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Abstract: We develop the theory of Free Integro-Differential Algebras (FIDA) extending the powerful
technique of Free Differential Algebras constructed by D. Sullivan. We extend the analysis beyond
the superforms to integral- and pseudo-forms used in supergeometry. It is shown that there are
novel structures that might open the road to a deeper understanding of the geometry of supergravity.
We apply the technique to some models as an illustration and we provide a complete analysis for
D = 11 supergravity. There, it is shown how the Hodge star operator for supermanifolds can be used
to analyze the set of cocycles and to build the corresponding FIDA. A new integral form emerges
which plays the role of the truly dual to 4-form F(4) and we propose a new variational principle
on supermanifolds.
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1. Ingredients

A new integral form has been discovered, which extends beyond existing Free Differ-
ential Algebra (FDA). 1 This finding confirms the super geometric nature of supergravity
and provides a unique perspective on the subject. The extended algebra is renamed Free
Integro-Differential Algebra (FIDA).

As is pointed out by different authors [2–11], the superspace nature of supersymmetric
and supergravity models is intimately related to the supergeometric structure due to
vielbeins and gravitinos. Their supersymmetry and diffeomorphism transformations can
be recast in a beautiful geometric framework known as the rheonomic approach. This allows
us to use the powerful technique of Cartan calculus, such as the exterior differential, the
contraction operator, the Lie derivates, etc., and to compute some cohomologies for flat or
curved supermanifolds. It turns out that the Chevalley–Eilenberg cohomology is usually
non-trivial, and it can be conveniently understood in terms of free differential algebras. The
elements of that algebra are usually higher-degree forms and they are additional degrees of
freedom in the supergravity field spectrum besides the vielbein, the spin connection, and
the gravitinos. There is a vast literature on the argument, which we refer to for details and
applications [12–19].

As discussed in several works (see for example [20–24]), it has been shown that there
are other sectors of cohomology for supergravity and supersymmetric theories, which
play an important role in supergravity theory. It has been discovered, that in integral
form cohomology (see [25,26] for the precise definition) there are additional cohomology
classes. They are expected because of the Hodge duality discovered in [27,28]. Those
are cohomologies in the sector of integral forms and pseudoforms. In the presence of
supermanifolds, the exterior bundle is not sufficient to describe the complete geometry and
must be supplemented by the sector of integral forms. Those forms can be integrated into
the supermanifold and explicitly constructed in terms of the delta function of commuting
1-forms and their derivatives. Therefore, in the present work, we discuss whether the
techniques developed in [10,29] can be adapted to this new framework, when integral form
cohomologies are present, and what it implies.
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It is shown that once the FDA for the superform sector has been constructed, using
the ring structure of forms and the module structure of integral forms, the integral form
sector is removed by adding suitable potentials. However, not completely. It is proven
in Section 1.2 the potentials needed for superforms are insufficient to compensate for all
integral forms. Indeed, at least one requires a maximal picture to define the FIDA. It
could happen that one integral form with the maximal-picture is not enough since the
introduction of a maximal-picture potential might introduce new cohomology classes with
higher pictures, and for that, one needs one more potential.

What is the role of the maximal-picture potential (and occasionally also the additional
one where new integral form cohomologies emerge)? There are two aspects to be discussed:
(1) Does it change the physical spectrum of the theory? (2) What is the role of this additional
integral form? It is shown in Section 3.3 that, indeed, there are no additional degrees of
freedom, and the new integral form is related to the original spectrum of the theory.
Concerning its role, we have to recall that to write down an action, we have to integrate
over the entire supermanifold, and this can be achieved with an integral form. The presence
of a naïve integral form in the spectrum tells us that we must build the integral form
to construct a consistent action and its equations of motion [20–24]. One can relate this
non-trivial integral form (or its potential) as a reflection of the existence of the Berezianian
(see [30]), and the fact that there is a single non-trivial integral form seems to indicate that
the Berezianian is a truly essential ingredient in the supergravity realm.

In Section 1, we list and discuss the ingredients needed for the analysis and the general
theory. In Section 2, we give some examples, starting from a toy example to a non-Abelian
coset manifold example. In Section 3, we apply the construction to D = 4, 6, 11 models,
and we construct the complete FIDA using the Hodge duality. New cocycles are shown
and the relations among them are discussed. In Section 4, we write some conclusions and
open issues on some delicate mathematical questions we are not able to discuss in the
present work.

