Parameter Study of Geomagnetic Storms and Associated Phenomena: CME Speed De-Projection vs. In Situ Data
Abstract
:1. Introduction
2. Data and Methods
- 1.
- We start with a temporal association between the GS and the recorded IP shock near Earth, within a 1-day period prior to the hour of the reported minimum Dst of the GS. A similar argument is used for the association with the ICME reported near Earth. In addition, the animations provided by http://helioweather.net/archive/ (accessed on 24 February 2023) are used to confirm the potential ICME and IP shock candidates.
- 2.
- Next, we proceed with an association with a CME in a 3-to-5 day window prior to the IP (or GS) timing, using the information in the available solar and IP event catalogs and also the http://helioweather.net/archive/ (accessed on 24 February 2023) animations.
- 3.
- Finally, we complete the association with the identification of an SF in a relationship to the so-associated CME using timing (within one hour between the SF onset and CME timing) and location constrains (the SF location ought to be in the same solar quadrant as the reported value of the CME measurement position angle, MPA).
- GS database (Kyoto): https://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html (accessed on 24 February 2023)
- SF database (GOES): http://ftp.swpc.noaa.gov/pub/warehouse/ (accessed on 24 February 2023)
- CME catalog (SOHO-LASCO): https://cdaw.gsfc.nasa.gov/CME_list/ (accessed on 24 February 2023)
- ICME database: https://wind.nasa.gov/ICME_catalog/ICME_catalog_viewer.php (accessed on 24 February 2023) (Wind); https://izw1.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm (accessed on 24 February 2023) (ACE)
- IP shock database (Wind): http://www.ipshocks.fi/database (accessed on 24 February 2023); https://lweb.cfa.harvard.edu/shocks/wi_data/ (accessed on 24 February 2023)
2.1. GSs and IP Phenomena
2.2. GSs and Solar Phenomena
2.3. PyThea 3D De-Projection Tool
3. Results
3.1. Projection Effects
3.2. Correlation between GSs, Coronal and Near-Sun Parameters
3.3. Correlation between GSs and IP Parameters
3.4. On the GS Strength Forecasting Based on Solar and IP Parameters
- E15 (): -, fast speed f, no 3D speed estimation
- E16 (): Cx, n, no 3D speed estimation
- E25 (): F+, n, no 3D speed estimation
- E19 (): Fr, n, no 3D speed estimation
- E03 (): Cx, f, reduced 3D speed compared to 2D
- E04 (): Cx, n, similar 3D speed compared to 2D
- E06 (): Fr, n, larger 3D speed compared to 2D
- E10 (): Fr, n, similar 3D speed compared to 2D
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Advanced Composition Explorer satellite |
AW | Angular Width |
CIR | Corotating Interaction Region |
CME | Coronal Mass Ejection |
Dst | Disturbance storm time index |
GCS | Graduated Cylindrical Shell model |
GOES | Geostationary Operational Environmental Satellite |
GS | Geomagnetic Storm |
ICME | Interplanetary Coronal Mass Ejection |
IP | Interplanetary |
MPA | Measurement Position Angle |
