Neutron Lifetime Anomaly and Mirror Matter Theory
Abstract
:1. Introduction
1.1. 1% Discrepancy in Neutron Lifetime Measurements
1.2. More Puzzles in Neutron Lifetime and CKM Unitarity
Approach | Sub-Method | Device/Location | Ref. | Lifetime Results [s] |
---|---|---|---|---|
beam | p-extraction | KIAE | Spivak1988 [22] | |
quasi-Penning trap | ILL | Byrne1996 [23] | ||
BL1/NIST | Yue2013 [5] | |||
TPC/pulsed | J-PARC | Hirota2020 [24] | ||
material trap | mfp scaling | MAMBO/ILL | Mampe1989 [25] | |
Steyerl2012 [26]1 | ||||
-scaling | PNPI | Nesvizhevskii1992 [27]2 | ||
Gravitrap/ILL | Serebrov2005 [19] | |||
MAMBO II/ILL | Pichlmaier2010 [28] | |||
Gravitrap2/ILL | Serebrov2018 [7] | |||
-ratio | ILL | Mampe1993 [29] | ||
Ignatovich1995 [30]3 | ||||
KIAE-double bottle/ILL | Arzumanov2000 [18] | |||
Arzumanov2012 [32] | ||||
Arzumanov2015 [8] | ||||
magnetic trap | storage ring | NESTOR/ILL | Paul1989 [33] | |
Halbach | HOPE/ILL | Leung2016 [34] | ||
PNPI/ILL | Ezhov2018 [35] | |||
SPECT/Mainz | Kahlenberg2020 [36] | |||
Ross2021 [37] | ||||
UCN/LANL | UCN2021 [9] | |||
Ioffe | NIST | Huffer2017 [20] | ||
space | Moon-based | LPNS | Wilson2021 [38] |
1.3. Possible Theoretical Solutions and New Experimental Efforts
2. Evaluation of Neutron Lifetime Measurements
2.1. Ultra-Cold Neutrons in Material Traps
2.2. First Beautiful “Bottle” Measurement Using Mfp Scaling
2.3. Other Extrapolation Techniques in Material Trap Measurements
2.4. Anomalies in Magnetic Traps
2.5. Neutron Lifetime and CKM Unitarity
3. Mirror Matter Theory
3.1. A Brief History
3.2. Phenomenological Model of Oscillations
3.3. Explanation of Neutron Lifetime Anomaly and CKM Unitarity Puzzle
4. Further Laboratory Tests
4.1. Magnetic UCN Traps with Different/Narrow Geometries
4.2. Resonant Oscillations in Super-Strong Magnetic Fields
4.3. Other Possible Tests
5. Conclusions and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | re-analysis of Mampe1989, see text for details. |
2 | withdrawn by A. Serebrov according to PDG [10]. |
3 |
References
- Wietfeldt, F.E.; Greene, G.L. Colloquium: The Neutron Lifetime. Rev. Mod. Phys. 2011, 83, 1173–1192. [Google Scholar] [CrossRef] [Green Version]
- Wietfeldt, F.E. Measurements of the Neutron Lifetime. Atoms 2018, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Pokotilovski, Y.N. Experiments with Ultracold Neutrons—First 50 Years. arXiv 2018, arXiv:1805.05292. [Google Scholar]
- Nico, J.S.; Dewey, M.S.; Gilliam, D.M.; Wietfeldt, F.E.; Fei, X.; Snow, W.M.; Greene, G.L.; Pauwels, J.; Eykens, R.; Lamberty, A.; et al. Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam. Phys. Rev. C 2005, 71, 055502. [Google Scholar] [CrossRef] [Green Version]
- Yue, A.T.; Dewey, M.S.; Gilliam, D.M.; Greene, G.L.; Laptev, A.B.; Nico, J.S.; Snow, W.M.; Wietfeldt, F.E. Improved Determination of the Neutron Lifetime. Phys. Rev. Lett. 2013, 111, 222501. [Google Scholar] [CrossRef] [Green Version]
- Pattie, R.W.; Callahan, N.B.; Cude-Woods, C.; Adamek, E.R.; Broussard, L.J.; Clayton, S.M.; Currie, S.A.; Dees, E.B.; Ding, X.; Engel, E.M.; et al. Measurement of the Neutron Lifetime Using a Magneto-Gravitational Trap and in Situ Detection. Science 2018, 360, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Kolomensky, E.A.; Fomin, A.K.; Krasnoshchekova, I.A.; Vassiljev, A.V.; Prudnikov, D.M.; Shoka, I.V.; Chechkin, A.V.; Chaikovskiy, M.E.; Varlamov, V.E.; et al. Neutron Lifetime Measurements with a Large Gravitational Trap for Ultracold Neutrons. Phys. Rev. C 2018, 97, 055503. [Google Scholar] [CrossRef] [Green Version]