1.1. Free Differential Algebras (FDAs)

Given a Lie supergroup G, we denote its Lie algebra byLG with n bosonic generators Ta
and m fermionic generators Qα. Associated with each generator, we introduce the Maurer–
Cartan (MC) forms (Va, ψα), as follows: having chosen an element g of the supergroup G,
we compute an element of the Lie algebra, and we expand it in terms of the generators as

g−1dg = VaTa + ψαQα (1)

(in this paper, we will follow the Einstein convention, which involves summing on repeated
indices). The MC forms satisfy the MC equations

dVa = f a
αβψα ∧ ψβ + f a

bcVb ∧Vc ,

dψα = f a
bβVb ∧ ψβ . (2)

where f a
αβ, f a

αβ, and f a
bβ are the structure constants satisfying the Jacobi identities. The

differential d is the Chevalley–Eilenberg differential, and its nilpotency follows from Jacobi
identities. If the bosonic generators Ta corresponds to the translation generators on a su-
permanifold and Qα the supersymmetry generators, then the MC forms (Va, ψα) represent
the supervielbein associated with the supermanifold. The MC forms (Va, ψα) carry form
number equal to one and they are anticommuting and commuting, respectively, for the
wedge product

Va ∧Vb = −Vb ∧Va , Va ∧ ψα = ψα ∧Va , ψα ∧ ψβ = ψβ ∧ ψα . (3)
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For convenience, we use the notation EA = (Va, ψα), and collectively we denote by
f A

BC the structure constants where A = (a, α) runs over all indices. In terms of EA, the
commutation properties are summarized in

EA ∧ EB = (−1)(|A|+1)(|B|+1)EB ∧ EA (4)

where |A| = 1 for Va and |A| = 0 for ψα.
On the space of forms Ω(p)(SM,R) with trivial coefficients, one can compute the

Chevalley–Eilenberg (CE) cohomology at every form number. For a general discussion on
this point for super Lie algebras, we refer to [25,26]. The CE cohomology classes (labeled
by I with form degree pI) are expressed in terms of the MC forms EA as follows:

Ω(pI)
I = ΩI,A1 ...ApI

EA1 ∧ · · · ∧ EApI , (5)

such that

dΩ (pI)
I = 0, Ω (pI)

I 6= dA (pI−1)
I (6)

where the coefficients ΩI,A1 ...ApI
are constant.

The free differential algebra (FDA) extension L′G of a Lie algebra LG (studied in [4,10,29,31])

enlarges the set of MC forms EA to include a new set of p-forms {A(pI)
I } associated with

each Chevalley–Eilenberg cohomology classes in Equation (5) such that

dEA +
1
2

f A
BCEB ∧ EC = 0

dA(pI−1)
I + Ω(pI)

I = 0 (7)

It is clear that Ω(pI)
I differing by exact pieces dΦ(pI−1)

I lead to equivalent FDA’s, via

the redefinition A(pI−1)
I → A(pI−1)

I + Φ(pI−1)
I . The whole procedure can be repeated on

the free differential algebra L′G, which now contains the set of p-forms {EA, A(pI−1)
I }. To

proceed, one must calculate the cohomology using the latest set of forms and consider any
new cocycles that may arise, as

Ω(qI′ )
I′ = Ω I1 ...Is

I′ ,A1 ...Ar
EA1 ∧ · · · ∧ EAr ∧ A

(pI1−1)
I1

∧ . . . ∧ A(pIs−1)
Is

(8)

such that qI′ = r + ∑I∈I pI , where I is the set of indices I of the potentials ApI
I appearing in

the cocycle Ω(qI′ )
I′ . The coefficients Ω I1 ...Is

I′ ,A1 ...Ar
are constant. Then, as above, one introduces

new potential A(qI′−1)
I′ satisfying Equation (6). If such a polynomial exists, the FDA of

Equations (7) can be further extended to L′′G with {EA, ApI−1
I , AqI′−1

I′ }. Of course, one
would like to know if the procedure stops after a finite number of steps or continues
indefinitely.

Computing the Hilbert–Poincaré series associated with the CE cohomology, one can
explicitly test whether the introduction of new potentials A(p−1)

I trivializes the cohomology.
This can be easily achieved by adding the contribution to the Hilbert–Poincaré series of
the new potentials and checking if the complete Hilbert–Poincaré series equals 1. The
Hilbert–Poincaré series will be reviewed in the next section, but the general procedure has
already been discussed in [32].