LASCO | Large Angle and Spectrometric Coronagraph Experiment-instrument aboard SOHO |
SC | Solar Cycle |
SF | Solar Flare |
SEP | Solar Energetic Particle |
SOHO | Solar and Heliospheric Observatory satellite |
STEREO | Double stereo spacecraft |
SW | Space Weather |
Wind | Wind satellite |
References
- Webb, D.F.; Howard, T.A. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys. 2012, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.; Dennis, B.R.; Hudson, H.S.; Krucker, S.; Phillips, K.; Veronig, A.; Battaglia, M.; Bone, L.; Caspi, A.; Chen, Q.; et al. An Observational Overview of Solar Flares. Space Sci. Rev. 2011, 159, 19–106. [Google Scholar] [CrossRef] [Green Version]
- Klein, K.L.; Dalla, S. Acceleration and Propagation of Solar Energetic Particles. Space Sci. Rev. 2017, 212, 1107–1136. [Google Scholar] [CrossRef]
- Temmer, M. Space weather: The solar perspective. Living Rev. Sol. Phys. 2021, 18, 4. [Google Scholar] [CrossRef]
- Malandraki, O.E.; Crosby, N.B. Solar Energetic Particles and Space Weather: Science and Applications. In Proceedings of the Solar Particle Radiation Storms Forecasting and Analysis; Malandraki, O.E., Crosby, N.B., Eds.; Astrophysics and Space Science Library; Springer Nature Publ.: Berlin/Heidelberg, Germany, 2018; Volume 444, pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N. The Sun and Space Weather. Atmosphere 2022, 13, 1781. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef] [Green Version]
- Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, P.; Nenovski, P.; Stauning, P.; Bochnicek, J.; Danov, D.; Demetrescu, C.; et al. Geomagnetic response to solar and interplanetary disturbances. J. Space Weather. Space Clim. 2013, 3, A26. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Tsurutani, B.T. Geomagnetic storms: Historical perspective to modern view. Geosci. Lett. 2016, 3, 2196–4092. [Google Scholar] [CrossRef] [Green Version]
- Dungey, J.W. The Steady State of the Chapman-Ferraro Problem in Two Dimensions. J. Geophys. Res. 1961, 66, 1043–1047. [Google Scholar] [CrossRef]
- Akasofu, S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Echer, E.; Gonzalez, W.D. Relation between Dst* and interplanetary parameters during single-step geomagnetic storms. Adv. Space Res. 2022, 70, 2830–2841. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D. The Interplanetary causes of magnetic storms: A review. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 1997, 98, 77–89. [Google Scholar] [CrossRef]
- Zhang, J.; Richardson, I.G.; Webb, D.F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.C.; Nitta, N.V.; Poomvises, W.; Thompson, B.J.; Wu, C.C.; et al. Solar and interplanetary sources of major geomagnetic storms (Dst <= -100 nT) during 1996–2005. J. Geophys. Res. (Space Phys.) 2007, 112, A10102. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Lepping, R.P. Relationships Among Geomagnetic Storms, Interplanetary Shocks, Magnetic Clouds and Sunspot Number During 1995–2012. Solar Phys. 2016, 291, 265–284. