Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Potential Energy Density
2.2. Initialization with Neutron Skin
3. Results and Discussions
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alex Brown, B. Neutron Radii in Nuclei and the Neutron Equation of State. Phys. Rev. Lett. 2000, 85, 5296–5299. [Google Scholar] [CrossRef] [PubMed]
- Typel, S.; Brown, B.A. Neutron radii and the neutron equation of state in relativistic models. Phys. Rev. C 2001, 64, 027302. [Google Scholar] [CrossRef]
- Furnstahl, R. Neutron radii in mean-field models. Nucl. Phys. A 2002, 706, 85–110. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.W. Constraining the symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness. Phys. Lett. B 2013, 726, 234–238. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Piekarewicz, J. Neutron Star Structure and the Neutron Radius of 208Pb. Phys. Rev. Lett. 2001, 86, 5647–5650. [Google Scholar] [CrossRef]
- Roca-Maza, X.; Centelles, M.; Viñas, X.; Warda, M. Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment. Phys. Rev. Lett. 2011, 106, 252501. [Google Scholar] [CrossRef]
- Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.; Schellenberg, L.; Shera, E.; Dejager, C. Nuclear Ground State Charge Radii from Electromagnetic Interactions. At. Data Nucl. Data Tables 1995, 60, 177–285. [Google Scholar] [CrossRef]
- Angeli, I.; Gangrsky, Y.P.; Marinova, K.P.; Boboshin, I.N.; Komarov, S.Y.; Ishkhanov, B.S.; Varlamov, V.V. N and Z dependence of nuclear charge radii. J. Phys. G Nucl. Part. Phys. 2009, 36, 085102. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Ray, L. Proton-nucleus total cross sections in the intermediate energy range. Phys. Rev. C 1979, 20, 1857–1872. [Google Scholar] [CrossRef]
- Hoffmann, G.W.; Ray, L.; Barlett, M.; McGill, J.; Adams, G.S.; Igo, G.J.; Irom, F.; Wang, A.T.M.; Whitten, C.A.; Boudrie, R.L.; et al. 0.8 GeV p+208Pb elastic scattering and the quantity Δrnp. Phys. Rev. C 1980, 21, 1488–1494. [Google Scholar] [CrossRef]
- Starodubsky, V.E.; Hintz, N.M. Extraction of neutron densities from elastic proton scattering by 206,207,208Pb at 650 MeV. Phys. Rev. C 1994, 49, 2118–2135. [Google Scholar] [CrossRef] [PubMed]
- Kanada-En’yo, Y. Deformation effects on the surface neutron densities of stable S and Ni isotopes probed by proton elastic scattering via isotopic analysis. arXiv 2022, arXiv:2208.00590. [Google Scholar]
- Zenihiro, J.; Sakaguchi, H.; Murakami, T.; Yosoi, M.; Yasuda, Y.; Terashima, S.; Iwao, Y.; Takeda, H.; Itoh, M.; Yoshida, H.P.; et al. Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep=295 MeV. Phys. Rev. C 2010, 82, 044611. [Google Scholar] [CrossRef]
- Terashima, S.; Sakaguchi, H.; Takeda, H.; Ishikawa, T.; Itoh, M.; Kawabata, T.; Murakami, T.; Uchida, M.; Yasuda, Y.; Yosoi, M.; et al. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions. Phys. Rev. C 2008, 77, 024317. [Google Scholar] [CrossRef]
- Kłos, B.; Trzcińska, A.; Jastrzębski, J.; Czosnyka, T.; Kisieliński, M.; Lubiński, P.; Napiorkowski, P.; Pieńkowski, L.; Hartmann, F.J.; Ketzer, B.; et al. Neutron density distributions from antiprotonic 208Pb and 209Bi atoms. Phys. Rev. C 2007, 76, 014311. [Google Scholar] [CrossRef]
- Krasznahorkay, A.; Akimune, H.; van den Berg, A.; Blasi, N.; Brandenburg, S.; Csatlos, M.; Fujiwara, M.; Gulyas, J.; Harakeh, M.; Hunyadi, M.; et al. Neutron-skin thickness in neutron-rich isotopes. Nucl. Phys. A 2004, 731, 224–234. [Google Scholar] [CrossRef]
