Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects
Abstract
:1. Introduction
2. Emission Mechanisms
2.1. One-Zone SSC Model
- Ref. [38] reported strong variations in both X-ray and TeV bands from the MWL observations of Mrk 421 in 1998 April, which were highly correlated and compatible with the standard one-zone SSC model. Similar results were obtained from the MWL campaigns performed in March 2001 [39], January 2006–June 2008 [40], 2009–2012 [41,42], March 2010 [43], January–June 2013 [19], December 2015–April 2018 [44] and for the VHE flares detected with FACT during December 2012–April 2018 [45].
- Ref. [46] modeled the TeV-band variability of Mrk 501 during the MWL campaign in 1994 within the homogeneous SSC model by fitting the quiescent spectrum of the source and then changing the maximum energy of the electron injection spectrum. This produced changes only in the X-ray and TeV bands, leaving all the other bands essentially unaffected. Ref. [47] modeled the April–May 1997 outburst in Mrk 501 by means of the time-dependent SSC model: a steady X-ray emission was combined with a variable SSC component and, moreover, a pre-acceleration of electrons up to = 10 was also assumed. The follow-up MWL flare in June 1998 was also modeled by means of one-zone SSC scenario, involving a significant increase in the magnetic field strength and in the electron energy by factors of 3 and 10, respectively [48]. Ref. [49] identified individual TeV and X-ray flares and found a sub-day lag between them (consistent with one-zone SSC model) during the FACT monitoring of the source in 2012 December–2018 April. Mrk 501 showed a low activity during the MWL campaign in 2008 March–May and the one-zone SSC model adequately described the broadband SED [50]. Similarly, the 0.3–10 keV flux was correlated with the HE and VHE emissions during 2017–2020 when the source showed the lowest historical X-ray and -ray states [51]. The average SED of Mrk 501 constructed via the data obtained during the MWL campaign performed in March–August 2009, successfully described within the one-zone SSC model with the dominant emission region characterized by the size smaller than 0.1 pc. The total jet power constituted only a very small portion (∼10) of the Eddington luminosity and broken power-law EED was adopted [52].
- Ref. [53] adopted the one-zone SSC model for the broadband SEDs 1ES 1959+650 from the MWL campaign performed in 2012 April–June and deduced that the physical parameters describing the emission zone during the flaring states are significantly different from those corresponding to the low states. The MWL SEDs from the time window 13–14 June 2016 were modeled with the one-zone SSC scenario, requiring relatively large Doppler factors = 30–60 [54].
- PKS 2155–304 showed an active -ray flaring phase in 1997 November with a similar behavior in X-rays, compatible with the one-zone SSC scenario [55].
- In June 2004, 1ES 1959+650, underwent a strong “orphan” TeV flare by more than 4 Crab and 7 hr of doubling timescale without simultaneous X-ray event [24,58]. Similarly, strong -ray flares in 2009 May and 2012 May were not accompanied by those at synchrotron frequencies. In turn, no significant -ray activity was observed during some X-ray flares [59]. A similar behavior was also evident during 2006–2008 [60], January 2016–November 2017 [61,62,63]. Such events are very difficult to explain within the standard one-zone standard SSC scenarios.
- Mrk 421 underwent a very strong X-ray flare by a factor of 7 within 3 days during the MWL campaign in December 2002–January 2003, which was not accompanied by a comparable TeV-band activity [64]. During the giant flare in 2004, the TeV-band brightness reached its peak several days earlier the X-ray one that was inconsistent with the standard one-zone SSC model, and [65] suggested to be an instance of an “orphan” TeV flare. [40,66] also found some high X-ray states, not accompanied by TeV flaring and vice versa in 2005–2008. Similar instances were reported by [42,44,67,68] from the periods February 2010–March 2013, November 2015–June 2015 and December 2015–April 2018, respectively. Moreover, there was a quadratic relation between X-ray and VHE variabilities during both the rising and decaying phases of a flare [39]. This is not expected in the KN regime [24]: the -ray emission is produced by the electrons having TeV and higher energies, which do not upscatter self-produced synchrotron photons since this is not possible owing to the smaller cross-section typical to the KN regime. However, such particles are capable for upscattering the lower-energy photons (produced by lower-energy electrons) in the Thomson regime. Consequently, the two peaks of the HBL SED are not produced by electrons having the same energy. Consequently, the VHE emission is expected to track the X-ray variability only linearly (instead of quadratically, as shown by Mrk 421). Particularly challenging is to observe a quadratic X-ray–TeV relation in the flare declining phase, owing to the similar energy dependence of both synchrotron and IC cooling () and again, a linear dependence is expected. A quadratic decrease can be achieved even in the Thomson regime, although extremely large beaming factors are required [24,39]. Nevertheless, Mk 421 showed even a super-quadratical X-ray–VHE relation during the fast flare on 19 March 2001 [39].
- During the exceptionally strong X-ray outburst of Mrk 501 in 2014 March–October, the 0.3–10 keV flux was generally correlated with the TeV-band emission, while there was no significant correlation between the 0.3–300 GeV and optical–UV flux variations. Moreover, several cases of the complicated X-ray and -ray variabilities were reported, which were inconsistent with the one-zone SSC scenario [69].
- The declining phase of the exceptional TeV flare in PKS 2155–304 exhibited a cubic relation between the VHE and X-ray flux variations, which was even more challenging for one-zone scenarios and showed an inevitable presence of two or more electron populations [24].
- Finally, the recent X-ray polarimetric observations of the nearby bright HBLs with Imaging X-ray Polarimetry Explorer (IXPE; [70,71,72]) clearly showed a requirement of the inhomogeneous and/or multizone emission region with shock fronts, turbulence and magnetic reconnection (see Section 3.2, Section 3.3 and Section 3.4 for the corresponding discussions).
2.2. Multi-Zone SSC Scenarios
2.3. Hadronic and Leptohadronic Processes
- Proton-synchrotron. In the framework of the so-called synchrotron-proton blazar (SPB) model ([89,90] and references therein; [7]), a significant portion of the jet kinetic or magnetic power is used to accelerate protons in a strongly magnetized environment to the aforementioned threshold and various synchrotron-emitting pair cascades may develop [8,20]. For this purpose, the acceleration of protons to the energies ( eV and Lorentz factors ) is necessary for obtaining a dominant proton-synchrotron emission in the -ray energy range. In turn, this requires high magnetic fields of ∼1–100 G in order to constrain the Larmor radius smaller than the size of the emission region itself [5,7]. Alternatively, significant hadronic emission can be produced within weaker magnetic fields combined with large particle and/or photon densities [16]. In such a situation, the energy density of relativistic protons needs to largely exceed that of relativistic leptons to contribute significantly to the -ray domain. This can be achieved by imposing the specific requirements on the acceleration process [5]. In the case of the aforementioned magnetic field values and Doppler factor = 10–50 in the HBL jets, the proton–synchrotron peak frequency is expected in the range of 10–100 GeV [7]. The number of free parameters of the proton–synchrotron scenario is significantly larger than the SSC one (amounting to 14; see, e.g., [7]).