- Arzumanov, S.; Bondarenko, L.; Chernyavsky, S.; Geltenbort, P.; Morozov, V.; Nesvizhevsky, V.V.; Panin, Y.; Strepetov, A. A Measurement of the Neutron Lifetime Using the Method of Storage of Ultracold Neutrons and Detection of Inelastically Up-Scattered Neutrons. Phys. Lett. B 2015, 745, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, F.M. et al. [UCNt Collaboration] Improved Neutron Lifetime Measurement with UCNτ. Phys. Rev. Lett. 2021, 127, 162501. [Google Scholar] [CrossRef]
- Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; Particle Data Group; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Chaikovskii, M.E.; Klyushnikov, G.N.; Zherebtsov, O.M.; Chechkin, A.V. Search for Explanation of the Neutron Lifetime Anomaly. Phys. Rev. D 2021, 103, 074010. [Google Scholar] [CrossRef]
- Wietfeldt, F.E.; Biswas, R.; Caylor, J.; Crawford, B.; Dewey, M.S.; Fomin, N.; Greene, G.L.; Haddock, C.C.; Hoogerheide, S.F.; Mumm, H.P.; et al. Comments on Systematic Effects in the NIST Beam Neutron Lifetime Experiment. arXiv 2022, arXiv:2209.15049. [Google Scholar]
- Alfimenkov, V.P.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskiǐ, V.V.; Serebrov, A.P.; Tal’Daev, R.R.; Kharitonov, A.G. Anomalous Interaction of Ultracold Neutrons with the Surface of a Beryllium Trap. JETP Lett. 1992, 55, 84. [Google Scholar]
- Geltenbort, P.; Nesvizhevsky, V.V.; Kartashov, D.G.; Lychagin, E.V.; Muzychka, A.Y.; Nekhaev, G.V.; Shvetsov, V.N.; Strelkov, A.V.; Kharitonov, A.G.; Serebrov, A.P.; et al. A New Escape Channel for Ultracold Neutrons in Traps. JETP Lett. 1999, 70, 170–175. [Google Scholar] [CrossRef]
- Lychagin, E.V.; Muzychka, A.Y.; Nesvizhevsky, V.V.; Nekhaev, G.V.; Strelkov, A.V. Experimental Estimation of the Possible Subbarrier Penetration of Ultracold Neutrons through Vacuum-Tight Foils. JETP Lett. 2000, 71, 447–450. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Butterworth, J.; Daum, M.; Fomin, A.K.; Geltenbort, P.; Kirch, K.; Krasnoschekova, I.A.; Lasakov, M.S.; Rudnev, Y.P.; Varlamov, V.E.; et al. Low-Energy Heating of Ultracold Neutrons during Their Storage in Material Bottles. Phys. Lett. A 2003, 309, 218–224. [Google Scholar] [CrossRef]
- Serebrov, A.; Vassiljev, A.; Lasakov, M.; Krasnoschekova, I.; Fomin, A.; Geltenbort, P.; Siber, E. Low Energy Upscattering of UCN in Interaction with the Surface of Solid State. Phys. Lett. A 2007, 367, 268–270. [Google Scholar] [CrossRef] [Green Version]
- Arzumanov, S.; Bondarenko, L.; Chernyavsky, S.; Drexel, W.; Fomin, A.; Geltenbort, P.; Morozov, V.; Panin, Y.; Pendlebury, J.; Schreckenbach, K. Neutron Life Time Value Measured by Storing Ultracold Neutrons with Detection of Inelastically Scattered Neutrons. Phys. Lett. B 2000, 483, 15–22. [Google Scholar] [CrossRef]
- Serebrov, A.; Varlamov, V.; Kharitonov, A.; Fomin, A.; Pokotilovski, Y.; Geltenbort, P.; Butterworth, J.; Krasnoschekova, I.; Lasakov, M.; Tal’daev, R.; et al. Measurement of the Neutron Lifetime Using a Gravitational Trap and a Low-Temperature Fomblin Coating. Phys. Lett. B 2005, 605, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Huffer, C.R. Results and Systematic Studies of the UCN Lifetime Experiment at NIST. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2017. [Google Scholar]
- Tan, W. Laboratory Tests of the Ordinary-Mirror Particle Oscillations and the Extended CKM Matrix. arXiv 2019, arXiv:1906.10262. [Google Scholar]
- Spivak, P. Neutron Lifetime from Atomic-Energy-Institute Experiment. Sov. Phys. JETP 1988, 67, 1735. [Google Scholar]
- Byrne, J.; Dawber, P.G.; Habeck, C.G.; Smidt, S.J.; Spain, J.A.; Williams, A.P. A Revised Value for the Neutron Lifetime Measured Using a Penning Trap. Europhys. Lett. 1996, 33, 187. [Google Scholar] [CrossRef]