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Denton, M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. (Space Phys.) 2006, 111, A07S08. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, T. Space Weather: Terrestrial Perspective. Living Rev. Sol. Phys. 2007, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Paouris, E.; Vourlidas, A.; Papaioannou, A.; Anastasiadis, A. Assessing the Projection Correction of Coronal Mass Ejection Speeds on Time-of-Arrival Prediction Performance Using the Effective Acceleration Model. Space Weather. 2021, 19, e2020SW00261. [Google Scholar] [CrossRef]
- Kouloumvakos, A.; Rodríguez-García, L.; Gieseler, J.; Price, D.J.; Vourlidas, A.; Vainio, R. PyThea: An open-source software package to perform 3D reconstruction of coronal mass ejections and shock waves. Front. Astron. Space Sci. 2022, 9, 974137. [Google Scholar] [CrossRef]
- Samwel, S.W.; Miteva, R. Correlations between space weather parameters during intense geomagnetic storms: Analytical study. 2023; under review. [Google Scholar]
- Kay, C.; Gopalswamy, N. The Effects of Uncertainty in Initial CME Input Parameters on Deflection, Rotation, Bz and Arrival Time Predictions. J. Geophys. Res. (Space Phys.) 2018, 123, 7220–7240. [Google Scholar] [CrossRef]
- Vourlidas, A.; Wu, S.; Wang, A.; Subramanian, P.; Howard, R. Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images. Astrophys. J. 2003, 598, 1392. [Google Scholar] [CrossRef]
- Jackson, B.; Hick, P.; Buffington, A.; Bisi, M.; Clover, J.; Hamilton, M.; Tokumaru, M.; Fujiki, K. 3D Reconstruction of Density Enhancements Behind Interplanetary Shocks from Solar Mass Ejection Imager White-Light Observations. In Proceedings of the AIP Conference Proceedings. American Institute of Physics, Penang, Malaysia, 21–23 December 2010; Volume 1216, pp. 659–662. [Google Scholar]
- Thernisien, A.; Vourlidas, A.; Howard, R.A. Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data. Solar Phys. 2009, 256, 111–130. [Google Scholar] [CrossRef]
- Mierla, M.; Inhester, B.; Antunes, A.; Boursier, Y.; Byrne, J.P.; Colaninno, R.; Davila, J.; de Koning, C.A.; Gallagher, P.T.; Gissot, S.; et al. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data. Ann. Geophys. 2010, 28, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.E.; Howard, R.A.; Socker, D.G. Reconstructing the Morphology of an Evolving Coronal Mass Ejection. Astrophys. J. 2010, 715, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Thernisien, A. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections. Astrophys. J. Suppl. 2011, 194, 33. [Google Scholar] [CrossRef]
- Odstrcil, D.; Riley, P.; Zhao, X.P. Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. (Space Phys.) 2004, 109, A02116. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ofman, L.; Lawrence, G. Cone model for halo CMEs: Application to space weather forecasting. J. Geophys. Res. (Space Phys.) 2004, 109, A03109. [Google Scholar] [CrossRef]