- Modified proton-synchrotron. In the later versions of SPB model, the synchrotron radiation of secondary muons and mesons was also taken into account [91] and references therein; [20]). First of all, one expects a photo-pion production process () where a photohadronic interaction yields either or mesons. For this purpose, the photon energy in the proton frame should be higher than about 145 MeV [7]. Gamma-ray photons can be obtained from the -decay process (“-cascade”), or produced by electrons from the decay (“-cascade”). One expects also the proton-synchrotron emission (“p-synchrotron cascade”), as well as the -, -and K-synchrotron photons (“-synchrotron cascad”; [7]). Refs. [16,91] demonstrated that the and cascades initiated by ultra-high energy protons generate featureless -ray spectra, in contrast to p-synchrotron and -synchrotron processes: the latter produce a two-component -ray spectrum, i.e., the muon synchrotron radiation emerges as a third SED component, at higher energies than the synchrotron radiation by the parent protons [7]. Generally, direct proton and synchrotron radiations are thought to be the main contributors to the higher-energy SED “hump”, while the low-energy component is synchrotron radiation from the primary electrons, along with some contribution from the secondary electrons generated by the aforementioned cascades [8,20]. Electrons and positrons produced in the decay of charged pions have extremely high-energy, and their synchrotron radiation can reach even PeV energies [7]. Generally, the jet emission region is “opaque” for first generations of secondary particles and -rays, leading to successive reiterations of the above-described cascades [16]. The decay of neutral pions can produce ultra-high-energy (UHE, 100 TeV) -rays or so-called PeV-photons [92]. However, these photons do not reach us, being absorbed via pair-production both in the jet, or during the propagation in the (inter)galactic medium [7]. Photo-meson production is characterized by a key property: neutrinos are produced along with photons, escaping the emission zone without any absorption or energy losses and their detection directly indicates the presence of highly-relativistic protons in the jet, as well as is capable for constraining the model key parameters [7]. The proton-proton interactions are thought to be negligible in the SPB models, since this mechanism requires very high particle density and the extreme jet powers for producing a significant -ray emission [5].
- Bethe–Heitler pair production. A photohadronic interaction between relativistic protons and photons may also result in the Bethe–Heitler pair production as ([93] and references therein). This process is in competition with the photo-meson production, although it needs significantly lower lower energies: the threshold for the Bethe–Heitler pair production is lower than the photo-meson one by a factor 0.004 [7]. Consequently, the generated pair produces a lower-energy emission compared to the photo-meson cascades. Namely, the simulations of [94] showed the appearance another higher-energy SED component due to this pair production in the energy range 40 keV–40 MeV (so-called three-hump SED). Although the corresponding peak luminosity can not be always comparable to that emitted above 40 MeV, this keV–MeV SED component may still be observable (not being hidden from other components). Therefore, observation of the three-hump hump SED may indicate a viability of the leptohadronic scenarios.
2.4. Magnetospheric Vacuum Gaps, Curvature Emission and EIC Scattering
3. Variability Mechanisms
- white noise ( = 0);
- pink or flicker noise ( = 1);
- red or Brownian noise ( = 2).
3.1. Variability Models and Quasiperiodic Flux Changes in HBLs
- Instabilities in the magnetospheric gaps (see Section 2.4);
- The dominant effect (causing the jet angle to vary by the greatest amount) is simply an imprint of the SMBH orbital velocity on the jet: since the jet-carrying primary SMBH is moving along a circular orbit with the velocity V, the highly-relativistic ejected material is expected to have the same velocity component in the observer’s rest frame. Consequently, the jet will precess with respect to the distant observer and the -ray emitting the region is observed at an angle oscillating with an amplitude and period , with M—the system’s total mass; q, the primary-to-secondary mass ratio; R, the separation between the components, assumed to be larger than a few Schwarzschild radii. Consequently, the jet’s instantaneous shape will be helical, where radius of the coils increases linearly with the distance from the primary SMBH and one should observe a quasiperiodic flux variability.
- The second-order effects can be caused by the general-relativistic deflection and Lense–Thirring precession. Namely, a Lense–Thirring precession ([144] and references therein) of the primary SMBHs acretion disc can be triggered by the gravitational field of the secondary SMBH. Consequently, the primary’s jet is also expected to precess with the same period. However, the corresponding oscillation angle (and, hence, the amplitude of the periodic flux variability) will be significantly smaller than that caused by orbital movement of the primary SMBH, if these two SMBHs are separated by more than a few Schwarzschild radii. The general-relativistic effect causes a deflection of the relativistic ejecta’s trajectory by the gravitational field of the secondary SMBH. Note that the general-relativistic effects are expected to be negligible on the few-years timescale [141].
3.2. Relativistic Shocks and Fermi-I Process
3.3. Jets-in-Jet Model and Relativistic Magnetic Reconnection
3.4. Jet Turbulence and Fermi-II Process
3.5. Jet–Star Interactions
3.6. Impact of Disc Instabilities on the Observed -ray Variability
- First of all, a lognormality hints at the impact of the accretion disk instabilities on the jet [135,204]: there should be independent density fluctuations in the disk on the local viscous timescale, characterized by negligible damping. They can propagate toward the innermost disc area and couple there producing a multiplicative behavior. If the latter is transferred to the jet flow (e.g., via the jet collimation rate), the -ray emission can be modulated accordingly. However, the timescale for particle acceleration and radiative losses within the jet should be correspondingly small for this purpose. Lognormal variability in the different energy range and over various timescales is then anticipated.
- Cascade-related emission processes (see Section 2.3) are also thought to lead to log-normal flux distributions [129]. However, the latter are expected only in the optical-to--ray ranges. Moreover, there are limited timescales over which log-normality can be detected (i.e., from sub-hour to yearly timescales in the TeV band; [135]). Moreover, there can be some limitations by the gap travel time for the magnetospheric processes and from the dynamical or escape properties of the hadronic cascades, e.g., [135].
- Alternatively, the lognormal variability can be produced in the case of random fluctuations in the particle acceleration rate [205]. However, one should observe an energy-dependent lognormality in this case, to be progressively weakly expressed towards lower energies and disappearing beyond some threshold energy. Moreover, fluctuations in the acceleration rate can be also characterized by the Gaussian distribution of the photon indices along with the lognormal flux distribution [205].
4. Future Prospects
- The Cherenkov Telescope Array Observatory (CTAO) is a next-generation IACT array, using telescopes of multiple sizes to achieve a high sensitivity in the 20 GeV–300 TeV energy range [211,212]. The observatory installations in the Southern and Northern Hemispheres will provide visibility of the entire sky and a sensitivity at least an order of magnitude higher than those of the current major Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS).
- The ASTRI (“Astrofisica con Specchi a Tecnologia Replicante Italiana”) mini-array incorporates a technologically innovative solution for small size (about 4 meters diameter) and large field-of-view (more than 10 degrees) IACTs. It is sensitive in the range 1–200 TeV, achieves an angular resolution of a few arcmin and is devoted to study various types relatively bright VHE sources (a few ×10 erg cms at 10 TeV; including HBLs) at the energies beyond 10 TeV [213,214]. A prototype telescope, deployed on Mt. Etna (Italy), started its scientific operations in 2018.
- The space missions AMEGO (All-sky Medium Energy Gamma-ray Observatory) and AMEGO-X (the funded projects), will detect rays through both Compton scattering and pair production, filling a “MeV gap” in sensitivity [215]. They are optimized for continuum sensitivity in the MeV range in different ways. AMEGO-X uses monolithic silicon pixel detectors for a lower energy threshold and higher low-energy effective area than AMEGO. AMEGO also has the Low-Energy Calorimeter that enhances the polarization and narrow-line sensitivity. For blazars, IC scattering is typically unpolarized or has a very low polarization degree (a few to ten percent) in a partially ordered magnetic field, while the hadronic models usually predict at least 20% polarization degree in the MeV band [216]. Consequently, one will be able to discern the underlying emission mechanism directly from observations.
- Southern Wide-field Gamma-ray Observatory (SWGO) as a next-generation Water Cherenkov Detector (WCD) instrument that will provide the observational coverage of the southern sky with nearly continuous up-time and an instantaneous field of view (FOV) of ∼2 sr at energies from 100 GeV to above hundreds of TeV from a site in the Andes mountains. Simultaneous operations with CTA are planned [217].
- e-ASTROGAM is a proposed space mission for measuring -ray emission in the range from 300 keV to a few GeV. The e-ASTROGAM is expected to reach a sensitivity by one-two orders of magnitude higher than its predecessors, and offers enhanced capabilities to detect fast transient events in soft -rays [218].