As for ordinary Lie algebras, a dynamical theory based on FDA is obtained by intro-
ducing non-vanishing curvature for MC forms and all potentials {EA, ApI−1

I , AqI′−1
I′ } of the

FDA, see [10] for a precise discussion and several interesting examples.
The rewriting of the FDA’s in terms of larger Lie (super)algebras, by expressing the

p-forms with p > 1 as products of 1-form fields involving new fields, has been considered
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already in [1] for d = 11 supergravity. Recent developments of this idea can be found
in [33–35].

1.2. Free Integro-Differential Algebras (FIDAs)

Besides the super form sector of the theory represented by the spaces Ω(p|0)(SM,R) ≡
Ω(p)(SM,R) (with p ≥ 0), we are also interested in the integral form sector of the theory,
which we denote by Ω(p|m)(SM,R) (with p ≤ n). To define the latter, we introduce the
symbol δ(ψα) with the distribution-like property

ψα ∧ δ(ψα) = 0 , α is not summed (9)

and the commutation relations

δ(ψα) ∧ δ(ψβ) = −δ(ψβ) ∧ δ(ψα)

Va ∧ δ(ψβ) = −δ(ψβ) ∧Va (10)

ψα ∧ δ(ψβ) = δ(ψβ) ∧ ψα , α 6= β

According to the first equation, the maximal number of δ(ψβ) is equal to the fermionic
dimension of the supermanifold SM. We assign to every single delta a degree (imported
from string theory jargon) known as picture number, therefore the maximal picture is n.
Under coordinate changes, the symbol δ(ψβ) does not transform as a tensor 2 and generally
is not a globally defined quantity. Nonetheless, the product of all δ(ψβ) transform as a
density. In particular, the integral form

Vol(n|m) = V1 ∧ · · · ∧Vn ∧ δ(ψ1) ∧ · · · ∧ δ(ψm) (11)

transforms as a Berezinian section of the supermanifold, as can be easily checked by using
the above properties.

We define

ι∂α
δ(ψβ) ≡ ∂

∂ψα
δ(ψβ) = δ′(ψβ)δ

β
α (12)

where ι∂α
ψβ = δ

β
α is the usual pairing between an odd vector field ∂α, and its dual form

ψβ. δ′(ψβ) denotes the first derivative with respect to the argument of the delta function.
Likewise, δ(g)(ψβ) is the g-derivative with respect to the argument of the delta function.
For δ(g)(ψβ), the distribution-like property (integration by parts)

ψβδ(g)(ψβ) = −δ(g−1)(ψβ) , β is not summed (13)

holds. Notice that, according to Equation (13), δ(g)(ψβ) carries the (−g)-form degree, and
δ(ψα) carries no form degree. Acting with the differential d on these distribution-like
expressions, we use the chain rules

d
(

δ(g)(ψβ)
)
= dψβ ∧ δ(g+1)(ψβ), (14)

and therefore, the Chevalley–Eilenberg differential can be extended to act on those expressions.
Generically, a form Ω(p|q) with p form degree and q picture (number of deltas) on a

supermanifold can be expressed in its local forms as

Ω(p|q) = Ω
(p|q),g1 ...gq
[a1 ...ar ](α1 ...αs)[β1 ...βq ]

Va1∧ . . .∧Var∧ψα1 . . .∧ψαs∧δ(g1)(ψβ1) . . .∧δ(gq)(ψβq) (15)

where the first indices [a1 . . . ar] are anti-symmetrized, the second set (α1 . . . αs) is sym-
metrized, and the third set [β1 . . . βq] is anti-symmetrized. We also attach the indices
g1 . . . gq to the coefficients of Ω(p|q) to label the order of derivatives on the deltas. The total
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picture equals q and the total form number is p = r + s−∑
q
i=1 gi. The two extreme cases

Ω(p|0) and Ω(p|m) are known as super forms and integral forms.
Given two forms Ω(p|q) and Ω(p′ |q′), we can multiply them as follows

Ω(p+p′ |q+q′) =

{
Ω(p|q) ∧Ω(p′ |q′) if q + q′ ≤ m

0 if q + q′ > m
(16)

Notice that due to Equation (10), if the argument of two delta’s in Ω(p|q) and Ω(p′ |q′) is
the same, their product vanishes (exactly in the same way as for two differential forms Va).