- Hirota, K.; Ichikawa, G.; Ieki, S.; Ino, T.; Iwashita, Y.; Kitaguchi, M.; Kitahara, R.; Koga, J.; Mishima, K.; Mogi, T.; et al. Neutron Lifetime Measurement with Pulsed Cold Neutrons. Prog. Theor. Exp. Phys. 2020, 2020, 123C02. [Google Scholar] [CrossRef]
- Mampe, W.; Ageron, P.; Bates, C.; Pendlebury, J.M.; Steyerl, A. Neutron Lifetime Measured with Stored Ultracold Neutrons. Phys. Rev. Lett. 1989, 63, 593–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyerl, A.; Pendlebury, J.M.; Kaufman, C.; Malik, S.S.; Desai, A.M. Quasielastic Scattering in the Interaction of Ultracold Neutrons with a Liquid Wall and Application in a Reanalysis of the Mambo I Neutron-Lifetime Experiment. Phys. Rev. C 2012, 85, 065503. [Google Scholar] [CrossRef]
- Nesvizhevskii, V.V.; Serebrov, A.P.; Taldaev, R.R.; Kharitonov, A.G.; Alfimenkov, V.P.; Strelkov, A.V.; Shvetsov, V.N. Measurement of the Neutron Lifetime in a Gravitational Trap and Analysis of Experimental Errors. Sov. Phys. JETP 1992, 75, 405–412. [Google Scholar]
- Pichlmaier, A.; Varlamov, V.; Schreckenbach, K.; Geltenbort, P. Neutron Lifetime Measurement with the UCN Trap-in-Trap MAMBO II. Phys. Lett. B 2010, 693, 221–226. [Google Scholar] [CrossRef]
- Mampe, W.; Bondarenko, L.N.; Morozov, V.I.; Panin, Y.N.; Fomin, A.I. Measuring Neutron Lifetime by Storing Ultracold Neutrons and Detecting Inelastically Scattered Neutrons. JETP Lett. 1993, 57, 82–87. [Google Scholar]
- Ignatovich, V.K. Additional Neutron Lifetime Result Obtained from Ultracold Neutron Storage Experiments. JETP Lett. 1995, 62, 1–6. [Google Scholar]
- Bondarenko, L.N.; Morozov, V.I.; Panin, Y.N.; Fomin, A.I. Comment on the Additional Result on the Neutron Lifetime Reported by V. G. Ignatovich in JETP Lett. 62, Issue 1, p. 1 (1995). JETP Lett. 1996, 64, 416–417. [Google Scholar] [CrossRef]
- Arzumanov, S.S.; Bondarenko, L.N.; Morozov, V.I.; Panin, Y.N.; Chernyavsky, S.M. Analysis and Correction of the Measurement of the Neutron Lifetime. Jetp Lett. 2012, 95, 224–228. [Google Scholar] [CrossRef]
- Paul, W.; Anton, F.; Paul, L.; Paul, S.; Mampe, W. Measurement of the Neutron Lifetime in a Magnetic Storage Ring. Z. Phys. C 1989, 45, 25–30. [Google Scholar] [CrossRef]
- Leung, K.K.H.; Geltenbort, P.; Ivanov, S.; Rosenau, F.; Zimmer, O. Neutron Lifetime Measurements and Effective Spectral Cleaning with an Ultracold Neutron Trap Using a Vertical Halbach Octupole Permanent Magnet Array. Phys. Rev. C 2016, 94, 045502. [Google Scholar] [CrossRef] [Green Version]
- Ezhov, V.F.; Andreev, A.Z.; Ban, G.; Bazarov, B.A.; Geltenbort, P.; Glushkov, A.G.; Knyazkov, V.A.; Kovrizhnykh, N.A.; Krygin, G.B.; Naviliat-Cuncic, O.; et al. Measurement of the Neutron Lifetime with Ultracold Neutrons Stored in a Magneto-Gravitational Trap. JETP Lett. 2018, 107, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Kahlenberg, J. First Full-Magnetic Storage of Ultracold Neutrons in the tSPECT Experiment for Measuring the Neutron Lifetime. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2020. [Google Scholar] [CrossRef]
- Roß, K.U. Towards a High Precision Measurement of the Free Neutron Lifetime with tauSPECT. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2021. [Google Scholar] [CrossRef]
- Wilson, J.T.; Lawrence, D.J.; Peplowski, P.N.; Eke, V.R.; Kegerreis, J.A. Measurement of the Free Neutron Lifetime Using the Neutron Spectrometer on NASA’s Lunar Prospector Mission. Phys. Rev. C 2021, 104, 045501. [Google Scholar] [CrossRef]