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | See http://tevcat.uchicago.edu (accessed on 25 May 2023). |
References
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Bodo, G.; Tavecchio, F. Recollimation shocks and radiative losses in extragalactic relativistic jets. Astron. Astrophys. 2018, 609, A122. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Falomo, R.; Pian, E.; Treves, A. An optical view of BL Lacertae objects. Astron. Astrophys. Rev. 2014, 22, 73. [Google Scholar] [CrossRef] [Green Version]
- Sol, H.; Zech, A. Blazars at Very High Energies: Emission Modelling. Galax 2022, 10, 105. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P. The Connection between X-ray– and Radio-selected BL Lacertae Objects. Astrophys. J. 1995, 444, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, M. Leptonic and Hadronic Radiative Processes in Supermassive-Black-Hole Jets. Galax 2020, 8, 72. [Google Scholar] [CrossRef]
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Akhperjanian, A.G.; Barrio, J.A.; Bernlöhr, K.; Bolz, O.; Börst, H.; Bojahr, H.; Contreras, J.L.; Cortina, J.; Denninghoff, S.; et al. Reanalysis of the high energy cutoff of the 1997 Mkn 501 TeV energy spectrum. Astron. Astrophys. 2001, 366, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Baring, M.G.; Böttcher, M.; Summerlin, E.J. Probing acceleration and turbulence at relativistic shocks in blazar jets. Mon. Not. R. Astron. Soc. 2017, 464, 4875–4894. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Khangulyan, D.; Costamante, L. Formation of hard very high energy gamma-ray spectra of blazars due to internal photon–photon absorption. Mon. Not. R. Astron. Soc. 2008, 387, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Hauser, M.G.; Dwek, E. The Cosmic Infrared Background: Measurements and Implications. Ann. Rev. Astron. Astrophys. 2000, 39, 248–307. [Google Scholar] [CrossRef] [Green Version]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Costamante, L.; Ghisellini, G.; Giommi, P.; Tagliaferri, G.; Celotti, A.; Chiaberge, M.; Fossati, G.; Maraschi, L.; Tavecchio, F.; Treves, A. Extreme synchrotron BL Lac objects: Stretching the blazar sequence. Astron. Astrophys. 2001, 371, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Costamante, L.; Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Tagliaferri, G.; Khangulyan, D. The NuSTAR view on hard-TeV BL Lacs. Mon. Not. R. Astron. Soc. 2018, 477, 4257–4268. [Google Scholar] [CrossRef]
- Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S. A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 2015, 448, 910–927. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155–304. Astrophys. J. 2007, 664, L71–L74. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Variable Very High Energy γ-Ray Emission from Markarian 501. Astrophys. J. 2007, 669, 862–883. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Aller, H.; Aller, M.; Hughes, P.; Reynolds, M.; Kapanadze, S.; Tabagari, L. X-ray Flaring Activity of MRK 421 in the First Half of 2013. Astrophys. J. 2016, 831, 102. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R. Model for the High-Energy Emission from Blazars. Astrophys. J. 1993, 416, 458–484. [Google Scholar] [CrossRef]
- Plotkin, R.M.; Anderson, S.F.; Brandt, W.N.; Markoff, S.; Shemmer, O.; Wu, J. The Lack of Torus Emission from BL Lacertae Objects: An Infrared View of Unification with WISE. Astrophys. J. 2012, 745, L27. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C. Simultaneous multiwavelength observations of the second exceptional γ-ray flare of PKS 2155–304 in July 2006. Astron. Astrophys. 2009, 502, 749–770. [Google Scholar] [CrossRef] [Green Version]
- Kirk, J.G.; Rieger, F.M.; Mastichiadis, A. Particle acceleration and synchrotron emission in blazar jets. Astron. Astrophys. 1998, 333, 452–458. [Google Scholar]
- Tramacere, A.; Giommi, P.; Perri, M.; Verrecchia, F.; Tosti, G. Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission. Astron. Astrophys. 2009, 501, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, A.; Massaro, E.; Taylor, A.M. Stochastic Acceleration and the Evolution of Spectral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’ Flares. Astrophys. J. 2011, 739, 66. [Google Scholar] [CrossRef] [Green Version]
- Summerlin, E.J.; Baring, M.G. Diffusive Acceleration of Particles at Oblique, Relativistic, Magnetohydrodynamic Shocks. Astrophys. J. 2012, 745, 63. [Google Scholar] [CrossRef]
- Böttcher, M.; Mause, H.; Schlickeiser, R. γ-ray emission and spectral evolution of pair plasmas in AGN jets. I. General theory and a prediction for the GeV–TeV emission from ultrarelativistic jets. Astron. Astrophys. 1997, 324, 395–409. [Google Scholar]
- Chen, L. On the Jet Properties of γ-Ray-loud Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 2018, 235, 39. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, M.; Schlickeiser, R. A new ordering parameter of spectral energy distributions from synchrotron self-Compton emitting blazars. Mon. Not. R. Astron. Soc. 2012, 420, 84. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, G.V.; Wagner, S.J. TeV gamma ray opacity in PKS 2155–304. Astron. Astrophys. 2009, 526, A61. [Google Scholar] [CrossRef] [Green Version]
- Hinton, J.A.; Hofmann, W. Teraelectronvolt Astronomy. Ann. ReV. Astron. Astrophys. 2009, 47, 523–565. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, G.V.; Wagner, S.J. The Evolution of Shocks in Blazar Jets. Publ. Astron. Soc. Aust. 2002, 19, 129–137. [Google Scholar] [CrossRef]
- Blandford, R.G.; Levinson, A. Pair Cascades in Extragalactic Jets. I. Gamma Rays. Astrophys. J. 1995, 441, 79–95. [Google Scholar] [CrossRef]
- White, C.J.; Quataert, E.; Gammie, C.F. The Structure of Radiatively Inefficient Black Hole Accretion Flows. Astrophys. J. 2020, 891, 63. [Google Scholar] [CrossRef]
- Bednarek, W.; Sitarek, J. Absorption effects in the blazar’s γ-ray spectra due to luminous stars crossing the jet. Mon. Not. R. Astron. Soc. 2021, 503, 2423–2431. [Google Scholar] [CrossRef]
- Maraschi, L.; Fossati, G.; Tavecchio, F.; Chiappetti, L.; Celotti, A.; Ghisellini, G.; Grandi, P.; Pian, E.; Tagliaferri, G.; Treves, A.; et al. Simultaneous X-ray and TEV Observations of a Rapid Flare from Markarian 421. Astron. Astrophys. 1999, 526, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- Fossati, G.; Buckley, J.H.; Bond, I.H.; Bradbury, S.M.; Carter-Lewis, D.A.; Chow, Y.C.K.; Cui, W.; Falcone, A.D.; Finley, J.P.; Gaidos, J.A.; et al. Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-ray/TeV Correlated Variability. Astrophys. J. 2008, 677, 906–925. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; et al. TeV and Multi-wavelength Observations of Mrk 421 in 2006–2008. Astrophys. J. 2011, 738, 25. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies. Astron. Astrophys. 2015, 576, A126. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L. Swift Observations of Mrk 421 in Selected Epochs. II. An Extreme Spectral Flux Variability in 2009–2012. Astrophys. J. 2018, 858, 68. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010. Astron. Astrophys. 2015, 578, A22. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Gurchumelia, A.; Dorner, D.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O. Swift Observations of Mrk 421 in Selected Epochs. III. Extreme X-ray Timing/Spectral Properties and Multiwavelength Lognormality during 2015 December–2018 April. Astrophys. J. Suppl. Ser. 2020, 247, 27. [Google Scholar] [CrossRef] [Green Version]