The differential d changes the form number p, for Ω(p|q),

d : Ω(p|q) −→ Ω(p+1|q) (17)

but it does not change the picture number q. To change the latter, one needs picture changing
operators (PCOs) Y(0|1), and it is defined as follows: given an anticommuting smooth
function Ξ (e.g., Ξ = θα, namely the coordinate function along the fermionic coordinate θα

on SM) on the supermanifold, we set

Y(0|1) = Ξδ(dΞ) (18)

where dΞ is the differential of Ξ. Y(0|1) carries no form degree, but the picture equals one.
In addition, because of distribution-like properties (9) and (12)–(14), Y(0|1) is closed and
not exact. The PCO is thoroughly discussed in [20,21], wherein the connection with the
Poincaré dual form of the immersion of a bosonic submanifold into the supermanifold
is demonstrated.

The PCO Y(0|1) that raises the picture by one unit and acts multiplicatively on Ω(p|q)

Ω(p|q) −→ Ω(p|q+1) = Y(0|1) ∧Ω(p|q) (19)

which satisfies d
(
Y(0|1) ∧Ω(p|q)

)
= Y(0|1) ∧ dΩ(p|q). Notice that Ω(p|q+1) could vanish if

the delta in Y(0|1) is one of the delta in Ω(p|q). The maximal picture PCO Y(0|m) is obtained
by taking the wedge product of Y(0|1) along all possible MC 1-forms ψα or by choosing a
set of m-anticommuting functions Ξα, and we set

Y(0|m) =
m∧

α=1

Ξαδ(dΞα) (20)

This PCO is an integral form Ω(0|m), and it is an element of the cohomology of the
differential d: H(0|m)(d,R). For a comprehensive look at various examples, please refer
to the citation [25]. Additionally, the citation [30] can be consulted for a thorough math-
ematical derivation. The latter source explains the distinction between the differential d
that operates on superforms and dK (known as the Koszul differential) that operates on the
integral form. However, for practical purposes, this difference may not be significant in
computational applications.

On the other hand, we can construct the lowering PCO as follows:

Ω(p|q) −→ Ω(p|q−1) = Z(0|−1)Ω(p|q) =
[
d, Θ

(
ιX̂
)]

Ω(p|q) (21)

where X̂ is an odd vector field, and Θ
(
ιX̂
)

is the Heaviside (step) function, which can be
conveniently defined using the integral representation. If X̂ = X̂α∂α, then ιX̂ψα = X̂α and

Θ(ιX̂) = lim
ε→0

∫ ∞

−∞

e−itιX̂

t + iε
dt (22)

We will come back to this PCO in the forthcoming sections.
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In this discussion, our focus will be on the two opposite scenarios: superforms with
no picture and integral forms with the highest picture number. For these cases, we can
simplify the expressions using Equation (15).

Ω(p|0) = Ω(p|0)
[a1 ...ar ](αr+1 ...αp)

Va1 . . . Var ψαr+1 . . . ψαp

Ω(p|m) = Ω(p|m),(βr+1 ...βr)
[a1 ...ap+r ]

Va1 . . . Vap+r ιβ1 . . . ιβr

m∧
α=1

δ(ψα) (23)

where ιβ = ι∂β
, and the latter is defined in Equation (12).

We can utilize the Hodge star operator, as defined in the sources [27,28], which we
have conveniently revised for the reader’s understanding. Given a form ω(x, θ, V, ψ),
considered as a generalized function of the supervielbein (Va, ψα) and of the coordinates
(xa, θα) of the supermanifold SM its Hodge dual is written in terms of a Fourier transform

?ω(x, θ, V, ψ) = ir
2−n2

il
∫
SM′

ei(νaηabVb+pαλCαβψβ)ω(x, θ, ν, p)[dnνdm p] (24)

where r is the number of V’s, l is the number of ψ’s, n is the bosonic dimension, and
SM′ is the dual superspace whose fundamental coordinates are (νa, pα) (respectively,
anticommuting and commuting). The symbol [dnνdm p] denotes the Berezin integral over
νa and the Riemann–Lebesgue integral over pα. The metric g to which ? is related is given
by the tensor

g = ηabVa ⊗Vb + Cαβψα ⊗ ψβ (25)

where ηab is a symmetric matrix and Cαβ is an antisymmetric matrix (for the case D = 4
this matrix concides with the charge conjugation matrix). The function ω(x, θ, ν, p) is
the function obtained from ω(x, θ, V, ψ) by substituting V → ν and ψ → p, leaving the
supermanifold coordinates x, θ untouched.