- Baldo-Ceolin, M.; Benetti, P.; Bitter, T.; Bobisut, F.; Calligarich, E.; Dolfini, R.; Dubbers, D.; El-Muzeini, P.; Genoni, M.; Gibin, D.; et al. A New Experimental Limit on Neutron-Antineutron Oscillations. Z. Phys. C 1994, 63, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Fornal, B.; Grinstein, B. Dark Matter Interpretation of the Neutron Decay Anomaly. Phys. Rev. Lett. 2018, 120, 191801. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Blatnik, M.; Broussard, L.J.; Choi, J.H.; Clayton, S.M.; Cude-Woods, C.; Currie, S.; Fellers, D.E.; Fries, E.M.; Geltenbort, P.; et al. Search for the Neutron Decay N->X+gamma, Where X Is a Dark Matter Particle. Phys. Rev. Lett. 2018, 121, 022505. [Google Scholar] [CrossRef] [Green Version]
- Sun, X. et al. [UCNA Collaboration] Search for Dark Matter Decay of the Free Neutron from the UCNA Experiment: n → χ + e+e−. Phys. Rev. C 2018, 97, 052501. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Bento, L. Neutron–Mirror-Neutron Oscillations: How Fast Might They Be? Phys. Rev. Lett. 2006, 96, 081801. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Search for Neutron-Mirror Neutron Oscillations in a Laboratory Experiment with Ultracold Neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 611, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomutov, N.; Kirch, K.; Kistryn, S.; Knecht, A.; et al. Direct Experimental Limit on Neutron–Mirror-Neutron Oscillations. Phys. Rev. Lett. 2007, 99, 161603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altarev, I.; Baker, C.A.; Ban, G.; Bodek, K.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Gutsmiedl, E.; et al. Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields. Phys. Rev. D 2009, 80, 032003. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Experimental Search for Neutron–Mirror Neutron Oscillations Using Storage of Ultracold Neutrons. Phys. Lett. B 2008, 663, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Neutron Lifetime Puzzle and Neutron-Mirror Neutron Oscillation. Eur. Phys. J. C 2019, 79, 484. [Google Scholar] [CrossRef] [Green Version]
- Broussard, L.J.; Barrow, J.L.; DeBeer-Schmitt, L.; Dennis, T.; Fitzsimmons, M.R.; Frost, M.J.; Gilbert, C.E.; Gonzalez, F.M.; Heilbronn, L.; Iverson, E.B.; et al. Experimental Search for Neutron to Mirror Neutron Oscillations as an Explanation of the Neutron Lifetime Anomaly. Phys. Rev. Lett. 2022, 128, 212503. [Google Scholar] [CrossRef]
- Tan, W. Neutron Oscillations for Solving Neutron Lifetime and Dark Matter Puzzles. Phys. Lett. B 2019, 797, 134921. [Google Scholar] [CrossRef]
- Tan, W. Neutron-Mirror Neutron Oscillations in Stars. arXiv 2019, arXiv:1902.03685. [Google Scholar]
- Tan, W. Neutron-Mirror Neutron Oscillations for Solving the Puzzles of Ultrahigh-Energy Cosmic Rays. arXiv 2019, arXiv:1903.07474. [Google Scholar]
- Tan, W. Kaon Oscillations and Baryon Asymmetry of the Universe. Phys. Rev. D 2019, 100, 063537. [Google Scholar] [CrossRef] [Green Version]
- Tan, W. Dark Energy and Spontaneous Mirror Symmetry Breaking. arXiv 2019, arXiv:1908.11838. [Google Scholar]
- Tan, W. Supersymmetric Mirror Models and Dimensional Evolution of Spacetime. Prepr. Open Sci. Framew. 2020. [Google Scholar] [CrossRef]
- Tan, W. No Single Unification Theory of Everything. arXiv 2020, arXiv:2003.04687. [Google Scholar]
- Tan, W. From Neutron and Quark Stars to Black Holes. Prepr. Open Sci. Framew. 2020. [Google Scholar] [CrossRef]
- Tan, W. Invisible Decays of Neutral Hadrons. arXiv 2020, arXiv:2006.10746. [Google Scholar]
- Tan, W. First Principles of Consistent Physics. Prepr. Open Sci. Framew. 2021. [Google Scholar] [CrossRef]
- Tan, W. Truly Two-Dimensional Black Holes under Dimensional Transitions of Spacetime. Int. J. Mod. Phys. D 2021, 30, 2142020. [Google Scholar] [CrossRef]
- Tan, W. Mirror Symmetry for New Physics beyond the Standard Model in 4D Spacetime. arXiv 2023, arXiv:2212.13121. [Google Scholar]