- Arbet-Engels, A.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; Bulinski, M.; Buss, J.; Doerr, M.; et al. The relentless variability of Mrk 421 from the TeV to the radio. Astron. Astrophys. 2015, 647, A88. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Kirk, J.G. Variability in the synchrotron self-Compton model of blazar emission. Astron. Astrophys. 1997, 320, 19–25. [Google Scholar]
- Krawczynski, H.; Coppi, P.S.; Aharonian, F. Time-dependent modelling of the Markarian 501 X-ray and TeV gamma-ray data taken during 1997 March and April. Mon. Not. R. Astron. Soc. 2002, 336, 721–735. [Google Scholar] [CrossRef] [Green Version]
- Sambruna, R.M.; Aharonian, F.A.; Krawczynski, H.; Akhperjanian, A.G.; Barrio, J.A.; Bernlohr, K.; Bojahr, H.; Calle, I.; Contreras, J.L.; Cortina, J.; et al. Correlated Intense X-ray and TEV Activity of Markarian 501 in 1998 June. Astrophys. J. 2000, 538, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Arbet-Engels, A.; Baack, D.; Balbo, M.; Biland, A.; Bretz, T.; Buss, J.; Dorner, D.; Eisenberger, L.; Elsaesser, D.; Hildebrand, D.; et al. Long-term multi-band photometric monitoring of Mrk 501. Astron. Astrophys. 2015, 655, A93. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Multiwavelength observations of Mrk 501 in 2008. Astron. Astrophys. 2015, 573, A50. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Abe, H.; Abe, S.; Acciari, V.A.; Agudo, I.; Aniello, T.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Arcaro, C.; et al. Multi-messenger characterization of Mrk 501 during historically low X-ray and γ-ray activity. Astrophys. J. Suppl. Ser. 2023, 266, 37. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Insights into the High-energy γ-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era. Astrophys. J. 2019, 727, 129. [Google Scholar] [CrossRef] [Green Version]
- Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; et al. Investigating Broadband Variability Of The Tev Blazar 1es 1959+650. Astrophys. J. 2014, 797, 89. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Broadband characterisation of the very intense TeV flares of the blazar 1ES 1959+650 in 2016. Astron. Astrophys. 2020, 640, A132. [Google Scholar]
- Chiappetti, L.; Maraschi, L.; Tavecchio, F.; Celotti, A.; Fossati, G.; Ghisellini, G.; Giommi, P.; Pian, E.; Tagliaferri, G.; Treves, A. Spectral Evolution of PKS 2155–304 Observed with BeppoSAX during an Active Gamma-Ray Phase. Astrophys. J. 1999, 521, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M.; Baring, M.G. Multi-wavelength Variability Signatures of Relativistic Shocks in Blazar Jets. Astrophys. J. 2019, 887, 133. [Google Scholar] [CrossRef]
- Graff, P.B.; Georganopoulos, M.; Perlman, E.S.; Kazanas, D. A Multizone Model for Simulating the High-Energy Variability of TeV Blazars. Astrophys. J. 2008, 689, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Krawczynski, H.; Hughes, S.B.; Horan, D.; Aharonian, F.; Aller, M.F.; Aller, H.; Boltwood, P.; Buckley, J.; Coppi, P.; Fossati, G.; et al. Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650. Astrophys. J. 2004, 601, 151–164. [Google Scholar] [CrossRef]
- Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.; Mdzinarishvili, T.; Kharshiladze, G. The long-term Swift observations of the high-energy peaked BL Lacertae source 1ES 1959+650. Mon. Not. R. Astron. Soc. 2016, 457, 704–722. [Google Scholar] [CrossRef]
- Tagliaferri, G.; Foschini, L.; Ghisellini, G.; Maraschi, L.; Tosti, G.; Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Baixeras, C.; et al. Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux. Astrophys. J. 2008, 679, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Reynolds, M.; Kapanadze, S.; Tabagari, L. The second strong X-ray flare and multifrequency variability of 1ES 1959+650 in 2016 January-August. Mon. Not. R. Astron. Soc. 2018, 473, 2542–2564. [Google Scholar] [CrossRef]
- Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Reynolds, M.; Tabagari, L. Strong X-ray and Multiwavelength Flaring Activity for 1ES 1959+650, 2016 August-2017 November. Astrophys. J. Suppl. Ser. 2018, 238, 13. [Google Scholar] [CrossRef]
- Patel, S.R.; Shukla, A.; Chitnis, V.R.; Dorner, D.; Mannheim, K.; Acharya, B.S.; Nagare, B.J. Broadband study of blazar 1ES 1959+650 during flaring state in 2016. Astron. Astrophys. 2018, 611, A44. [Google Scholar] [CrossRef]
- Rebillot, P.F.; Badran, H.M.; Blaylock, G.; Bradbury, S.M.; Buckley, J.H.; Carter-Lewis, D.A.; Celik, O.; Chow, Y.C.; Cogan, P.; Cui, W.; et al. Multiwavelength Observations of the Blazar Markarian 421 in 2002 December and 2003 January. Astrophys. J. 2006, 641, 740–751. [Google Scholar] [CrossRef]
- Błazejowski, M.; Blaylock, G.; Bond, I.H.; Bradbury, S.M.; Buckley, J.H.; Carter-Lewis, D.A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M. A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution. Astrophys. J. 2005, 630, 130–141. [Google Scholar] [CrossRef]
- Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O.; Kapanadze, S.; Tabagari, L. Swift Observations of Mrk 421 in Selected Epochs. I. The Spectral and Flux Variability in 2005–2008. Astrophys. J. 2018, 854, 66. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Benbow, W.; Bird, R.; Brill, A.; Brose, R.; Buchovecky, M.; Buckley, J.H.; Christiansen, J.L.; Chromey, A.J.; Daniel, M.K.; et al. The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies. Astrophys. J. 2020, 890, 97. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L. Mrk 421 after the Giant X-ray Outburst in 2013. Astrophys. J. 2017, 848, 103. [Google Scholar] [CrossRef]
- Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.T.; Mannheim, K.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Takalo, L.; Kapanadze, S.; et al. The prolonged X-ray flaring activity of Mrk 501 in 2014. Mon. Not. R. Astron. Soc. 2017, 469, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Liodakis, I.; Marscher, A.P.; Agudo, M.; Berdyugin, A.V.; Bernardos, M.I.; Bonnoli, G.; Borman, G.A.; Casadio, C.; Casanova, V.; Cavazzuti, E.; et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 2022, 611, 677–681. [Google Scholar] [CrossRef]
- Di Gesu, L.; Donnarumma, I.; Tavecchio, F.; Agudo, I.; Barnounin, T.; Cibrario, N.; Di Lalla, N.; Di Marco, A.; Escudero, J.; Errando, M.; et al. The X-ray Polarization View of Mrk 421 in an Average Flux State as Observed by the Imaging X-ray Polarimetry Explorer. Astrophys. J. 2022, 938, 7. [Google Scholar] [CrossRef]
- Di Gesu, L.; Marshall, H.L.; Ehlert, S.R.; Kim, D.E.; Donnarumma, I.; Tavecchio, F.; Liodakis, I.; Kiehlmann, S.; Agudo, I.; Jorstad, S.G.; et al. Discovery of X-ray polarization angle rotation in active galaxy Mrk 421. arXiv 2023, arXiv:2305.13497. [Google Scholar]
- Boula, S.; Mastichiadis, A. Expanding one-zone model for blazar emission. Astron. Astrophys. 2021, 657, A20. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Artero, M.; Asano, K.; Babić, A.; Baquero, A.; Barres de Almeida, U.; MAGIC Collaboration; et al. Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017. Astron. Astrophys. 2021, 655, A89. [Google Scholar]