- Krasznahorkay, A.; Balanda, A.; Bordewijk, J.; Brandenburg, S.; Harakeh, M.; Kalantar-Nayestanaki, N.; Nyako, B.; Timar, J.; van der Woude, A. Excitation of the isovector GDR by inelastic α-scattering as a measure of the neutron skin of nuclei. Nucl. Phys. A 1994, 567, 521–540. [Google Scholar] [CrossRef]
- Tarbert, C.M.; Watts, D.P.; Glazier, D.I.; Aguar, P.; Ahrens, J.; Annand, J.R.M.; Arends, H.J.; Beck, R.; Bekrenev, V.; Boillat, B.; et al. Neutron Skin of 208Pb from Coherent Pion Photoproduction. Phys. Rev. Lett. 2014, 112, 242502. [Google Scholar] [CrossRef]
- Trzcińska, A.; Jastrzȩbski, J.; Lubiński, P.; Hartmann, F.J.; Schmidt, R.; von Egidy, T.; Kłos, B. Neutron Density Distributions Deduced from Antiprotonic Atoms. Phys. Rev. Lett. 2001, 87, 082501. [Google Scholar] [CrossRef]
- Jastrzbski, J.; Trzcinska, A.; Lubinski, P.; Klos, B.; Hartmann, F.J.; von Egidy, T.; Wycech, S. Neutron density distributions from antiprotonic atoms compared with hadron scattering data. Int. J. Mod. Phys. E 2004, 13, 343–351. [Google Scholar] [CrossRef]
- Brown, B.A.; Shen, G.; Hillhouse, G.C.; Meng, J.; Trzcinska, A. Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 2007, 76, 034305. [Google Scholar] [CrossRef]
- Xu, H. Constraints on neutron skin thickness and nuclear deformations using relativistic heavy-ion collisions from STAR. arXiv 2022, arXiv:2208.06149. [Google Scholar] [CrossRef]
- Liu, L.M.; Xu, J.; Peng, G.X. Measuring deformed neutron skin with free spectator nucleons in relativistic heavy-ion collisions. Phys. Lett. B 2023, 838, 137701. [Google Scholar] [CrossRef]
- Xu, H.; Li, H.; Wang, X.; Shen, C.; Wang, F. Determine the neutron skin type by relativistic isobaric collisions. Phys. Lett. B 2021, 819, 136453. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.-j.; Zhou, Y.; Wang, X.; Zhao, J.; Chen, L.W.; Wang, F. Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions. Phys. Rev. Lett. 2020, 125, 222301. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Pollock, S.J.; Souder, P.A.; Michaels, R. Parity violating measurements of neutron densities. Phys. Rev. C 2001, 63, 025501. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Ahmed, Z.; Jen, C.M.; Rakhman, A.; Souder, P.A.; Dalton, M.M.; Liyanage, N.; Paschke, K.D.; Saenboonruang, K.; Silwal, R.; et al. Weak charge form factor and radius of 208Pb through parity violation in electron scattering. Phys. Rev. C 2012, 85, 032501. [Google Scholar] [CrossRef]
- Abrahamyan, S.; Ahmed, Z.; Albataineh, H.; Aniol, K.; Armstrong, D.S.; Armstrong, W.; Averett, T.; Babineau, B.; Barbieri, A.; Bellini, V.; et al. Measurement of the Neutron Radius of 208Pb through Parity Violation in Electron Scattering. Phys. Rev. Lett. 2012, 108, 112502. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.A.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.K.; Bellini, V.; Beminiwattha, R.S.; et al. Precision Determination of the Neutral Weak Form Factor of 48Ca. Phys. Rev. Lett. 2022, 129, 042501. [Google Scholar] [CrossRef] [PubMed]
- Akimov, D.; AIbert, J.; An, P.; Awe, C.; Barbean, P.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; et al. Observation of coherent elastic neutrino-nucleus scattering. Science 2017, 357, 1123–1126. [Google Scholar] [CrossRef] [PubMed]
- Cadeddu, M.; Giunti, C.; Li, Y.F.; Zhang, Y.Y. Average CsI Neutron Density Distribution from COHERENT Data. Phys. Rev. Lett. 2018, 120, 072501. [Google Scholar] [CrossRef]
- Centelles, M.; Roca-Maza, X.; Viñas, X.; Warda, M. Nuclear Symmetry Energy Probed by Neutron Skin Thickness of Nuclei. Phys. Rev. Lett. 2009, 102, 122502. [Google Scholar] [CrossRef]
- Chen, L.W.; Ko, C.M.; Li, B.A.; Xu, J. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 2010, 82, 024321. [Google Scholar] [CrossRef]
