, Pengxuan Zhu, and Rui Zhu. 2023. "A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments" Universe 9, no. 4: 178. https://doi.org/10.3390/universe9040178
APA StyleWang, L., Yang, J. M., Zhang, Y., Zhu, P., & Zhu, R. (2023). A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments. Universe, 9(4), 178. https://doi.org/10.3390/universe9040178