Using the Hodge dual operator, Ω(p|0) and Ω(p|m) are related as follows

?Ω(p|0) = Ω(n−p|m) (26)

and satisfy the following identity

Ω(p|0) ∧ ?Ω(p|0) =
n

∏
a=1

Va
m

∏
α=1

δ(ψα) ≡ Vol(n|m) (27)

and the right-hand side Vol(n|m) represents the Berezinian top form on the space of MC
forms, as discussed in Equation (11). If the superalgebra is a matrix superalgebra, Vol(n|m)

is just the superdeterminant. In paper [25,26] it is proven that for each cohomology class
(cocycles) in the superform sector H(p|0) there exists a corresponding integral form cocycle
H(n−p|m). This corresponds to the usual Poincaré duality in the case of conventional manifolds.

Now, according to the FDA techniques, for each cocycle of ω
(p|0)
I ∈ H(p|0), (where I is

a label for the cocycle) one introduces a new potential such that

dA(p−1|0)
I = ω

(p|0)
I (28)

to trivialize the cohomology. This can be carried out for all cocycles in H(p|0) leading to a
set of potentials A(p−1|0)

I , however, the cocycles are related by a ring structure

ω
(pI |0)
I ∧ω

(pJ |0)
J = ∑

K
CK

I Jω
(pI+pJ |0)
K (29)
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with integer coefficients CK
I J , and therefore there might be overcounting. For that, one needs

to introduce a basis of potentials A(p−1|0)
I solving the equations

A(pI−1|0)
I ∧ dA(pJ−1|0)

J = ∑
K

C̃K
I J A(pI+pJ−1|0)

K . (30)

where C̃K
I J are related to CK

I J by taking into account a reshuffling of the potentials 3. This
structure selects a linear basis of potentials to be used in the FDA together with the MC
forms EA.

Then, one has to compute the new extended cohomology with additional potentials
to see whether new cocycles emerge (an extended analysis for D = 4, 6, 10, 11 models
with extended superspace has been performed in [32]). The procedure can be iterated
until we obtain empty cohomology and the complete free differential algebra is built
(Va, ψα, A(p−1)

I ).

As proven in [25,26] for each superform cocycle ω
(p|0)
I there is a corresponding integral

form cocycle ω
(p|m)
I (Poincarè duality), and the best way to establish the isomorphism is

using the Hodge dual operator as

?ω
(pI |0)
I = ω

(n−pI |m)
I (31)

If we suppose that dω
(n−p|m)
I 6= 0, it follows

dω
(n−p|m)
I = d(?ω

(pI |0)
I ) = Σ(n−pI+1|m)

I (32)

for a (n− pI + 1|m) form Σ(n−pI+1|m)
I . We act again with the Hodge dual to obtain

d†ω
(pI |0)
I = ?d ? ω

(pI |0)
I = Λ(pI−1|0)

I (33)

Together with the closure dω
(pI |0)
I = 0 and the usual definition of the Laplace–Beltrami

operator ∆ = dd† + d†d, we can write Equation (33) as

ω
(pI |0)
I = d

(
∆−1Λ(pI−1|0)

I

)
(34)

where ∆−1 is a Green function of the Laplace–Beltrami differential ∆ = dd† + d†d. Therefore,
if Λ(pI−1|0)

I is non-vanishing, then ω
(pI |0)
I is exact, which contradicts the hypotheses that

ω
(pI |0)
I since it is a cocycle. This proof may not be applicable in general, but it can be

completed for super Lie algebras in the specific case where the differential is the CE
differential d and metric g in Equation (25) is invariant.