- Vršnak, B.; Žic, T.; Vrbanec, D.; Temmer, M.; Rollett, T.; Möstl, C.; Veronig, A.; Čalogović, J.; Dumbović, M.; Lulić, S.; et al. Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Solar Phys. 2013, 285, 295–315. [Google Scholar] [CrossRef]
- Pomoell, J.; Poedts, S. EUHFORIA: European heliospheric forecasting information asset. J. Space Weather. Space Clim. 2018, 8, A35. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Moon, Y.J.; Kim, R.S.; Lee, H.; Cho, K.S. Comparison between 2D and 3D Parameters of 306 Front-side Halo CMEs from 2009 to 2013. Astrophys. J. 2016, 821, 95. [Google Scholar] [CrossRef] [Green Version]
- Verbeke, C.; Mays, M.L.; Kay, C.; Riley, P.; Palmerio, E.; Dumbović, M.; Mierla, M.; Scolini, C.; Temmer, M.; Paouris, E.; et al. Quantifying errors in 3D CME parameters derived from synthetic data using white-light reconstruction techniques. Adv. Space Res. 2022, (in press). [Google Scholar] [CrossRef]
- Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Xie, H.; Mäkelä, P.; Fok, M.C.; Ferradas, C.P. What Is Unusual About the Third Largest Geomagnetic Storm of Solar Cycle 24? J. Geophys. Res. (Space Phys.) 2022, 127, e30404. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, Z.; Yousof, H.; Soon, W.; Jia, M.; Tang, W.; Dou, X. The interplanetary origins of geomagnetic storm with Dstmin ≤ - 50 nT during solar cycle 24 (2009–2019). Adv. Space Res. 2022, 70, 2047–2057. [Google Scholar] [CrossRef]
- Besliu-Ionescu, D.; Maris Muntean, G.; Dobrica, V. Complex Catalogue of High Speed Streams Associated with Geomagnetic Storms during Solar Cycle 24. Solar Phys. 2022, 297, 65. [Google Scholar] [CrossRef]
- Abe, O.E.; Fakomiti, M.O.; Igboama, W.N.; Akinola, O.O.; Ogunmodimu, O.; Migoya-Orué, Y.O. Statistical analysis of the occurrence rate of geomagnetic storms during solar cycles 20–24. Adv. Space Res. 2023, 71, 2240–2251. [Google Scholar] [CrossRef]
- Selvakumaran, R.; Veenadhari, B.; Akiyama, S.; Pandya, M.; Gopalswamy, N.; Yashiro, S.; Kumar, S.; Mäkelä, P.; Xie, H. On the reduced geoeffectiveness of solar cycle 24: A moderate storm perspective. J. Geophys. Res. (Space Phys.) 2016, 121, 8188–8202. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Echer, E.; Clua-Gonzalez, A.L.; Tsurutani, B.T. Interplanetary origin of intense geomagnetic storms (Dst < -100 nT) during solar cycle 23. Geophys. Res. Lett. 2007, 34, L06101. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R.P. Solar sources and geospace consequences of interplanetary magnetic clouds observed during solar cycle 23. J. Atmos.-Sol.-Terr. Phys. 2008, 70, 245–253. [Google Scholar] [CrossRef]
- Echer, E.; Tsurutani, B.T.; Gonzalez, W.D. Interplanetary origins of moderate (−100 nT < Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J. Geophys. Res. (Space Phys.) 2013, 118, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Manu, V.; Balan, N.; Zhang, Q.H.; Xing, Z.Y. Association of the Main Phase of the Geomagnetic Storms in Solar Cycles 23 and 24 with Corresponding Solar Wind-IMF Parameters. J. Geophys. Res. (Space Phys.) 2022, 127, e2022JA030747. [Google Scholar] [CrossRef]
- Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J.C.; Linton, M.G.; Al-haddad, N.; Savani, N.P.; Szabo, A.; Hidalgo, M.A. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Solar Phys. 2018, 293, 25. [Google Scholar] [CrossRef]
- Dumbović, M.; Čalogović, J.; Vršnak, B.; Temmer, M.; Mays, M.L.; Veronig, A.; Piantschitsch, I. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophys. J. 2018, 854, 180. [Google Scholar] [CrossRef]
- Mays, M.L.; Thompson, B.J.; Jian, L.K.; Colaninno, R.C.; Odstrcil, D.; Möstl, C.; Temmer, M.; Savani, N.P.; Collinson, G.; Taktakishvili, A.; et al. Propagation of the 7 January 2014 CME and Resulting Geomagnetic Non-event. Astrophys. J. 2015, 812, 145. [Google Scholar] [CrossRef] [Green Version]
# | GS | ICME Parameters | IP Shock Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mm-dd/h | Dst | mm-dd/Time | Type | Speed Wind/ACE | Hit | mm-dd/Time | Speed | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) |
2011 | ||||||||||||
E01 | 08-06/04 | −115 | 08-06/22:00 | - | -/540 | - | −22.8 | f * | 08-05/18:41 | 789 | 2.52/1.37/2.21 | 3.7 |
E02 | 09-26/24 | −118 | 09-26/22:00 | - | -/580 | - | −33.6 | f | 09-26/11:44 | 544 | 2.35/2.56/2.64 | 2.4 |
E03 | 10-25/02 | −147 | 10-24/17:41 | Cx | 483/460 | 6.7 | −24.6 | f | 10-24/17:40 | 542 | 2.16/2.94/4.88 | 2.5 |
2012 | ||||||||||||
E04 | 03-09/09 | −145 | 03-08/10:32 | Cx | 576/550 | 9.4 | −19.2 | n | 03-08/10:31 | 1245 | 1.42/1.31/1.25 | 8.4 |
E05 | 04-24/05 | −120 | 04-23/02:15 | F- | 373/370 | 14.6 | −15.9 | f | 04-23/02:15 | 416 | 2.45/2.44/1.87 | 1.7 |
E06 | 07-15/17 | −139 | 07-14/17:39 | Fr | 491/490 | 12.6 | −20.0 | n | 07-14/17:39 | 617 | 2.08/2.53/4.29 | 3.3 |
E07 | 10-01/05 | −122 | 09-30/10:14 | Cx | 354/370 | 2.0 | −21.2 | f | 09-30/22:19 | 452 | 2.55/2.00/2.05 | 2.5 |
E08 | 10-09/09 | −109 | 10-08/04:12 | Fr | 398/390 | 11.6 | −16.0 | u | 10-08/04:12 | 445 | 1.96/2.01/1.63 | 1.7 |
E09 | 11-14/08 | −108 | 11-12/22:12 | F+ | 381/380 | 10.2 | −20.6 | f | 11-12/22:12 | 386 | 2.18/2.20/1.08 | 1.6 |
2013 | ||||||||||||
E10 | 03-17/21 | −132 | 03-17/05:21 | Fr | 529/520 | 8.8 | −19.3 | n | 03-17/05:22 | 719 | 2.45/2.68/10.5 | 4.1 |
E11 | 06-01/09 | −124 | - | - | -/- | - | −8.8 | u | 05-31/15:12 | 410 | 2.90/2.16/2.83 | 2.1 |
E12 | 06-29/07 | −102 | 06-27/13:51 | Fr | 391/- | 12.5 | −12.4 | u | 06-30/10:42 | 349 | 1.55/1.61/1.27 | 1.4 |
2014 | ||||||||||||
E13 | 02-19/09 | −119 | 02-18/05:59 | Fr | 421/520 | 9.1 | −15.4 | u | 02-19/03:10 | 597 | 1.82/1.69/1.51 | 1.9 |
2015 | ||||||||||||
E14 | 01-07/12 | −107 | 01-07/05:38 | F+ | 451/450 | 0.8 | −20.4 | u | 01-07/05:39 | 494 | 1.70/1.73/1.89 | 1.2 |
E15 | 03-17/23 | −234 | 03-17/13:00 | - | -/560 | - | −26.0 | f * | 03-17/04:00 | 562 | 2.52/2.43/3.50 | 2.6 |
E16 | 06-23/05 | −198 | 06-22/18:07 | Cx | 598/610 | 8.3 | −39.0 | n | 06-22/18:08 | 767 | 3.34/3.63/6.70 | 4.1 |