- Xu, J.; Xie, W.J.; Li, B.A. Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in 116,118,120,122,124,130,132Sn,208Pb, and 48Ca. Phys. Rev. C 2020, 102, 044316. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.W. Constraining the density slope of nuclear symmetry energy at subsaturation densities using electric dipole polarizability in 208Pb. Phys. Rev. C 2014, 90, 064317. [Google Scholar] [CrossRef]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Li, B.A.; Han, X. Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 2013, 727, 276–281. [Google Scholar] [CrossRef]
- Gaidarov, M.K.; Antonov, A.N.; Sarriguren, P.; de Guerra, E.M. Symmetry energy of deformed neutron-rich nuclei. Phys. Rev. C 2012, 85, 064319. [Google Scholar] [CrossRef]
- Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 2012, 86, 015803. [Google Scholar] [CrossRef]
- Vi<i>n</i>˜as, X.; Centelles, M.; Roca-Maza, X.; Warda, M. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei. Eur. Phys. J. A 2014, 50, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Xia, C.J.; Li, Z.; Biswal, S.K. Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 2020, 101, 034303. [Google Scholar] [CrossRef]
- Estee, J.; Lynch, W.G.; Tsang, C.Y.; Barney, J.; Jhang, G.; Tsang, M.B.; Wang, R.; Kaneko, M.; Lee, J.W.; Isobe, T.; et al. Probing the Symmetry Energy with the Spectral Pion Ratio. Phys. Rev. Lett. 2021, 126, 162701. [Google Scholar] [CrossRef]
- Li, B.A.; Cai, B.J.; Xie, W.J.; Zhang, N.B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe 2021, 7, 182. [Google Scholar] [CrossRef]
- Essick, R.; Tews, I.; Landry, P.; Schwenk, A. Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of 208Pb with Minimal Modeling Assumptions. Phys. Rev. Lett. 2021, 127, 192701. [Google Scholar] [CrossRef]
- Danielewicz, P.; Singh, P.; Lee, J. Symmetry energy III: Isovector skins. Nucl. Phys. A 2017, 958, 147–186. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Steiner, A.W. Constraints on the symmetry energy using the mass-radius relation of neutron stars. Eur. Phys. J. A 2014, 50, 40. [Google Scholar] [CrossRef]
- Roca-Maza, X.; Brenna, M.; Colò, G.; Centelles, M.; Viñas, X.; Agrawal, B.K.; Paar, N.; Vretenar, D.; Piekarewicz, J. Electric dipole polarizability in 208Pb: Insights from the droplet model. Phys. Rev. C 2013, 88, 024316. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J. 2013, 771, 51. [Google Scholar] [CrossRef]
- Tsang, M.B.; Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.G.; Steiner, A.W. Constraints on the Density Dependence of the Symmetry Energy. Phys. Rev. Lett. 2009, 102, 122701. [Google Scholar] [CrossRef] [PubMed]
- Trippa, L.; Colò, G.; Vigezzi, E. Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys. Rev. C 2008, 77, 061304. [Google Scholar] [CrossRef]
- Tamii, A.; Poltoratska, I.; von Neumann-Cosel, P.; Fujita, Y.; Adachi, T.; Bertulani, C.A.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; et al. Complete Electric Dipole Response and the Neutron Skin in 208Pb. Phys. Rev. Lett. 2011, 107, 062502. [Google Scholar] [CrossRef] [PubMed]
- Kortelainen, M.; Lesinski, T.; Moré, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M.V.; Wild, S. Nuclear energy density optimization. Phys. Rev. C 2010, 82, 024313. [Google Scholar] [CrossRef]
- Wang, N.; Ou, L.; Liu, M. Nuclear symmetry energy from the Fermi-energy difference in nuclei. Phys. Rev. C 2013, 87, 034327. [Google Scholar] [CrossRef]