- Chiaberge, M.; Ghisellini, G. Rapid variability in the synchrotron self-Compton model for blazars. Mon. Not. R. Astron. Soc. 1999, 306, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.; Marscher, A.P.; McHardy, I.M. Synchrotron Self-Compton Model for Rapid Nonthermal Flares in Blazars with Frequency-dependent Time Lags. Astrophys. J. 2004, 613, 725–746. [Google Scholar] [CrossRef] [Green Version]
- Kusunose, M.; Takahara, F. A structured leptonic jet model of the ‘orphan’ tev gamma-ray flares in tev blazars. Astrophys. J. 2006, 651, 113–119. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; De Almeida, U.B.; Becherini, Y.; Becker, J.; et al. A multiwavelength view of the flaring state of PKS 2155–304 in 2006. Astron. Astrophys. 2011, 539, 149–170. [Google Scholar]
- Dmytriiev, A.; Sol, H.; Zech, A. Connecting steady emission and very high energy flaring states in blazars: The case of Mrk 421. Mon. Not. R. Astron. Soc. 2021, 505, 2712–2730. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Testing two-component models on very high-energy gamma-ray-emitting BL Lac objects. Astron. Astrophys. 2020, 638, A14. [Google Scholar]
- Dong, Q.; Zheng, Y.G.; Yang, C.Y. Two components model for TeVγ-ray emission from extreme high-energy BL Lac objects. Astrophys. Space Sci. 2021, 366, 36. [Google Scholar] [CrossRef]
- Zech, A.; Lemoine, M. Electron-proton co-acceleration on relativistic shocks in extreme-TeV blazars. Astron. Astrophys. 2021, 654, 96–113. [Google Scholar] [CrossRef]
- Matsumoto, J.; Komissarov, S.S.; Gourgouliatos, K.N. Magnetic inhibition of the recollimation instability in relativistic jets. Mon. Not. R. Astron. Soc. 2021, 503, 4918–4929. [Google Scholar] [CrossRef]
- Tavecchio, F.; Costa, A.; Sciaccaluga, A. Extreme blazars: The result of unstable recollimated jets? Mon. Not. R. Astron. Soc. 2022, 517, L16–L20. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Babic, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity. Astron. Astrophys. 2020, 637, 86. [Google Scholar]
- Sol, H.; Pelletier, G.; Asseo, E. Two-flow model for extragalactic radio jets. Mon. Not. R. Astron. Soc. 1989, 237, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Razzaque, S. Acceleration of Ultra-high-energy Cosmic Rays in the Colliding Shells of Blazars and Gamma-ray Bursts: Constraints from the Fermi Gamma-ray Space Telescope. Astrophys. J. 2010, 724, 1366–1372. [Google Scholar] [CrossRef] [Green Version]
- Celotti, A.; Ghisellini, G. The power of blazar jets. Mon. Not. R. Astron. Soc. 2008, 385, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar]
- Aharonian, F. TeV gamma rays from BL Lac Objects due to synchrotron radiation of extremely high energy protons. New Astron. 2000, 5, 377–395. [Google Scholar] [CrossRef] [Green Version]
- Mücke, A.; Protheroe, R.J.; Engel, R.; Rachen, J.P.; Stanev, T. BL Lac objects in the synchrotron proton blazar model. Astropart. Phys. 2003, 18, 593–613. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, G. Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review. University 2022, 8, 513. [Google Scholar] [CrossRef]
- Bethe, H.; Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proc. R. Soc. Lond. 1934, 134, 83–112. [Google Scholar]
- Petropoulou, M.; Mastichiadis, A. Bethe–Heitler emission in BL Lacs: Filling the gap between X-rays and γ-rays. Mon. Not. R. Astron. Soc. 2015, 447, 36–48. [Google Scholar] [CrossRef]
- Dermer, C.D.; Murase, K.; Takami, H. Variable Gamma-Ray Emission Induced by Ultra-high Energy Neutral Beams: Application to 4C+21.35. Astrophys. J. 2012, 755, 147. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M. Modeling the Emission Processes in Blazars. Astrophys. Space Sci. 2007, 309, 95–104. [Google Scholar] [CrossRef]
- Zdziarski, A.; Böttcher, M. Hadronic models of blazars require a change of the accretion paradigm. Mon. Not. R. Astron. Soc. 2015, 450, L21–L25. [Google Scholar] [CrossRef]
- Liodakis, I.; Petropoulou, M. Proton Synchrotron Gamma-Rays and the Energy Crisis in Blazars. Astrophys. J. 2020, 893, 20. [Google Scholar] [CrossRef]
- Padovani, P.; Oikonomou, F.; Petropoulou, M.; Giommi, P.; Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. R. Astron. Soc. 2019, 484, L104–L108. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.; Altmann, D.; Andeen, K.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar]
- Acciari, V.A.; Aniello, T.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; et al. Investigating the Blazar TXS 0506+056 through Sharp Multiwavelength Eyes During 2017–2019. Astrophys. J. 2022, 927, 197. [Google Scholar] [CrossRef]
- Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos. Mon. Not. R. Astron. Soc. 2017, 468, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Mastichiadis, A.; Petropoulou, M. Hadronic X-ray Flares from Blazars. Astrophys. J. 2017, 906, 131. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P.; Mastichiadis, A.; Resconi, E. Photohadronic origin of γ-ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. R. Astron. Soc. 2015, 448, 2412–2429. [Google Scholar] [CrossRef]
- Lucarelli, F.; Pittori, C.; Verrecchia, F.; Donnarumma, I.; Tavani, M.; Bulgarelli, A.; Giuliani, A.; Antonelli, L.A.; Caraveo, P.; Cattaneo, P.W.; et al. AGILE Detection of a Candidate Gamma-Ray Precursor to the ICECUBE-160731 Neutrino Event. Astrophys. J. 2017, 846, 111. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Murase, K.; Santander, M.; Buson, S.; Tohuvavohu, A.; Kawamuro, T.; Vasilopoulos, G.; Negoro, H.; Ueda, Y.; Siegel, M.H.; et al. Multi-epoch Modeling of TXS 0506+056 and Implications for Long-term High-energy Neutrino Emission. Astrophys. J. 2020, 891, 115. [Google Scholar] [CrossRef]
- Gasparyan, S.; Bégué, D.; Sahakyan, N. Time-dependent lepto-hadronic modelling of the emission from blazar jets with SOPRANO: The case of TXS 0506+056, 3HSP J095507.9+355101, and 3C 279. Mon. Not. R. Astron. Soc. 2022, 509, 2102–2121. [Google Scholar] [CrossRef]
- Zacharias, M.; Reimer, A.; Boisson, C.; Zech, A. EXHALE-JET: An extended hadro-leptonic jet model for blazars - I. Code description and initial results. Mon. Not. R. Astron. Soc. 2022, 512, 3948–3971. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Petropoulou, M.; Dimitrakoudis, S. Mrk 421 as a case study for TeV and X-ray variability in leptohadronic models. Mon. Not. R. Astron. Soc. 2013, 434, 2684–2695. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.K.; Das, S.; Gupta, N. Exploring the Emission Mechanisms of Mrk 180 with Long-term X-ray and γ-ray Data. Astrophys. J. 2023, 948, 75. [Google Scholar] [CrossRef]
- Böttcher, M. A Hadronic Synchrotron Mirror Model for the “Orphan” TeV Flare in 1ES 1959+650. Astrophys. J. 2005, 621, 176–180. [Google Scholar] [CrossRef]
- Li, W.-J.; Xue, R.; Long, G.-B.; Wang, Z.-R.; Nagataki, S.; Yan, D.-H.; Wang, J.-C. Can the one-zone hadronuclear model explain the hard-TeV spectrum of BL Lac objects? Astron. Astrophys. 2022, 659, 184L. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Protheroe, R.J.; Kirk, J.G. Spectral and temporal signatures of ultrarelativistic protons in compact sources. I. Effects of Bethe-Heitler pair production. Astron. Astrophys. 2005, 433, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakoudis, S.; Mastichiadis, A.; Protheroe, R.J.; Reimer, A. The time-dependent one-zone hadronic model. First principles. Astron. Astrophys. 2012, 546, A120. [Google Scholar] [CrossRef] [Green Version]