The integral cocycles denoted as ω
(n−pI |m)
I do not constitute a ring. However, they

form a module concerning the ring structure (29). This is evident from the Equation (35):

ω
(p|0)
I ∧ω

(p′ |m)
J = ∑

K
DK

I Jω
(p+p′ |m)
K (35)

When a differential cocycle ω
(p|0)
I is wedged with an integral cocycle ω

(p′ |m)
J , the

resulting cocycle is also integral. Therefore, it can be expanded using integer coefficients
DK

I J . It is important to note that the picture number remains unchanged while the form

numbers are added. Using the potentials A(p−1|0)
I for the differential cocycles, we can write

Equation (35) as follows:

dA(p−1|0)
I ∧ω

(p′ |m)
J = d

(
A(p−1|0)

I ∧ω
(p′ |m)
J

)
= ∑

K
DK

I Jω
(p+p′ |m)
K (36)
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which tells us that for non-vanishing coefficients DK
I J , the introduction of the potentials

A(p−1|0)
I allows us to remove all integral cocycles except one! Indeed, the integral form

ω
(pI |m)
I with the lowest form number cannot be obtained by the module structure (35),

and therefore the introduction of the potentials A(pI−1|0)
I is not enough to construct the

completely free differential algebra. Then, for the lowest form-number integral form, say
ω
(p0|m)
0 , we need a novel potential A(p0−1|m)

0 such that

ω
(p0|m)
0 = dA(p0−1|m)

0 (37)

Then, finally, the FIDA is spanned by the generators(
Va, ψα, A(pI−1|0)

I , A(p0−1|m)
0

)
(38)

There are some remarks:

1. Notice that among the integral cocycles, in the case of unimodular superalgebras, we
always have the highest form integral cocycle

?1 = ω(n|m) = Vol(n|m) (39)

which is closed and not exact. This class becomes trivial once we have introduced the
potentials A(pI−1|0)

I for the differential forms. Indeed, using Equation (27), we have

Vol(n|m) = d
(

A(p−1|0)
I ∧ ?ω

(p|0)
I

)
= d

(
A(p−1|0)

I ∧ω
(n−p|m)
I

)
(40)

for any I running over the set of independent cocycles. Then, having introduced all
potentials one has left with two cocycles: the trivial constant ω

(0|0)
0 and the lowest

integral form ω
(p0|m)
0 . It may happen that p0 = 0, and therefore ω

(p0|m)
0 = Y(0|m);

that is, it coincides with the product of all PCO’s. Trivializing the latter, introduce an
integral-form potential such that Y(0|m) = dA(−1|m), which can be used to check the
consistency between differential form and integral form cocycles.

2. There might be the possibility (see for example the OSp(1|2) discussed in the forth-

coming section) that A(p0−1|m)
0 is not enough to complete the FIDA. Indeed, if p0 + m

is even, the integral form ω
(p0|m)
0 is even and its potential A(p0−1|m)

0 is odd. Therefore,
the product

ω
(2p0−1|2m)
0 = A(p0−1|m)

0 ∧ω
(p0|m)
0 (41)

is a cohomology class. Indeed, dω
(2p0−1|2m)
0 = ω

(p0|m)
0 ∧ ω

(p0|m)
0 = 0 because of

Equation (16). Notice that we assumed that the picture carried by A(p0−1|m)
0 is different

from that carried by ω
(p0|m)
0 . Then, finally, we can remove ω

(2p0−1|2m)
0 by adding a

further potential A(2p0−2|2m)
0 . The role of those new potentials is not fully understood,

and it can be studied by analyzing its dynamics. A similar role has been played by the
B field associated with the 7-cocycle in D = 11 supergravity [1]. From a kinematical
point of view, the B field is introduced to construct the FDA but, it turns out to be
dynamically irrelevant.

1.3. Hilbert–Poincaré Series

One effective way to calculate cohomologies is by computing the Hilbert–Poincaré
series/polynomial. There are various methods for approaching this, including utilizing
localization theorems, the Molien–Weyl formula, or the enumeration of invariants under
certain isometry groups. By using these techniques, we can determine the number of
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independent cocycles, their form number, the picture number, and their parity. This serves
as a helpful checking strategy for explicit computations.