- Hoogerheide, S.F.; Caylor, J.; Adamek, E.R.; Anderson, E.S.; Biswas, R.; Chavali, S.M.; Crawford, B.; DeAngelis, C.; Dewey, M.S.; Fomin, N.; et al. Progress on the BL2 Beam Measurement of the Neutron Lifetime. EPJ Web. Conf. 2019, 219, 03002. [Google Scholar] [CrossRef] [Green Version]
- Crawford, C.B. APS—Fall 2022 Meeting of the APS Division of Nuclear Physics—Event—The BL3 Experiment at NIST. In Bulletin of the American Physical Society; American Physical Society: New Orleans, LA, USA, 2022; p. GL.00002. [Google Scholar]
- Materne, S.; Picker, R.; Altarev, I.; Angerer, H.; Franke, B.; Gutsmiedl, E.; Hartmann, F.J.; Müller, A.R.; Paul, S.; Stoepler, R. PENeLOPE—On the Way towards a New Neutron Lifetime Experiment with Magnetic Storage of Ultra-Cold Neutrons and Proton Extraction. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 611, 176–180. [Google Scholar] [CrossRef]
- Bondarenko, L.N.; Kurguzov, V.V.; Prokofev, Y.A.; Rogov, E.V.; Spivak, P.E. Measurement of the Neutron Half Time. JETP Lett. 1978, 28, 328–333. [Google Scholar]
- Kossakowski, R.; Grivot, P.; Liaud, P.; Schreckenbach, K.; Azuelos, G. Neutron Lifetime Measurement with a Helium-Filled Time Projection Chamber. Nucl. Phys. A 1989, 503, 473–500. [Google Scholar] [CrossRef]
- Yang, L.; Brome, C.R.; Butterworth, J.S.; Dzhosyuk, S.N.; Mattoni, C.E.H.; McKinsey, D.N.; Michniak, R.A.; Doyle, J.M.; Golub, R.; Korobkina, E.; et al. Invited Article: Development of High-Field Superconducting Ioffe Magnetic Traps. Rev. Sci. Instrum. 2008, 79, 031301. [Google Scholar] [CrossRef] [PubMed]
- Huffman, P.R.; Coakley, K.J.; Doyle, J.M.; Huffer, C.R.; Mumm, H.P.; O’Shaughnessy, C.M.; Schelhammer, K.W.; Seo, P.N.; Yang, L. Design and Performance of a Cryogenic Apparatus for Magnetically Trapping Ultracold Neutrons. Cryogenics 2014, 64, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Huffman, P.R.; Brome, C.R.; Butterworth, J.S.; Coakley, K.J.; Dewey, M.S.; Dzhosyuk, S.N.; Golub, R.; Greene, G.L.; Habicht, K.; Lamoreaux, S.K.; et al. Magnetic Trapping of Neutrons. Nature 2000, 403, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Golub, R. Ultra-Cold Neutrons; Adam Hilger: Bristol, PA, USA, 1991. [Google Scholar]
- Bates, J.C. A Fluid Walled Neutron Bottle. Nucl. Instrum. Methods Phys. Res. 1983, 216, 535–536. [Google Scholar] [CrossRef]
- Ageron, P.; Mampe, W.; Bates, J.C.; Pendlebury, J.M. UCN Storage in Fluid Walled Bottles: A Method for a Neutron Lifetime Measurement. Nucl. Instrum. Methods Phys. Res. Sect. A 1986, 249, 261–264. [Google Scholar] [CrossRef]
- Mampe, W.; Ageron, P.; Bates, J.C.; Pendlebury, J.M.; Steyerl, A. Neutron Lifetime from a Liquid Walled Bottle. Nucl. Instrum. Methods Phys. Res. Sect. A 1989, 284, 111–115. [Google Scholar] [CrossRef]
- Doyle, J.M.; Lamoreaux, S.K. On Measuring the Neutron Beta-Decay Lifetime Using Ultracold Neutrons Produced and Stored in a Superfluid-4He-Filled Magnetic Trap. Europhys. Lett. 1994, 26, 253. [Google Scholar] [CrossRef] [Green Version]
- Golub, R.; Pendlebury, J.M. Ultra-Cold Neutrons. Rep. Prog. Phys. 1979, 42, 439–501. [Google Scholar] [CrossRef]
- Seng, C.Y.; Galviz, D.; Marciano, W.J.; Meißner, U.G. Update on |Vus| and |Vus/Vud| from Semileptonic Kaon and Pion Decays. Phys. Rev. D 2022, 105, 013005. [Google Scholar] [CrossRef]
- Seng, C.Y.; Galviz, D.; Gorchtein, M.; Meißner, U.G. Complete Theory of Radiative Corrections to Kl3 Decays and the Vus Update. J. High Energ. Phys. 2022, 2022, 71. [Google Scholar] [CrossRef]
- Aoki, Y.; Blum, T.; Colangelo, G.; Collins, S.; Morte, M.D.; Dimopoulos, P.; Dürr, S.; Feng, X.; Fukaya, H.; Golterman, M.; et al. FLAG Review 2021. Eur. Phys. J. C 2022, 82, 1–296. [Google Scholar] [CrossRef]
