Statistical Study of Geo-Effectiveness of Planar Magnetic Structures Evolved within ICME’s
Abstract
:1. Introduction
2. Data and Results
- Planar Sheaths: only sheaths transformed into PMS;
- Planar MCs: only MC transformed into PMS;
- Planar ICMEs: both sheath and MC transformed into PMS;
- Non-planar ICMEs: neither sheaths nor MCs transformed into PMS.
3. Discussion
Characteristics | Non-PMS | PMS-MC | PMS-Sheath | Both PMS | ||||
---|---|---|---|---|---|---|---|---|
Ejecta (161) | Cloud (45) | Ejecta (31) | Cloud (36) | Ejecta (60) | Cloud (33) | Ejecta (25) | Cloud (29) | |
Extreme | 1 | 0 | 0 | 1 | 4 | 8 | 2 | 3 |
Intense | 14 | 15 | 7 | 11 | 12 | 8 | 6 | 8 |
Moderate | 46 | 18 | 8 | 14 | 26 | 4 | 5 | 10 |
Weak | 110 | 12 | 16 | 10 | 18 | 13 | 12 | 8 |
ICME Sheath | ICME Magnetic Cloud | |||
---|---|---|---|---|
Non-Planar | Planar | Non-Planar | Planar | |
B (nT) | 9.17 | 13.57 | 8.66 | 12.20 |
Bz (nT) | −6.91 | −15.43 | −9.46 | −13.67 |
Bz (nT) | 7.71 | 14.71 | 8.09 | 13.10 |
Np () | 9.66 | 13.41 | 6.22 | 8.40 |
Vp () | 482.79 | 510.80 | 458.95 | 451.79 |
Tp ( K) | 1.37 | 1.97 | 0.52 | 0.51 |
4. Conclusions
- Our study statistically confirms the hypothesis that ICMEs that are transformed into PMS are more geoeffective than non-planar ICMEs.
- The combined enhancement in the magnetic field components and plasma parameters is found in the planar sheath and MCs.
- The enhancement in the magnetopause current and ring current due to enhanced plasma conditions could be the main reason for the high geoeffectiveness of planar ICMEs.
- A detailed study may be required in this direction to find the extent of the effects of planar ICMEs on the magnetosphere, the ionosphere, the coupling between the magnetosphere and the ionosphere, etc. Our future studies will explore this direction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, W.; Joselyn, J.; Kamide, Y.; Kroehl, H.; Rostoker, G.; Tsurutani, B.; Vasyliunas, V. What is a geomagnetic storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef] [Green Version]
- Akasofu, S.I. A Review of the Current Understanding in the Study of Geomagnetic Storms. Int. J. Earth Sci. Geophys. 2018, 4, 018. [Google Scholar]
- Marusek, J.A. Solar Storm Threat Analysis; Marusek, J., Ed.; Impact: Bloomfield, IN, USA, 2007. [Google Scholar]
- Boerner, W.M.; Cole, J.B.; Goddard, W.R.; Tarnawecky, M.Z.; Shafai, L.; Hall, D.H. Impacts of solar and auroral storms on power line systems. Space Sci. Rev. 1983, 35, 195–205. [Google Scholar] [CrossRef]
- Baker, D.; Erickson, P.; Fennell, J.; Foster, J.; Jaynes, A.; Verronen, P. Space weather effects in the Earth’s radiation belts. Space Sci. Rev. 2018, 214, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, D.C.; Worden, S.P.; Hastings, D.E. The space weather threat to situational awareness, communications, and positioning systems. IEEE Trans. Plasma Sci. 2015, 43, 3086–3098. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.M.; Zesta, E.; Hayakawa, H.; Bhaskar, A. Estimating satellite orbital drag during historical magnetic superstorms. Space Weather 2020, 18, e2020SW002472. [Google Scholar] [CrossRef]
- Boteler, D. Geomagnetic hazards to conducting networks. Nat. Hazards 2003, 28, 537–561. [Google Scholar] [CrossRef]
- Chapman, S.; Bartels, J. Geomagnetism; Clarendon Press: Oxford, UK, 1940; Volume 2. [Google Scholar]
- Tsurutani, B.; Gonzalez, W.; Lakhina, G.; Alex, S. The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. 2003, 108, 2999–3002. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, H.; Nevanlinna, H.; Blake, S.P.; Ebihara, Y.; Bhaskar, A.T.; Miyoshi, Y. Temporal variations of the three geomagnetic field components at colaba observatory around the carrington storm in 1859. Astrophys. J. 2022, 928, 32. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47. [Google Scholar] [CrossRef]