E17 | 09-09/13 | −105 | 09-07/13:05 | F+ | 468/460 | 10.4 | −12.6 | u | - | - | - | - |
E18 | 10-07/23 | −130 | 10-06/21:35 | Fr | 425/- | 0 | −9.2 | u | - | - | - | - |
E19 | 12-20/23 | −166 | 12-19/15:35 | Fr | 398/400 | 22.1 | −19.0 | n | 12-19/15:38 | 563 | 2.49/2.25/4.87 | 3.0 |
2016 | ||||||||||||
E20 | 01-01/01 | −116 | 12-31/17:00 | - | -/440 | - | −16.3 | n ** | 12-31/00:18 | 404 | 2.20/2.27/3.99 | 2.6 |
E21 | 01-20/17 | −101 | 01-19/03:31 | Fr | 362/370 | 7.9 | −11.6 | f | 01-18/21:21 | 350 | 1.73/1.91/1.60 | 1.7 |
E22 | 10-13/18 | −110 | 10-12/21:37 | F+ | 384/390 | 8.8 | −6.9 | u | 10-12/21:16 | 431 | 1.82/2.47/4.43 | 1.9 |
2017 | ||||||||||||
E23 | 05-28/08 | −125 | 05-27/13:45 | F+ | 318/360 | 9.1 | −20.2 | f | 05-27/14:42 | 378 | 2.68/2.94/2.95 | 1.9 |
E24 | 09-08/02 | −122 | 09-07/16:17 | E | 683/460 | 8.0 | −32.2 | f * | 09-07/22:28 | 718 | - | - |
2018 | ||||||||||||
E25 | 08-26/07 | −175 | 08-25/01:02 | F+ | 406/410 | 11.0 | −6.8 | n | - | - | - | - |
# | SF Parameters | 2D CME Parameters | 3D CME Speed | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mm-dd | Class | Onset | Location | Time | Speed | AW | MPA | Spheroid | Elliptical | GCS | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
2011 | |||||||||||
E01 | 08-04 | M9.3 | 03:41 | N19W36 | 04:12 | 1315 | 360 | 298 | 1990 | 1920 | 1780 |
E02 | 09-24 | M7.1 | 12:33 | N10S56 | 12:48 | 1915 | 360 | 78 | 1570 | 1590 | 1720 |
E03 | 10-22 | M1.3 | 10:00 | N25W77 | 10:24 | 1005 | 360 | 311 | 760 | 690 | 840 |
2012 | |||||||||||
E04 | 03-07 | X5.4 | 00:02 | N17S27 | 00:24 | 2684 | 360 | 57 | 2150 | 2460 | 2530 |
E05 | uncertain origin | - | - | - | |||||||
E06 | 07-12 | X1.4 | 15:37 | S15W01 | 16:48 | 885 | 360 | 158 | 1060 | 1780 | 1520 |
E07 | 09-28 | C3.7 | 23:36 | N06W34 | 24:12 | 947 | 360 | 251 | multiple CMEs | ||
E08 | 10-05 | uncertain | 02:48 | 612 | 284 | 202 | 350 | 360 | 350 | ||
E09 | 11-09 | uncertain | 15:12 | 559 | 276 | 157 | 660 | 570 | 720 | ||
2013 | |||||||||||
E10 | 03-15 | X1.1 | 05:46 | N11S11 | 07:12 | 1063 | 360 | 112 | 720 | 1040 | 1110 |
E11 | uncertain origin | - | - | - | |||||||
E12 | 06-28 | uncertain | 02:00 | 1037 | 360 | 214 | no SOHO images | ||||
2014 | |||||||||||
E13 | 02-16 | M1.1 | 09:20 | S11E01 | 10:00 | 634 | 360 | 227 | 340 | 690 | 890 |
2015 | |||||||||||
E14 | 01-03 | C1.2 | 03:06 | S05E21 | 03:12 | 163 | 153 | 144 | no STEREO images | ||
E15 | 03-15 | C9.1 | 01:15 | S22W25 | 01:48 | 719 | 360 | 240 | no STEREO images | ||
E16 | 06-21 | M2.6 | 02:06 | N12E13 | 02:36 | 1366 | 360 | 72 | no STEREO images | ||
E17 | uncertain origin | - | - | - | |||||||
E18 | uncertain origin | - | - | - | |||||||
E19 | 12-16 | C6.6 | 08:34 | S13W04 | 09:36 | 579 | 360 | 334 | no STEREO images | ||
2016 | |||||||||||
E20 | 12-28 | M1.8 | 11:20 | S23W11 | 12:12 | 1212 | 360 | 163 | 820 | 680 | 1080 |
E21 | 01-14 | uncertain | 23:24 | 191 | 360 | 234 | 620 | 440 | 280 | ||
E22 | uncertain origin | - | - | - | |||||||
2017 | |||||||||||