- Ishikawa, K.I. et al. [PACS Collaboration] Kl3 Form Factors at the Physical Point: Toward the Continuum Limit. Phys. Rev. D 2022, 106, 094501. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ Nuclear β Decays: 2020 Critical Survey, with Implications for Vud and CKM Unitarity. Phys. Rev. C 2020, 102, 045501. [Google Scholar] [CrossRef]
- Seng, C.Y.; Gorchtein, M.; Patel, H.H.; Ramsey-Musolf, M.J. Reduced Hadronic Uncertainty in the Determination of Vud. Phys. Rev. Lett. 2018, 121, 241804. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Radiative Corrections to Neutron and Nuclear Beta Decays Revisited. Phys. Rev. D 2019, 100, 073008. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. The Evaluation of Vud and Its Impact on the Unitarity of the Cabibbo–Kobayashi–Maskawa Quark-Mixing Matrix. Rep. Prog. Phys. 2010, 73, 046301. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Neutron Lifetime and Axial Coupling Connection. Phys. Rev. Lett. 2018, 120, 202002. [Google Scholar] [CrossRef] [Green Version]
- Märkisch, B.; Mest, H.; Saul, H.; Wang, X.; Abele, H.; Dubbers, D.; Klopf, M.; Petoukhov, A.; Roick, C.; Soldner, T.; et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Phys. Rev. Lett. 2019, 122, 242501. [Google Scholar] [CrossRef] [Green Version]
- Schumann, M.; Kreuz, M.; Deissenroth, M.; Glück, F.; Krempel, J.; Märkisch, B.; Mund, D.; Petoukhov, A.; Soldner, T.; Abele, H. Measurement of the Proton Asymmetry Parameter in Neutron Beta Decay. Phys. Rev. Lett. 2008, 100, 151801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mund, D.; Märkisch, B.; Deissenroth, M.; Krempel, J.; Schumann, M.; Abele, H.; Petoukhov, A.; Soldner, T. Determination of the Weak Axial Vector Coupling λ=gA/gV from a Measurement of the β-Asymmetry Parameter A in Neutron Beta Decay. Phys. Rev. Lett. 2013, 110, 172502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.A.P. et al. [UCNA Collaboration] New Result for the Neutron β-Asymmetry Parameter A0 from UCNA. Phys. Rev. C 2018, 97, 035505. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Ayala Guardia, F.; Borg, M.; Kahlenberg, J.; Muñoz Horta, R.; Schmidt, C.; Wunderle, A.; Heil, W.; Maisonobe, R.; Simson, M.; et al. Improved Determination of the β-ν¯e Angular Correlation Coefficient a in Free Neutron Decay with the aSPECT Spectrometer. Phys. Rev. C 2020, 101, 055506. [Google Scholar] [CrossRef]
- Hassan, M.T.; Byron, W.A.; Darius, G.; DeAngelis, C.; Wietfeldt, F.E.; Collett, B.; Jones, G.L.; Komives, A.; Noid, G.; Stephenson, E.J.; et al. Measurement of the Neutron Decay Electron-Antineutrino Angular Correlation by the aCORN Experiment. Phys. Rev. C 2021, 103, 045502. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef] [Green Version]
- Landau, L. On the Conservation Laws for Weak Interactions. Nucl. Phys. 1957, 3, 127–131. [Google Scholar] [CrossRef]
- Christenson, J.H.; Cronin, J.W.; Fitch, V.L.; Turlay, R. Evidence for the 2π Decay of the K20 Meson. Phys. Rev. Lett. 1964, 13, 138–140. [Google Scholar] [CrossRef] [Green Version]
- Kobzarev, I.Y.; Okun, L.B.; Pomeranchuk, I.Y. On the Possibility of Experimental Observation of Mirror Particles. Sov. J. Nucl. Phys. 1966, 3, 837–841. [Google Scholar]
- Nikolaev, N.N.; Okun, L.B. Possible Experiments on Search for Mirror K° Mesons. Phys. Lett. B 1968, 27, 226–229. [Google Scholar] [CrossRef]
- Lee, T.D. CP Nonconservation and Spontaneous Symmetry Breaking. Phys. Rep. 1974, 9, 143–177. [Google Scholar] [CrossRef]
- Kuzmin, V. CP Violation and Baryon Asymmetry of the Universe. JETP Lett. 1970, 12, 335–337. [Google Scholar]
- Glashow, S.L. The Future of Elementary Particle Physics; Technical Report HUTP-79/A029; HUTP-79/A059; Harvard University: Cambridge, MA, USA, 1979. [Google Scholar]