- Diltz, C.; Böttcher, M.; Fossati, G. Time Dependent Hadronic Modeling of Flat Spectrum Radio Quasars. Astrophys. J. 2015, 802, 133. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, A. JetSeT: Numerical modeling and SED fitting tool for relativistic jets. Astrophys. Sourc. Cod. Libr. 2020, 122, ascl:2009.001. [Google Scholar]
- Weidinger, M.; Spanier, F. A self-consistent and time-dependent hybrid blazar emission model. Properties and application. Astron. Astrophys. 2015, 573, A7. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; Oliveros, A.F.O.; Sanabria, J.C. Hadronic origin orphan TeV flare from 1ES 1959+650. Phys. Rev. D 2013, 87, 103015. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; López, F.; Carlos, E.; Nagataki, S. Multi-TeV flaring from high energy blazars: An evidence of the photohadronic process. Astrophys. J. 2019, 884, 17. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; López Fortín, C.E.; Iglesias Martínez, M.E.; Nagataki, S.; Fernández de Córdoba, P. The VHE SED modelling of Markarian 501 in 2009. Mon. Not. R. Astron. Soc. 2020, 492, 2261–2267. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; López Fortín, C.E.; Castañeda Hernández, L.H.; Rajpoot, S.A. A Two-zone Photohadronic Interpretation of the EHBL-like Behavior of the 2016 Multi-TeV Flares of 1ES 1959+650. Astrophys. J. 2021, 906, 91. [Google Scholar] [CrossRef]
- Sahu, S.; López Fortín, C.E.; Castañeda Hernández, L.H.; Nagataki, S.; Rajpoot, S. A Two-zone Photohadronic Scenario for EHBL-like Behavior of Mrk 501. Astrophys. J. 2020, 901, 132. [Google Scholar] [CrossRef]
- Sahu, S.; López Fortín, C.E.; Castañeda Hernández, L.H.; Valadez Polanco, I.A.; Rajpoot, S. Extreme HBL-like Behavior of Markarian 421 and Its Two-zone Photohadronic Interpretation. Astrophys. J. 2021, 914, 120. [Google Scholar] [CrossRef]
- Sahu, S.; López Fortín, C.E.; Valadez Polanco, I.A.; Rajpoot, S. Photohadronic interpretations of the different incarnations of 1ES 2344+514. Mon. Not. R. Astron. Soc. 2022, 515, 5235–5241. [Google Scholar] [CrossRef]
- Parfrey, K.; Philippov, A.; Cerruti, B. First-principles plasma simulations of black hole jet launching. Phys. Rev. Lett. 2019, 122, 03521. [Google Scholar] [CrossRef] [Green Version]
- Crinquand, B.; Cerutti, B.; Dubus, G.; Parfrey, K.; Philippov, A. Synthetic gamma-ray lightcurves of Kerr black hole magnetospheric activity from particle-in-cell simulations. Astron. Astrophys. 2021, 650, A163. [Google Scholar] [CrossRef]
- Kissaka, S.; Levinson, A.; Toma, K.; Niv, I. The Response of Black Hole Spark Gaps to External Changes: A Production Mechanism of Rapid TeV Flares? Astrophys. J. 2022, 924, 28. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; González, J.B.; Bednarek, W.; Bernardini, E.; et al. Black hole lightning due to particle acceleration at subhorizon scales. Science 2014, 346, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- Levinson, A.; Rieger, F. Variable TeV Emission as a Manifestation of Jet Formation in M87? Astrophys. J. 2011, 730, 123. [Google Scholar] [CrossRef] [Green Version]
- Hirotani, K.; Pu, H.-Y. Energetic Gamma Radiation from Rapidly Rotating Black Holes. Astrophys. J. 2016, 818, 50. [Google Scholar] [CrossRef] [Green Version]
- Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Gaidos, J.A.; Akerlof, C.W.; Biller, S.; Boyle, P.J.; Breslin, A.C.; Buckley, J.H.; Carter-Lewis, D.A.; Catanese, M.; Cawley, M.F.; Fegan, D.J.; et al. Extremely rapid bursts of TeV photons from the active galaxy Markarian 421. Nature 1996, 383, 319–320. [Google Scholar] [CrossRef] [Green Version]
- Begelman, M.C.; Fabian, A.C.; Rees, M.J. Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 2008, 384, L19–L23. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M. Gamma-Ray Astrophysics in the Time Domain. Galax 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M. An Introduction to Particle Acceleration in Shearing Flows. Galax 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; et al. VHE γ-ray emission of PKS 2155–304: Spectral and temporal variability. Astron. Astrophys. 2010, 520, A83. [Google Scholar]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33. [Google Scholar] [CrossRef] [Green Version]
- Sironi, L.; Petropoulou, M.; Giannios, D. Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 2015, 450, 183–191. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hardee, P.; Nishikawa, K.-Y. Three-dimensional Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets. Astrophys. J. 2007, 662, 835–850. [Google Scholar] [CrossRef]
- Mizuno, Y.; Pohl, M.; Niemiec, J.; Zhang, B.; Nishikawa, K.-I.; Hardee, P.E. Magnetic-field Amplification by Turbulence in a Relativistic Shock Propagating Through an Inhomogeneous Medium. Astrophys. J. 2011, 726, 62. [Google Scholar] [CrossRef]
- Sobacchi, E.; Sormani, M.C.; Stamerra, A. NA model for periodic blazars. Mon. Not. R. Astron. Soc. 2017, 465, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Tavani, M.; Cavaliere, A.; Munar-Adrover, P.; Argan, A. The Blazar PG 1553+113 as a Binary System of Supermassive Black Holes. Astrophys. J. 2008, 854, 11. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Lu, F.-W.; Qin, L.; Gong, Y.-L.; Yu, G.; Li, H.; Yi, T. A Geometric Model to Interpret the γ-Ray Quasiperiodic Oscillation of PG 1553+113. Astrophys. J. 2023, 945, 146. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; et al. Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-Ray Blazar PG 1553+113. Astrophys. J. 2007, 813, L41. [Google Scholar] [CrossRef] [Green Version]
- Covino, S.; Sandrinelli, A.; Treves, A. Gamma-ray quasi-periodicities of blazars. A cautious approach. Mon. Not. R. Astron. Soc. 2019, 482, 1270–1274. [Google Scholar] [CrossRef]
- O’Neill, S.; Kiehlmann, S.; Readhead, A.C.S.; Aller, M.F.; Blandford, R.D.; Liodakis, I.; Lister, M.L.; Mróz, P.; O’Dea, C.P.; Pearson, T.J.; et al. The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate. Astrophys. J. 2022, 926, L35. [Google Scholar] [CrossRef]
- Peñil, P.; Domínguez, A.; Buson, S.; Ajello, M.; Otero-Santos, J.; Barrio, J.A.; Nemmen, R.; Cutini, S.; Rani, B.; Franckowiak, A.; et al. Systematic Search for γ-Ray Periodicity in Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 896, 134. [Google Scholar] [CrossRef]
- Yang, S.; Yan, D.; Zhang, P.; Dai, B.; Zhang, L. Gaussian Process Modeling Fermi-LAT γ-Ray Blazar Variability: A Sample of Blazars with γ-Ray Quasi-periodicities. Astrophys. J. 2021, 907, 105. [Google Scholar] [CrossRef]
- Covino, S.; Landoni, M.; Sandrinelli, A.; Treves, A. Looking at Blazar Light-curve Periodicities with Gaussian Processes. Astrophys. J. 2020, 895, 122. [Google Scholar] [CrossRef]
- Peñil, P.; Ajello, M.; Buson, S.; Domínguez, A.; Westernacher-Schneider, J.R.; Zrake, J. Evidence of Periodic Variability in γ-ray Emitting Blazars with Fermi-LAT. arXiv 2022, arXiv:2211.01894. [Google Scholar]
- Ren, H.X.; Cerruti, M.; Sahakyan, N. Quasi-periodic oscillations in the γ-ray light curves of bright active galactic nuclei. Astron. Astrophys. 2023, 672, 86. [Google Scholar] [CrossRef]
- Sandrinelli, A.; Covino, S.; Treves, A.; Holgado, A.M.; Sesana, A.; Lindfors, E.; Ramazani, V.F. Quasi-periodicities of BL Lacertae objects. Astron. Astrophys. 2018, 615, A118. [Google Scholar] [CrossRef]