- Brown, B.A. Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei. Phys. Rev. Lett. 2013, 111, 232502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, L.W. Bayesian Inference of the Symmetry Energy and the Neutron Skin in 48Ca and 208Pb from CREX and PREX-2. arXiv 2022, arXiv:2207.03328. [Google Scholar]
- Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. Phys. Rev. Lett. 2021, 126, 172503. [Google Scholar] [CrossRef]
- Typel, S. Neutron skin thickness of heavy nuclei with α-particle correlations and the slope of the nuclear symmetry energy. Phys. Rev. C 2014, 89, 064321. [Google Scholar] [CrossRef]
- Tanaka, J.; Yang, Z.; Typel, S.; Adachi, S.; Bai, S.; van Beek, P.; Beaumel, D.; Fujikawa, Y.; Han, J.; Huang, S.H.S.; et al. Formation of α clusters in dilute neutron-rich matter. Science 2021, 371, 5. [Google Scholar] [CrossRef]
- Horiuchi, W.; Suzuki, Y.; Inakura, T. Probing neutron-skin thickness with total reaction cross sections. Phys. Rev. C 2014, 89, 011601. [Google Scholar] [CrossRef]
- Krasznahorkay, A.; Fujiwara, M.; van Aarle, P.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Harakeh, M.N.; Inomata, T.; Jänecke, J.; et al. Excitation of Isovector Spin-Dipole Resonances and Neutron Skin of Nuclei. Phys. Rev. Lett. 1999, 82, 3216–3219. [Google Scholar] [CrossRef]
- Klimkiewicz, A.; Paar, N.; Adrich, P.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U.D.; Elze, T.W.; Emling, H.; et al. Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances. Phys. Rev. C 2007, 76, 051603. [Google Scholar] [CrossRef]
- Aumann, T.; Bertulani, C.A.; Schindler, F.; Typel, S. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections. Phys. Rev. Lett. 2017, 119, 262501. [Google Scholar] [CrossRef] [PubMed]
- Hartnack, C.; Fevre, A.L.; Leifels, Y.; Aichelin, J. The influence of the neutron skin and the asymmetry energy on the π−/π+ ratio. arXiv 2018, arXiv:1808.09868. [Google Scholar]
- Wei, G.F.; Li, B.A.; Xu, J.; Chen, L.W. Influence of neutron-skin thickness on the π−/π+ ratio in Pb + Pb collisions. Phys. Rev. C 2014, 90, 014610. [Google Scholar] [CrossRef]
- Ma, C.W.; Wei, H.L.; Liu, X.Q.; Su, J.; Zheng, H.; Lin, W.P.; Zhang, Y.X. Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 2021, 121, 103911. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Wang, N.; Li, Z. Influence of the treatment of initialization and mean-field potential on the neutron to proton yield ratios. Phys. Rev. C 2021, 104, 024605. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Li, Q.F.; Ou, L.; Tian, J.L.; Liu, M.; Zhao, K.; Wu, X.Z.; Li, Z.X. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 2020, 15, 54301. [Google Scholar] [CrossRef]
- Skyrme, T.H.R. The nuclear surface. Philos. Mag. 1956, 1, 1043–1054. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 2006, 74, 014602. [Google Scholar] [CrossRef]
- Liu, M.; Wang, N.; Li, Z.-X.; Wu, X.-Z. Neutron Skin Thickness of Nuclei and Effective Nucleon–Nucleon Interactions. Chin. Phys. Lett. 2006, 23, 804. [Google Scholar] [CrossRef]
- Brack, M.; Guet, C.; Håkansson, H.B. Selfconsistent semiclassical description of average nuclear properties a link between microscopic and macroscopic models. Phys. Rep. 1985, 123, 275–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Coupland, D.D.S.; Danielewicz, P.; Li, Z.; Liu, H.; Lu, F.; Lynch, W.G.; Tsang, M.B. Influence of in-medium NN cross sections, symmetry potential, and impact parameter on isospin observables. Phys. Rev. C 2012, 85, 024602. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Zhang, Y. Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Sci. Tech. 2022, 33, 58. [Google Scholar] [CrossRef]