- Mohapatra, R.N.; Marshak, R.E. Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos, and Neutron Oscillations. Phys. Rev. Lett. 1980, 44, 1316–1319. [Google Scholar] [CrossRef]
- Kuo, T.K.; Love, S.T. Neutron Oscillations and the Existence of Massive Neutral Leptons. Phys. Rev. Lett. 1980, 45, 93–96. [Google Scholar] [CrossRef]
- Chang, L.N.; Chang, N.P. Structure of the Vacuum and Neutron and Neutrino Oscillations. Phys. Rev. Lett. 1980, 45, 1540–1543. [Google Scholar] [CrossRef]
- Blinnikov, S.; Khlopov, M. Possible Manifestations of “mirror” Particles. Sov. J. Nucl. Phys. 1982, 36, 472. [Google Scholar]
- Blinnikov, S.I.; Khlopov, M.Y. Possible Astronomical Effects of Mirror Particles. Sov. Astron. 1983, 27, 371–375. [Google Scholar]
- Kolb, E.W.; Seckel, D.; Turner, M.S. The Shadow World of Superstring Theories. Nature 1985, 314, 415. [Google Scholar] [CrossRef]
- Peebles, P.J.E. The Large-Scale Structure of the Universe; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Hodges, H.M. Mirror Baryons as the Dark Matter. Phys. Rev. D 1993, 47, 456–459. [Google Scholar] [CrossRef]
- Holdom, B. Searching for ϵ Charges and a New U(1). Phys. Lett. B 1986, 178, 65–70. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; Volkas, R.R. A Model with Fundamental Improper Spacetime Symmetries. Phys. Lett. B 1991, 272, 67–70. [Google Scholar] [CrossRef]
- Foot, R. Mirror Dark Matter: Cosmology, Galaxy Structure and Direct Detection. Int. J. Mod. Phys. A 2014, 29, 1430013. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Shadowlands: Quest for Mirror Matter in the Universe, illustrated ed.; Universal Publishers: Parkland, Fl, USA, 2002. [Google Scholar]
- Berezhiani, Z. Mirror World and Its Cosmological Consequences. Int. J. Mod. Phys. A 2004, 19, 3775–3806. [Google Scholar] [CrossRef]
- Cui, J.W.; He, H.J.; Lü, L.C.; Yin, F.R. Spontaneous Mirror Parity Violation, Common Origin of Matter and Dark Matter, and the LHC Signatures. Phys. Rev. D 2012, 85, 096003. [Google Scholar] [CrossRef] [Green Version]
- Okun, L.B. Mirror Particles and Mirror Matter: 50 Years of Speculation and Searching. Phys.-Usp. 2007, 50, 380. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.G.; Mohapatra, R.N. Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos. Phys. Rev. D 1995, 52, 6607–6611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foot, R.; Volkas, R.R. Neutrino Physics and the Mirror World: How Exact Parity Symmetry Explains the Solar Neutrino Deficit, the Atmospheric Neutrino Anomaly, and the LSND Experiment. Phys. Rev. D 1995, 52, 6595–6606. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Bento, L. Fast Neutron-Mirror Neutron Oscillation and Ultra High Energy Cosmic Rays. Phys. Lett. B 2006, 635, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Giveon, A.; Porrati, M.; Rabinovici, E. Target Space Duality in String Theory. Phys. Rep. 1994, 244, 77–202. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A.; Yau, S.T.; Zaslow, E. Mirror Symmetry Is T-duality. Nucl. Phys. B 1996, 479, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Harvey, J.A.; Martinec, E.; Rohm, R. Heterotic String. Phys. Rev. Lett. 1985, 54, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Tan, W. Does the Universe Have a Mirror Sector? 2023; in preparation. [Google Scholar]
- Giunti, C.; Kim, C.W. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Mikheev, S.P.; Smirnov, A.Y. Resonance Enhancement of Oscillations in Matter and Solar Neutrino Spectroscopy. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Coakley, K.J.; (National Institute of Standards and Technology, Boulder, CO, USA). Personal communication, 2020.
- Liu, C.Y.; (Guilin University of Technology, Guilin, China). Personal communication, 2019.