- Choraghe, K.; Raghav, A.; Chakrabarty, D.; Kasthurirangan, S.; Bijewar, N. Properties of the recovery phase of extreme storms. J. Geophys. Res. 2021, 126, e2020JA028685. [Google Scholar] [CrossRef]
- Kozyra, J.U.; Liemohn, M.W. Ring current energy input and decay. In Magnetospheric Imaging—The Image Prime Mission; Springer: Berlin/Heidelberg, Germany, 2003; pp. 105–131. [Google Scholar]
- Daglis, I.A.; Thorne, R.M.; Baumjohann, W.; Orsini, S. The terrestrial ring current: Origin, formation, and decay. Rev. Geophys. 1999, 37, 407–438. [Google Scholar]
- Jordanova, V.K. Ring current decay. In Ring Current Investigations; Elsevier: Amsterdam, The Netherlands, 2020; pp. 181–223. [Google Scholar]
- Chen, M.W.; Schulz, M.; Lyons, L.R. Modeling of ring current formation and decay: A review. Wash. Am. Geophys. Union Geophys. Monogr. Ser. 1997, 98, 173–186. [Google Scholar]
- Richardson, I.; Webb, D.; Zhang, J.; Berdichevsky, D.; Biesecker, D.; Kasper, J.; Kataoka, R.; Steinberg, J.; Thompson, B.; Wu, C.C.; et al. Major geomagnetic storms (Dst = −100 nT) generated by corotating interaction regions. J. Geophys. Res. 2006, 111, A07S09. [Google Scholar]
- Richardson, I.G.; Cane, H.V. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather. Space Clim. 2012, 2, A01. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.; Guarnieri, F.L.; Gopalswamy, N.; Grande, M.; Kamide, Y.; Kasahara, Y.; Lu, G.; Mann, I.; et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006, 111, A07S01. [Google Scholar]
- O’Brien, T.P.; McPherron, R.L. An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J. Geophys. Res. 2000, 105, 7707–7719. [Google Scholar]
- Burlaga, L. Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 1988, 93, 7217–7224. [Google Scholar] [CrossRef]
- Bothmer, V.; Schwenn, R. The structure and origin of magnetic clouds in the solar wind. In Annales Geophysicae; Springer: Berlin/Heidelberg, Germany, 1997; Volume 16, pp. 1–24. [Google Scholar]
- Kilpua, E.; Jian, L.; Li, Y.; Luhmann, J.; Russell, C. Observations of ICMEs and ICME-like solar wind structures from 2007–2010 using near-Earth and STEREO observations. Sol. Phys. 2012, 281, 391–409. [Google Scholar]
- Zurbuchen, T.H.; Richardson, I.G. in situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. In Coronal Mass Ejections; Springer: New York, NY, USA, 2006; pp. 31–43. [Google Scholar]
- Tsurutani, B.; Lakhina, G.; Verkhoglyadova, O.P.; Gonzalez, W.; Echer, E.; Guarnieri, F. A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Sol. Terr. Phys. 2011, 73, 5–19. [Google Scholar] [CrossRef]
- Schwenn, R.; Dal Lago, A.; Huttunen, E.; Gonzalez, W.D. The association of coronal mass ejections with their effects near the Earth. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2005; Volume 23, pp. 1033–1059. [Google Scholar]
- Koskinen, H.; Huttunen, K. Geoeffectivity of coronal mass ejections. Space Sci. Rev. 2006, 124, 169–181. [Google Scholar] [CrossRef]
- Huttunen, K.; Koskinen, H.; Karinen, A.; Mursula, K. Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions. Geophys. Res. Lett. 2006, 33, L06107. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.; Tang, F.; Arballo, J.K.; Okada, M. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 1995, 100, 21717–21733. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Ho, C.M.; Arballo, J.K.; Goldstein, B.E.; Balogh, A. Large amplitude IMF fluctuations in corotating interaction regions: Ulysses at midlatitudes. Geophys. Res. Lett. 1995, 22, 3397–3400. [Google Scholar]