- Li, B.A.; Ko, C.M.; Ren, Z. Equation of State of Asymmetric Nuclear Matter and Collisions of Neutron-Rich Nuclei. Phys. Rev. Lett. 1997, 78, 1644–1647. [Google Scholar] [CrossRef]
- Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.; Tsang, M. The influence of cluster emission and the symmetry energy on neutron–proton spectral double ratios. Phys. Lett. B 2008, 664, 145–148. [Google Scholar] [CrossRef]
- Su, J.; Zhu, L.; Huang, C.Y.; Xie, W.J.; Zhang, F.S. Correlation between symmetry energy and effective k-mass splitting with an improved isospin- and momentum-dependent interaction. Phys. Rev. C 2016, 94, 034619. [Google Scholar] [CrossRef]
- Feng, Z.Q. Transverse emission of isospin ratios as a probe of high-density symmetry energy in isotopic nuclear reactions. Phys. Lett. B 2012, 707, 83–87. [Google Scholar] [CrossRef]
- Ono, A.; Danielewicz, P.; Friedman, W.A.; Lynch, W.G.; Tsang, M.B. Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 2003, 68, 051601. [Google Scholar] [CrossRef]
- Li, B.A.; Chen, L.W.; Yong, G.C.; Zuo, W. Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy. Phys. Lett. B 2006, 634, 378–382. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Stöcker, H. Probing the symmetry energy and the degree of isospin equilibrium. Phys. Rev. C 2006, 73, 051601. [Google Scholar] [CrossRef]
- Zhang, Y.; Tsang, M.; Li, Z.; Liu, H. Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 2014, 732, 186–190. [Google Scholar] [CrossRef]
- Coupland, D.D.S.; Youngs, M.; Chajecki, Z.; Lynch, W.G.; Tsang, M.B.; Zhang, Y.X.; Famiano, M.A.; Ghosh, T.K.; Giacherio, B.; Kilburn, M.A.; et al. Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C 2016, 94, 011601. [Google Scholar] [CrossRef]
- Lin, W.; Liu, X.; Rodrigues, M.R.D.; Kowalski, S.; Wada, R.; Huang, M.; Zhang, S.; Chen, Z.; Wang, J.; Xiao, G.Q.; et al. Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in heavy-ion reactions near the Fermi energy. Phys. Rev. C 2014, 90, 044603. [Google Scholar] [CrossRef]
L | ||||||||
---|---|---|---|---|---|---|---|---|
240 | 30 | −16 | 0.16 | 0.7 | 0.8 | 24.5 | −4.99 | 30, 50, 70, 90, 110 |
Sn | ||||||||
30 | −7.971 | 0.414 | 5.733 | 0.514 | 5.777 | 4.670 | 4.865 | 0.165 |
50 | −8.021 | 0.415 | 5.729 | 0.507 | 5.811 | 4.698 | 4.881 | 0.183 |
70 | −8.073 | 0.419 | 5.707 | 0.503 | 5.838 | 4.687 | 4.893 | 0.206 |
90 | −8.129 | 0.422 | 5.686 | 0.496 | 5.872 | 4.676 | 4.907 | 0.232 |
110 | −8.191 | 0.426 | 5.656 | 0.487 | 5.909 | 4.659 | 4.922 | 0.263 |
Sn | ||||||||
30 | −7.810 | 0.408 | 5.827 | 0.539 | 5.906 | 4.762 | 4.994 | 0.232 |
50 | −7.889 | 0.410 | 5.816 | 0.532 | 5.948 | 4.756 | 5.013 | 0.257 |
70 | −7.975 | 0.413 | 5.798 | 0.524 | 5.990 | 4.746 | 5.032 | 0.286 |
90 | −8.067 | 0.416 | 5.771 | 0.514 | 6.035 | 4.730 | 5.050 | 0.320 |
110 | −8.166 | 0.419 | 5.733 | 0.502 | 6.084 | 4.707 | 5.068 | 0.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chen, X.; Cui, Y.; Li, Z.; Zhang, Y. Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions. Universe 2023, 9, 206. https://doi.org/10.3390/universe9050206
Yang J, Chen X, Cui Y, Li Z, Zhang Y. Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions. Universe. 2023; 9(5):206. https://doi.org/10.3390/universe9050206
Chicago/Turabian StyleYang, Junping, Xiang Chen, Ying Cui, Zhuxia Li, and Yingxun Zhang. 2023. "Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions" Universe 9, no. 5: 206. https://doi.org/10.3390/universe9050206
APA StyleYang, J., Chen, X., Cui, Y., Li, Z., & Zhang, Y. (2023). Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions. Universe, 9(5), 206. https://doi.org/10.3390/universe9050206