- Pokotilovski, Y.N.; Natkaniec, I.; Holderna-Natkaniec, K. The Experimental and Calculated Density of States and UCN Loss Coefficients of Perfluoropolyether Oils at Low Temperatures. Physica B 2008, 403, 1942–1948. [Google Scholar] [CrossRef]
- Ablikim, M. et al. [BESIII Collaboration] Search for Invisible Decays of the Λ Baryon. Phys. Rev. D 2022, 105, L071101. [Google Scholar] [CrossRef]
- Gninenko, S.N. Search for Invisible Decays of π0,η,η′,KS, and KL: A Probe of New Physics and Tests Using the Bell-Steinberger Relation. Phys. Rev. D 2015, 91, 015004. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.; Kim, K.; Kim, K.; Hu, X.; Painter, T.; Dixon, I.; Kim, S.; Bhattarai, K.R.; Noguchi, S.; Jaroszynski, J.; et al. 45.5-Tesla Direct-Current Magnetic Field Generated with a High-Temperature Superconducting Magnet. Nature 2019, 570, 496–499. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Michel, J.; Mielke, C.H. Status and Development of Pulsed Magnets at the NHMFL Pulsed Field Facility. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Tan, W. Laboratory test of resonant ordinary-mirror neutron oscillations under super-strong magnetic fields. 2023; in preparation. [Google Scholar]
- Sears, V.F. Neutron Scattering Lengths and Cross Sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Refsgaard, J.; Büscher, J.; Arokiaraj, A.; Fynbo, H.O.U.; Raabe, R.; Riisager, K. Clarification of Large-Strength Transitions in the β Decay of 11Be. Phys. Rev. C 2019, 99, 044316. [Google Scholar] [CrossRef] [Green Version]
- Riisager, K.; Forstner, O.; Borge, M.J.G.; Briz, J.A.; Carmona-Gallardo, M.; Fraile, L.M.; Fynbo, H.O.U.; Giles, T.; Gottberg, A.; Heinz, A.; et al. 11Be({β}p), a Quasi-Free Neutron Decay? Phys. Lett. B 2014, 732, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Riisager, K.; Borge, M.J.G.; Briz, J.A.; Carmona-Gallardo, M.; Forstner, O.; Fraile, L.M.; Fynbo, H.O.U.; Camacho, A.G.; Johansen, J.G.; Jonson, B.; et al. Search for Beta-Delayed Proton Emission from 11Be. Eur. Phys. J. A 2020, 56, 100. [Google Scholar] [CrossRef] [Green Version]
- Ayyad, Y.; Olaizola, B.; Mittig, W.; Potel, G.; Zelevinsky, V.; Horoi, M.; Beceiro-Novo, S.; Alcorta, M.; Andreoiu, C.; Ahn, T.; et al. Direct Observation of Proton Emission in 11Be. Phys. Rev. Lett. 2019, 123, 082501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyad, Y.; Mittig, W.; Tang, T.; Olaizola, B.; Potel, G.; Rijal, N.; Watwood, N.; Alvarez-Pol, H.; Bazin, D.; Caamaño, M.; et al. Evidence of a Near-Threshold Resonance in 11B Relevant to the β-Delayed Proton Emission of 11Be. Phys. Rev. Lett. 2022, 129, 012501. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Saavedra, E.; Almaraz-Calderon, S.; Asher, B.W.; Baby, L.T.; Gerken, N.; Hanselman, K.; Kemper, K.W.; Kuchera, A.N.; Morelock, A.B.; Perello, J.F.; et al. Observation of a Near-Threshold Proton Resonance in 11B. Phys. Rev. Lett. 2022, 129, 012502. [Google Scholar] [CrossRef]
Apparatus | Method | Reference | |
---|---|---|---|
aCORN | correlation a | Hassan2021 [90] | |
aSPECT | correlation a | Beck2020 [89] | |
PERKEO III | -asymmetry A | Maerkisch2019 [85] | |
UCNA | -asymmetry A | Brown2018 [88] | |
PERKEO II | -asymmetry A | Mund2013 [87] | |
PERKEO II | p-asymmetry C | Schumann2008 [86] | |
Averaged value |
Measurement Type | Deviation | ||
---|---|---|---|
meson decays | 0.9645(32) | 0.9800(62) | 3.2 |
neutron (beam,) | 0.9684(12) | 0.9876(22) | 5.5 |
neutron (beam,) | 0.9686(11) | 0.9881(22) | 5.4 |
neutron (bottle,) | 0.97414(42) | 0.99874(87) | 1.5 |
neutron (bottle,) | 0.97440(38) | 0.99925(78) | 1.0 |
nuclear | 0.97373(31) | 0.99793(65) | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W. Neutron Lifetime Anomaly and Mirror Matter Theory. Universe 2023, 9, 180. https://doi.org/10.3390/universe9040180
Tan W. Neutron Lifetime Anomaly and Mirror Matter Theory. Universe. 2023; 9(4):180. https://doi.org/10.3390/universe9040180
Chicago/Turabian StyleTan, Wanpeng. 2023. "Neutron Lifetime Anomaly and Mirror Matter Theory" Universe 9, no. 4: 180. https://doi.org/10.3390/universe9040180
APA StyleTan, W. (2023). Neutron Lifetime Anomaly and Mirror Matter Theory. Universe, 9(4), 180. https://doi.org/10.3390/universe9040180