- Stellingwerf, R.F. Period determination using phase dispersion minimization. Astrophys. J. 1978, 224, 953–960. [Google Scholar] [CrossRef]
- Bhatta, G.; Dhital, N. The Nature of γ-Ray Variability in Blazars. Astrophys. J. 2020, 891, 120. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, G. Blazar Mrk 01 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 487, 3990–3997. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution. Astrophys. J. 2011, 736, 131. [Google Scholar] [CrossRef] [Green Version]
- Spitkovsky, A. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? Astrophys. J. Lett. 2008, 682, L5–L8. [Google Scholar] [CrossRef]
- Finke, J.D.; Dermer, C.D.; Böttcher, M. Synchrotron Self-Compton Analysis of TeV X-ray-Selected BL Lacertae Objects. Astrophys. J. 2008, 686, 181–194. [Google Scholar] [CrossRef]
- Böttcher, M.; Dermer, C.D. Timing Signatures of the Internal-Shock Model for Blazars. Astrophys. J. 2010, 711, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Eichler, D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep. 1987, 154, 1–75. [Google Scholar] [CrossRef]
- Begelman, M.C.; Kirk, J.G. Shock-Drift Particle Acceleration in Superluminal Shocks: A Model for Hot Spots in Extragalactic Radio Sources. Astrophys. J. 1990, 353, 66–80. [Google Scholar] [CrossRef]
- Kirk, J.G.; Reville, B. Radiative Signatures of Relativistic Shocks. Astrophys. J. 2010, 710, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Sironi, L.; Spitkovsky, A.; Arons, J. The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 2013, 771, 54. [Google Scholar] [CrossRef] [Green Version]
- Nalewajko, K.; Giannios, D.; Begelman, M.C.; Uzdensky, D.A.; Sikora, M. Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 2011, 413, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Kusunose, M.; Takahara, F.; Li, H. Electron Acceleration and Time Variability of High-Energy Emission from Blazars. Astrophys. J. 2000, 636, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Fossati, G.; Liang, E.P.; Böttcher, M. Time-dependent simulations of multiwavelength variability of the blazar Mrk 421 with a Monte Carlo multizone code. Mon. Not. R. Astron. Soc. 2012, 416, 2368–2387. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Chitnis, V.R.; Singh, B.B.; Acharya, B.S.; Anupama, G.C.; Bhattacharjee, P.; Britto, R.J.; Mannheim, K.; Prabhu, T.P.; Saha, L.; et al. Multi-frequency, Multi-epoch Study of Mrk 501: Hints for a Two-component Nature of the Emission. Astrophys. J. 2011, 798, 2. [Google Scholar] [CrossRef] [Green Version]
- Massaro, E.; Perri, M.; Giommi, P.; Nesci, R. Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set. Astron. Astrophys. 2004, 413, 489–503. [Google Scholar] [CrossRef]
- Hughes, P.A.; Aller, M.F.; Aller, H.D. Oblique Shocks as the Origin of Radio to Gamma-ray Variability in Active Galactic Nuclei. Astrophys. J. 2011, 735, 81. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P.; Jorstad, S.G. The Megaparsec-scale X-ray Jet of The BL Lac Object OJ287. Astrophys. J. 2011, 729, 26. [Google Scholar] [CrossRef] [Green Version]
- Achterberg, A.; Gallant, Y.A.; Kirk, J.G.; Guthmann, A.W. Particle acceleration by ultrarelativistic shocks: Theory and simulations. Mon. Not. R. Astron. Soc. 2001, 328, 393–408. [Google Scholar] [CrossRef]
- Duran, R.B.; Tchekhovskoy, A.; Giannios, D. Simulations of AGN jets: Magnetic kink instability versus conical shocks. Mon. Not. R. Astron. Soc. 2017, 469, 4957–4978. [Google Scholar] [CrossRef] [Green Version]
- Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G. Reconnection in Turbulent Astrophysical Fluids. ASP Conf. Ser. 2015, 488, 3. [Google Scholar]
- Werner, G.R.; Uzdensky, D.A. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma. Astrophys. J. 2017, 843, L27. [Google Scholar] [CrossRef]
- Giannios, D. Reconnection-driven plasmoids in blazars: Fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 2013, 431, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Sironi, L.; Spitkovsky, A. Relativistic Reconnection: An Efficient Source of Non-thermal Particles. Astrophys. J. 2014, 783, L21. [Google Scholar] [CrossRef]
- Hakobyan, H.; Petropoulou, M.; Spitkovsky, A.; Sironi, L. Secondary Energization in Compressing Plasmoids during Magnetic Reconnection. Astrophys. J. 2021, 912, 48. [Google Scholar] [CrossRef]
- Petropoulou, M.; Giannios, D.; Sironi, L. Blazar flares powered by plasmoids in relativistic reconnection. Mon. Not. R. Astron. Soc. 2016, 462, 3325–3353. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-ray and VHE Observations during an Extreme Flaring Activity in 2013 April. Astrophys. J. Suppl. Ser. 2013, 248, 29. [Google Scholar] [CrossRef]
- Demidem, C.; Lemoine, M.; Casse, F. Particle acceleration in relativistic turbulence: A theoretical appraisal. Phys. Rev. D 2020, 102, 023003. [Google Scholar] [CrossRef]
- Narayan, R.; Li, J.; Tchekhovskoy, A. Stability of Relativistic Force-free Jets. Astrophys. J. 2009, 697, 1681–1694. [Google Scholar] [CrossRef]
- Narayan, R.; Piran, T. Variability in blazars: Clues from PKS 2155–304. Mon. Not. R. Astron. Soc. 2012, 420, 604–612. [Google Scholar] [CrossRef]
- Lefa, E.; Rieger, F.M.; Aharonian, F. Formation of Very Hard Gamma-Ray Spectra of Blazars in Leptonic Models. Astrophys. J. 2011, 740, 64. [Google Scholar] [CrossRef] [Green Version]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Extreme HBL behavior of Markarian 501 during 2012. Astron. Astrophys. 2012, 620, A181. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Mannheim, K.; Chitnis, V.R.; Roy, J.; Acharya, B.S.; Dorner, D.; Hughes, G.; Biland, A. Detection of Very Hard γ-ray Spectrum from the TeV Blazar Mrk 501. Astrophys. J. 2016, 177. [Google Scholar] [CrossRef]
- Kapanadze, B.; Gurchumelia, A. Long-term multi-wavelength variability and extreme spectral properties of the TeV-detected blazar 1ES 0033+595. Astron. Astrophys. 2022, 668, A75. [Google Scholar] [CrossRef]
- Mizuno, Y.; Pohl, M.; Niemiec, J.; Zhang, B.; Nishikawa, K.-I.; Hardee, P.E. Magnetic field amplification and saturation in turbulence behind a relativistic shock. Mon. Not. R. Astron. Soc. 2014, 439, 3490–3503. [Google Scholar] [CrossRef]
- Becker, P.A.; Le, T.; Dermer, C.D. Time-dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-dependent Escape. Astrophys. J. 2006, 646, 539–551. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, J.J.P.; Vainio, R. Stochastic Acceleration in Relativistic Parallel Shocks. Astrophys. J. 2005, 621, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Katarzynski, K.; Ghisellini, G.; Mastichiadis, A.; Tavecchio, F.; Maraschi, L. Stochastic particle acceleration and synchrotron self-Compton radiation in TeV blazars. Astron. Astroph. 2006, 453, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.R.; Becker, P.A.; Finke, J.D. Time-dependent Electron Acceleration in Blazar Transients: X-ray Time Lags and Spectral Formation. Astrophys. J. 2016, 824, 108. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Ann. Rev. Astron. Astroph. 1984, 22, 422–445. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Petrosian, V. On the momentum diffusion of radiating ultrarelativistic electrons in a turbulent magnetic field. Astrophys. J. 2008, 681, 1725–1744. [Google Scholar] [CrossRef] [Green Version]