We briefly review the definition of Hilbert–Poincaré series and Poincaré polynomi-
als. For X a graded vector space with direct decomposition into p-degree homogeneous
subspaces given by X =

⊕
p∈Z Xp, we call the formal series

PX(t) = ∑
p
(dim Xp)(−t)p (42)

the Hilbert–Poincaré series of X. Notice that we have implicitly assumed that X is a of
finite type, i.e., its homogeneous subspaces Xp are finite-dimensional for every p. The
unconventional sign in (−t)p takes into account the parity of Xp, which takes values
in Z2 and it is given by p mod 2: this will be particularly useful in supergravity where
commuting and anticommuting variables are needed. If also dim X is finite, then PX(t)
becomes a polynomial PX [t], called the Poincaré polynomial of X. The evaluation of the
Poincaré polynomial at t = 1 yields the so-called Euler characteristics χX = PX [t = 1] =
∑p(−1)p dim Xp of X. If we assume that the pair (X, d) is a differential complex for X
a graded vector space and d : Xp → Xp+1 for any p, then the cohomology H•d (X) =⊕

p∈Z Hp
d (X) is a graded space, where bp(X) ≡ dim Hp

dR(X) is the p-th Betti number of
X. The Poincaré polynomial of X, which is defined by the Euler–Poincaré formula, can be
expressed as follows:

PX [t] = ∑
p

bp(M)(−t)p (43)

This polynomial serves as the generating function of the Betti numbers of X. Calculat-
ing PX [t] can be a challenging task, but there are techniques available to make it easier. For
example, localization methods or the Molien–Weyl formula can be used. The Molien–Weyl
formula, which is discussed in [37–40], can derive all Betti numbers by utilizing the “tele-
scopic nesting” property (for more information, see [32]). Although we do not provide the
details of the Hilbert–Poincaré series/polynomial computation in this paper, we present
results for various cases in the forthcoming sections. Even if the notion of Betti numbers is
originally related to the topology of a certain manifold or topological space, by extension,
in this paper we will call Betti numbers the dimensions of any cohomology space valued
in a field; in particular, we will call p-th Betti numbers of a certain Lie (super)algebra the
dimension of its Chevalley–Eilenberg p-cohomology group bp(g) = dim Hp

CE(g), so that
the Hilbert–Poincaré series of the Lie (super)algebra g is the generating function of its
Betti number

Pg(t) = ∑
p

bp(g)(−t)p. (44)

Notice that we used the notation P(t) on purpose: indeed, as we shall see, the
Chevalley–Eilenberg cohomology H•CE(g) is not in general finite dimensional for a generic
Lie superalgebra g. In our framework, it is convenient to introduce a second grading
(picture number). In that case, the space is said to be bigraded vector space X = ∑p,q∈Z Xp,q,
then the gradation X = ∑r Xr given by

Xr = ∑
p+q=r

Xp,q (45)

is called the induced total gradation. One can write a double Hilbert–Poincaré series

PX(t, t̃) = ∑
p,q
(−t)p(−t̃)qdimXp,q (46)
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which, in any case, allows easier identification of cohomological classes (see, e.g., [25,26]
where double Hilbert–Poincaré series have been used to select different type cohomologies).
In the forthcoming section, we use the second grading t̃ to count the picture.

2. Examples

In this section, we analyze in detail the following examples: a toy model, an Abelian-
group manifold, a non-Abelian group manifold, and a coset model. All these models
are interesting examples of the theory discussed above. The charge/scale assignment is
performed to preserve the Maurer–Cartan equations, or equivalently, to commute with
the differential d. In the Abelian cases, the assignment is t2 to bosonic 1-forms and t to
fermionic 1-forms, in non-Abelian cases, the assignment corresponds to the form number.
We refer to [25,32] for an extended and complete discussion on charge/scale assignments.

2.1. Toy Model Example

We consider the bosonic 1-forms T and b and the fermionic 1-form ψ with the Maurer-
Cartan equations

dT = −2T ∧ b + ψ2 , dψ = ψ ∧ b , db = 0 . (47)

(this example is taken from [10] page 802, example 2). It is a solvable super-Lie algebra. We
can proceed as follows: we introduce a 0-form φ, such that b = dφ. Then, we can rewrite
the MC as follows:

T = e2φ(dx + θdθ) , ψ = eφdθ , b = dφ . (48)

We have introduced the new coordinates (0-forms) x, θ which describes the superline. The
solvable super-Lie algebra can be thought of as the gauging of the scale invariance. The
gauge field of the scale invariance is φ.

The cohomology is easily computed in terms of x, θ, φ.