- Yermolaev, Y.I.; Lodkina, I.G.; Dremukhina, L.A.; Yermolaev, M.Y.; Khokhlachev, A.A. What solar–terrestrial link researchers should know about interplanetary drivers. Universe 2021, 7, 138. [Google Scholar] [CrossRef]
- Burlaga, L.; Lepping, R. The causes of recurrent geomagnetic storms. Planet. Space Sci. 1977, 25, 1151–1160. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Tsurutani, B.T.; Clúa de Gonzalez, A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, 88, 529–562. [Google Scholar] [CrossRef]
- Nakagawa, T.; Nishida, A.; Saito, T. Planar magnetic structures in the solar wind. Geophys. Res. Lett. 1989, 94, 11761–11775. [Google Scholar] [CrossRef]
- Nakagawa, T. Solar source of the interplanetary planar magnetic structures. Sol. Phys. 1993, 147, 169–197. [Google Scholar] [CrossRef]
- Neugebauer, M.; Clay, D.; Gosling, J. The origins of planar magnetic structures in the solar wind. J. Geophys. Res. 1993, 98, 9383–9389. [Google Scholar] [CrossRef]
- Shaikh, Z.I.; Raghav, A.N.; Vichare, G.; Bhaskar, A.; Mishra, W. Comparative statistical study of characteristics of plasma in planar and non-planar ICME sheaths during solar cycles 23 and 24. Mon. Not. R. Astron. Soc. 2020, 494, 2498–2508. [Google Scholar] [CrossRef]
- Raghav, A.N.; Shaikh, Z.I. The pancaking of coronal mass ejections: An in situ attestation. Mon. Not. R. Astron. Soc. 2020, 493, L16–L21. [Google Scholar] [CrossRef]
- Palmerio, E.; Kilpua, E.K.; Savani, N.P. Planar magnetic structures in coronal mass ejection-driven sheath regions. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2016; Volume 34, pp. 313–322. [Google Scholar]
- Shaikh, Z.I.; Raghav, A.N. Statistical Plasma Properties of the Planar and Nonplanar ICME Magnetic Clouds during Solar Cycles 23 and 24. Astrophys. J. 2022, 938, 146. [Google Scholar] [CrossRef]
- Raghav, A.; Shaikh, Z.; Vemareddy, P.; Bhaskar, A.; Dhamane, O.; Ghag, K.; Tari, P.; Dayanandan, B.; Mohammed Al Suti, B. The Possible Cause of Most Intense Geomagnetic Superstorm of the 21st Century on 20 November 2003. Sol. Phys. 2023, 298, 64. [Google Scholar] [CrossRef]
- McComas, D.; Gosling, J.; Winterhalter, D.; Smith, E. Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere. J. Geophys. Res. 1988, 93, 2519–2526. [Google Scholar] [CrossRef]
- McComas, D.; Gosling, J.; Bame, S.; Smith, E.; Cane, H. A test of magnetic field draping induced B z perturbations ahead of fast coronal mass ejecta. J. Geophys. Res. 1989, 94, 1465–1471. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Kilpua, E.; Keika, K. Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett. 2015, 42, 5155–5161. [Google Scholar] [CrossRef]
- Choraghe, K.; Shaikh, Z.; Raghav, A.; Ghag, K.; Dhamane, O. Intense (SYM-H ≤−100 nT) Geomagnetic Storms Induced by Planar Magnetic Structures in Co-rotating Interaction Regions. Adv. Space Res. 2023, in press. [Google Scholar]
- Bergin, A.; Chapman, S.C.; Watkins, N.W.; Moloney, N.R.; Gjerloev, J.W. Extreme Event Statistics in Dst, SYM-H, and SMR Geomagnetic Indices. Space Weather 2023, 21, e2022SW003304. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Lodkina, I.; Nikolaeva, N.; Yermolaev, M.Y. Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms. J. Geophys. Res. Space Phys. 2014, 119, 8126–8136. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, Z.I.; Raghav, A.N. Evolution of Earth’s magnetosheath as a planar magnetic structure. Mon. Not. R. Astron. Soc. 2022, 511, 4963–4970. [Google Scholar] [CrossRef]
- Kamide, Y.; McPherron, R.; Gonzalez, W.; Hamilton, D.; Hudson, H.; Joselyn, J.; Kahler, S.; Lyons, L.; Lundstedt, H.; Szuszczewicz, E. Magnetic storms: Current understanding and outstanding questions. Magn. Storms 1997, 98, 1–19. [Google Scholar]