- Comisso, L.; Sironi, L. Particle Acceleration in Relativistic Plasma Turbulence. Phys. Rev. Lett. 2018, 121, 255101. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, J.J.P.; Vainio, R.; Schlickeiser, R. Alfvén-wave transmission and test-particle acceleration in parallel relativistic shocks. Astron. Astrophys. 2003, 409, 821–829. [Google Scholar]
- Lefa, E.; Aharonian, F.A.; Rieger, F.M. ‘Leading Blob’ Model in a Stochastic Acceleration Scenario: The Case of the 2009 Flare of Mkn 501. Astrophys. J. 2012, 743, L19. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M.; Duffy, P. Turbulence and particle acceleration in shearing flows. Astrophys. J. Lett. 2021, 907, L2. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; Kelner, S.R.; Khangulyan, D. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2011, 749, 119. [Google Scholar] [CrossRef]
- Bosch-Ramon, V. Non-thermal emission from standing relativistic shocks: An application to red giant winds interacting with AGN jets. Astron. Astrophys. 2015, 575, A109. [Google Scholar] [CrossRef] [Green Version]
- Barkov, M.V.; Aharonian, F.A.; Bosch-Ramon, V. Gamma-ray Flares from Red Giant/Jet Interactions in Active Galactic Nuclei. Astrophys. J. 2011, 724, 1517–1523. [Google Scholar] [CrossRef] [Green Version]
- Torres-Albà, N.; Bosch-Ramon, V. Gamma rays from red giant wind bubbles entering the jets of elliptical host blazars. Astron. Astrophys. 2019, 623, A91. [Google Scholar] [CrossRef]
- de la Cita, V.M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei. Astron. Astrophys. 2016, 591, A15. [Google Scholar] [CrossRef] [Green Version]
- Giebels, B.; Degrange, B. Lognormal variability in BL Lacertae. Astron. Astrophys. 2009, 503, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Khatoon, R.; Misra, R.; Sahayanathan, S.; Mandal, S.; Gogoi, R.; Bhatt, N. The flux distribution of individual blazars as a key to understand the dynamics of particle acceleration. Mon. Not. R. Astron. Soc. 2014, 480, L116–L120. [Google Scholar] [CrossRef]
- Sinha, A.; Shukla, A.; Saha, L.; Acharya, B.S.; Anupama, G.C.; Bhattacharya, P.; Britto, R.J.; Chitnis, V.R.; Prabhu, T.P.; Singh, B.B.; et al. Long-term study of Mkn 421 with the HAGAR Array of Telescopes. Astron. Astrophys. 2016, 591, 83. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Asano, K.; Babić, A.; Banerjee, B.; Baquero, A.; de Almeida, U.B.; Barrio, J.A.; Becerra González, J.; et al. Multiwavelength variability and correlation studies of Mrk 421 during historically low X-ray and γ-ray activity in 2015-2016. Mon. Not. R. Astron. Soc. 2021, 504, 1427–1451. [Google Scholar] [CrossRef]
- Kapanadze, B.; Gurchumelia, A.; Aller, M. Long-Term X-ray Outburst in the Tev-Detected Blazar Mrk 501 in 2021–2022: Further Clues for the Emission and Unstable Processes. Astrophys. J. Suppl. Ser. 2023; in press. [Google Scholar]
- Kapanadze, B. The long-term multiwavelength observations of the blazar PKS 2005-489. Astropart. Phys. 2021, 132, 102620. [Google Scholar] [CrossRef]
- Kapanadze, B.; Gurchumelia, A.; Vercellone, S.; Romano, P.; Kapanadze, S.; Kharshiladze, O. Long-term Swift and multiwavelength observations of two TeV-detected blazars with unknown redshifts. Astrophys. Space Sci. 2023, 368, 23. [Google Scholar] [CrossRef]
- Engel, K.; Goodman, J.; Huentemeyer, P.; Kierans, C.; Lewis, T.R.; Negro, M.; San-tander, M.; Williams, D.A.; Allen, A.; Aramaki, T.; et al. [for the CTA Consortium] CTA— The Cherenkov Telescope Array. In The Future of Gamma-Ray Experiments in the MeV–EeV Range. arXiv 2022, arXiv:2203.07360. [Google Scholar]
- Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; Ambrosi, G.; et al. Science with the Cherenkov Telescope Array; CTA Consortium, Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2018; ISBN 9789813270091. [Google Scholar]
- Vercellone, S.; Bigongiari, C.; Burtovoi, A.; Cardillo, M.; Catalano, O.; Franceschini, A.; Lombardi, S.; Nava, L.; Pintore, F.; Stamerra, A.; et al. ASTRI Mini-Array core science at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 1–42. [Google Scholar] [CrossRef]
- Scuderi, S.; Giuliani, A.; Pareschi, G.; Tosti, G.; Catalano, O.; Amato, E.; Antonelli, L.A.; Becerra Gonzàles, J.; Bellassai, G.; Bigongiari, C.; et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 52–68. [Google Scholar] [CrossRef]
- Kierans, C.; Caputo, R.; McEnery, J.; Perkins, J.S. AMEGO and AMEGO-X— The All-sky Medium Energy Gamma-ray Observatory. In The Future of Gamma-Ray Experiments in the MeV–EeV Range. arXiv 2022, arXiv:2203.07360v1. [Google Scholar]
- Zhang, H. Gamma-Ray Polarimetry. In The Future of Gamma-Ray Experiments in the MeV–EeV Range. arXiv 2022, arXiv:2203.07360v1. [Google Scholar]
- Engel, K.; Harding, P.J.; Brisbois, C. [for The SWGO] Collaboration SWGO— The Southern Wide-field Gamma-ray Observatory. In The Future of Gamma-Ray Experiments in the MeV–EeV Range. arXiv 2022, arXiv:2203.07360. [Google Scholar]
- De Angelis, A.; Tatischeff, V.; Tavani, M.; Oberlack, U.; Grenier, I.; Hanlon, L.; Walter, R.; Argan, A.; von Ballmoos, P.; Bulgarelli, A.; et al. Exploring the extreme Universe with gamma rays in the MeV – GeV range. Exper. Astron. 2017, 44, 25–82. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Alfaro, R.; Alvarez, C.; Angeles Camacho, J.R.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC. Astrophys. J. 2022, 929, 129. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Barber, A.S.; et al. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophys. J. 2017, 841, 100. [Google Scholar] [CrossRef]
- Cao, Z.; della Volpe, D.; Liu, S.; Bi, X.; Chen, Y.; D’Ettorre Piazzoli, B.; Feng, L.; Jia, H. The Large High Altitude Air Shower Observatory (LHAASO) Science Book (2021 Edition). Chines Phys. C 2022, 47, 035001–035007. [Google Scholar]
- Cao, Z.; Aharonian, F.A.; An, Q.; Axikegu, B.L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33. [Google Scholar] [CrossRef]
- Tavecchio, F.; Bonnoli, G. On the detectability of Lorentz invariance violation through anomalies in the multi-TeV γ-ray spectra of blazars. Astron. Astrophys. 2016, 595, A25. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu, B.L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ-Rays Observed by LHAASO. Phys. Rev. Let. 2022, 128, 051102. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; et al. The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F. Gamma rays from blazars. AIP Conf. Proc. 2017, 1792, 020007. [Google Scholar]
- Peirson, A.L.; Liodakis, I.; Romani, R.W. Testing High-energy Emission Models for Blazars with X-ray Polarimetry. Astrophys. J. 2022, 931, 59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapanadze, B. Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects. Universe 2023, 9, 344. https://doi.org/10.3390/universe9070344
Kapanadze B. Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects. Universe. 2023; 9(7):344. https://doi.org/10.3390/universe9070344
Chicago/Turabian StyleKapanadze, Bidzina. 2023. "Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects" Universe 9, no. 7: 344. https://doi.org/10.3390/universe9070344
APA StyleKapanadze, B. (2023). Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects. Universe, 9(7), 344. https://doi.org/10.3390/universe9070344