E23 | 05-23 | uncertain | 05:00 | 259 | 243 | 281 | no SOHO images | ||||
E24 | 09-04 | M5.5 | 20:28 | S11W16 | 20:36 | 1418 | 360 | 184 | 1020 | 1290 | 990 |
2018 | |||||||||||
E25 | 08-20 | uncertain | 21:24 | 126 | 120 | 266 | no STEREO images |
# | Spheroid | Ellipsoid | GCS | |||
---|---|---|---|---|---|---|
obs1 | obs2 | obs1 | obs2 | obs1 | obs2 | |
E01 | 2170 ± 870 | 1800 ± 270 | 2130 ± 200 | 1710 ± 450 | 1590 ± 100 | 1760 ± 10 |
E02 | 1780 ± 140 | 1350 ± 50 | 1880 ± 580 | 1310 ± 90 | 1780 ± 260 | 1630 ± 130 |
E03 | 770 ± 40 | 740 ± 10 | 640 ± 180 | 740 ± 180 | 1020 ± 170 | 700 ± 270 |
E04 | - | 2150 ± 140 | - | 2460 ± 70 | - | 2530 ± 630 |
E06 | 1410 ± 420 | 710 ± 70 | 1870 ± 50 | 1700 ± 300 | 1680 ± 870 | 1560 ± 470 |
E08 | 350 ± 90 | - | 360 ± 150 | - | 350 ± 70 | - |
E09 | 690 ± 280 | 630 ± 150 | 550 ± 170 | 590 ± 60 | 670 ± 610 | 710 ± 220 |
E10 | 840 ± 380 | 610 ± 1040 | 1120 ± 360 | 960 ± 90 | 1160 ± 650 | 1310 ± 80 |
E13 | 320 ± 90 | 350 ± 50 | 620 ± 140 | 750 ± 160 | 780 ± 80 | 1310 ± 700 |
E20 | 830 ± 190 | 800 ± 600 | 790 ± 90 | 570 ± 20 | 1240 ± 280 | 1130 ± 230 |
E21 | 620 ± 230 | - | 440 ± 40 | - | 280 ± 180 | - |
E24 | 750 ± 270 | 1310 ± 220 | 880 ± 350 | 2020 ± 960 | 950 ± 120 | 1560 ± 540 |
CME Speed | Dst-CME Speed | Solar Parameter | Dst-Solar Parameter |
---|---|---|---|
LASCO | 0.04 (20) | SF class | −0.04 (14) |
3D-mean | 0.49 (12) | SF latitude | −0.16 (14) |
3D spheroid-mean | 0.34 (12) | SF longitude | 0.13 (14) |
3D spheroid-obs1 | 0.14 (11) | CME AW | 0.03 (20) |
3D spheroid-obs2 | 0.15 (10) | ||
3D ellipsoid-mean | 0.53 (12) | ||
3D ellipsoid-obs1 | 0.28 (11) | ||
3D ellipsoid-obs2 | 0.40 (10) | ||
3D GCS-mean | 0.55 (12) | ||
3D GCS-obs1 | 0.49 (11) | ||
3D GCS-obs2 | 0.27 (10) |
IP Parameter | Dst-IP Parameter |
---|---|
ICME speed | 0.37 (24) |
ICME speed (ACE) | 0.44 (22) |
IP shock speed | 0.35 (22) |
Mach number | 0.36 (21) |
sheath duration | 0.22 (20) |
0.37 (25) | |
0.48 (21) | |
0.40 (21) | |
0.46 (21) | |
B | −0.14 (20) |
V | 0.19 (20) |
−0.14 (21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miteva, R.; Nedal, M.; Samwel, S.W.; Temmer, M. Parameter Study of Geomagnetic Storms and Associated Phenomena: CME Speed De-Projection vs. In Situ Data. Universe 2023, 9, 179. https://doi.org/10.3390/universe9040179
Miteva R, Nedal M, Samwel SW, Temmer M. Parameter Study of Geomagnetic Storms and Associated Phenomena: CME Speed De-Projection vs. In Situ Data. Universe. 2023; 9(4):179. https://doi.org/10.3390/universe9040179
Chicago/Turabian StyleMiteva, Rositsa, Mohamed Nedal, Susan W. Samwel, and Manuela Temmer. 2023. "Parameter Study of Geomagnetic Storms and Associated Phenomena: CME Speed De-Projection vs. In Situ Data" Universe 9, no. 4: 179. https://doi.org/10.3390/universe9040179
APA StyleMiteva, R., Nedal, M., Samwel, S. W., & Temmer, M. (2023). Parameter Study of Geomagnetic Storms and Associated Phenomena: CME Speed De-Projection vs. In Situ Data. Universe, 9(4), 179. https://doi.org/10.3390/universe9040179