- Aguado, J.; Cid, C.; Saiz, E.; Cerrato, Y. Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms. J. Geophys. Res. 2010, 115, 7220. [Google Scholar]
- O’Brien, T.; McPherron, R. Evidence against an independent solar wind density driver of the terrestrial ring current. Geophys. Res. Lett. 2000, 27, 3797–3799. [Google Scholar]
- Borovsky, J.E.; Thomsen, M.F.; Elphic, R.C. The driving of the plasma sheet by the solar wind. J. Geophys. Res. 1998, 103, 17617–17639. [Google Scholar]
- Jordanova, V.; Kistler, L.; Thomsen, M.; Mouikis, C. Effects of plasma sheet variability on the fast initial ring current decay. Geophys. Res. Lett. 2003, 30, 6. [Google Scholar] [CrossRef]
- Liemohn, M.W.; Kozyra, J.; Thomsen, M.; Roeder, J.; Lu, G.; Borovsky, J.; Cayton, T. Dominant role of the asymmetric ring current in producing the stormtime Dst. J. Geophys. Res. 2001, 106, 10883–10904. [Google Scholar] [CrossRef] [Green Version]
- Fenrich, F.; Luhmann, J. Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett. 1998, 25, 2999–3002. [Google Scholar] [CrossRef]
- Wang, C.; Chao, J.; Lin, C.H. Influence of the solar wind dynamic pressure on the decay and injection of the ring current. J. Geophys. Res. 2003, 108. [Google Scholar]
- Huttunen, K.; Koskinen, H. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2004; Volume 22, pp. 1729–1738. [Google Scholar]
- Guo, J.; Feng, X.; Emery, B.A.; Zhang, J.; Xiang, C.; Shen, F.; Song, W. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. Space Phys. 2011, 116, A5. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Nikolaeva, N.; Lodkina, I.; Yermolaev, M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. Space Phys. 2012, 117, A9. [Google Scholar] [CrossRef] [Green Version]
Groups | Weak (>−50 nT) | Moderate (−50 nT to −100 nT) | Intense (−100 nT to −200 nT) | Extreme (>−200 nT) |
---|---|---|---|---|
Planar ICMEs | 38.88% | 25.92% | 25.92% | 9.25% |
Planar MCs | 43.28% | 31.34% | 22.38% | 2.98% |
Planar sheaths | 58.06% | 22.58% | 13.97% | 5.37% |
Non-Planar ICMEs | 54.85% | 30.58% | 14.07% | 0.48% |
Categories | Magnetic Cloud | Ejecta |
---|---|---|
Non-planar structures | 21.53% | 78.15% |
Planar magnetic clouds | 53.73% | 46.26% |
Planar sheaths | 64.51% | 35.48% |
Planar ICME | 46.29% | 53.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghag, K.; Sathe, B.; Raghav, A.; Shaikh, Z.; Mishra, D.; Bhaskar, A.; Pant, T.K.; Dhamane, O.; Tari, P.; Pathare, P.; et al. Statistical Study of Geo-Effectiveness of Planar Magnetic Structures Evolved within ICME’s. Universe 2023, 9, 350. https://doi.org/10.3390/universe9080350
Ghag K, Sathe B, Raghav A, Shaikh Z, Mishra D, Bhaskar A, Pant TK, Dhamane O, Tari P, Pathare P, et al. Statistical Study of Geo-Effectiveness of Planar Magnetic Structures Evolved within ICME’s. Universe. 2023; 9(8):350. https://doi.org/10.3390/universe9080350
Chicago/Turabian StyleGhag, Kalpesh, Bhagyashri Sathe, Anil Raghav, Zubair Shaikh, Digvijay Mishra, Ankush Bhaskar, Tarun Kumar Pant, Omkar Dhamane, Prathmesh Tari, Prachi Pathare, and et al. 2023. "Statistical Study of Geo-Effectiveness of Planar Magnetic Structures Evolved within ICME’s" Universe 9, no. 8: 350. https://doi.org/10.3390/universe9080350
APA StyleGhag, K., Sathe, B., Raghav, A., Shaikh, Z., Mishra, D., Bhaskar, A., Pant, T. K., Dhamane, O., Tari, P., Pathare, P., Pawaskar, V., Kumbhar, K., & Hilbert, G. (2023). Statistical Study of Geo-Effectiveness of Planar Magnetic Structures Evolved within ICME’s. Universe, 9(8), 350. https://doi.org/10.3390/universe9080350