ω(0|0) = 1 , ω(1|0) = b ,

ω(0|1) = (dx + θdθ) δ′(dθ) , ω(1|1) = dφ ∧ (dx + θdθ) δ′(dθ) , (49)

but they can easily be reconverted in terms of the original

ω(0|0) = 1 , ω(1|0) = b , ω(0|1) = T δ′(ψ) , ω(1|1) = b ∧ T δ′(ψ) , (50)

with the relations

ω(0|0) ∧ω(1|1) = ω(1|0) ∧ω(0|1) (51)

Let us compute the Poincaré polynomial for the cohomology

P(t, t̃) = (1− t) + (t− t2)t̃ = (1− t)(1 + tt̃) (52)

where the first equation has the following meaning: (1 − t) is the cohomology of the
superforms ω(0|0) and ω(1|0), and (t− t2)t̃ is the cohomology of the integral forms ω(0|1)

and ω(1|1). The second equality means (1− t) is the cohomology of b times (1 + t̃), which
is the Poincaré polynomial of the CE cohomology of the supertranslation on a super line
(dx + θdθ, dθ), which scale as t2 and t [25,26].
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As is well known, there is another important operator to be used: the rising PCO Z.
This changes the picture, and it is written as Z = [d, Θ(ιD)], where D is the vector field
dual to ψ, namely ιDψ = 1. Then, we have

Z(ω(0|1)) = d
(

Θ(ιD)T δ′(ψ)
)
= d

( T
ψ2

)
=
−2t ∧ b + ψ2

ψ2 + 2
t ∧ b
ψ2 = 1 ,

Z(ω(1|1)) = d
(

Θ(ιD)b ∧ T δ′(ψ)
)
= d

( b ∧ T
ψ2

)
=

b ∧ ψ2

ψ2 = b , (53)

so, it correctly maps cohomologies into cohomologies. Notice that it reduces the picture,
but does not change the form number. In addition, we have to underline that in the
intermediate step, we generated some inverse forms (also known as Large Hilbert Space,
see for example [41]) and they are converted into conventional superforms.

Let us now discuss the FIDA. According to [10], in the presence of new cohomology
classes, one introduces new forms to cancel those cocycles. In particular, here we have
two new forms: a 0-form b = dφ, and we introduce the (−1|1) form A(−1|1) to cancel the
cocycle ω(0|1) as

dA(−1|1) = ω(0|1) . (54)

This implies also

d
(
−A(−1|1) ∧ b

)
= ω(1|0) ∧ω(0|1) = b ∧ T δ′(ψ) , (55)

We also have an additional interesting equation, which is

Z(dA(−1|1)) = dZ(A(−1|1)) = Z(ω(0|1)) = 1 (56)

The first equality follows from [d, Z] = 0. The second equality is the definition of
ddA(−1|1). The last equality is due to Equation (53). This implies

dZ(A(−1|1)) = 1 . (57)

Namely, even the constants are not in the cohomology.
Before proceeding, we still have to check whether there are other possible cocycles.

We note that A(−1|1) has odd parity (its d-variation is even), therefore there are no powers
of A(−1|1). In addition, it carries picture +1. One could explore the possibility that this is a
new picture, but Equation (53) seems to say that the picture is the same as of δ(ψ). This
implies that we cannot consider combinations of the form A(−1|1) ∧ δ(ψ). Since we have
already explored all possibilities independent of A(−1|1), we are left with

Ω = A(−1|1) ∧ (α(ψ) + β(ψ)b + γ(ψ)b + ρ(ψ)t ∧ b) (58)

where α(ψ), . . . , ρ(ψ) are polynomials of ψ. The closed forms turn out to be exact

ΩC = α′A(−1|1)ψ2 + 2β′A(−1|1)ψ2 ∧ b = d
(

α′A(−1|1)e−2φT + β′A(−1|1)ψ2
)

(59)

where α′, β′ are numbers. This implies that there are no other cohomology classes in the
present extended algebra. Thus, the free differential algebra is given by

T, ψ, φ, A(−1|1) (60)

We can still consider Z(A(−1|1)) as an inverse form and it automatically implies that
even the constants are exact.
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2.2. Abelian Group Manifold Example: U(1|1)

Let us consider the explicit example of U(1|1). The MC equations read

dU = 0, dW = −ψ+ψ−, dψ+ = Uψ+, dψ− = −Uψ− . (61)

The superform cohomology is given by

ω(0|0) = 1 , ω(1|0) = U , ω(p|0) = 0 , p > 1 (62)

This means that only the Abelian factor, whose associate MC form is U, is in the
cohomology of superforms. The cohomology among integral forms read

ω(p|2) = 0, p ≤ 1 , ω(1|2) = Wδ(ψ+)δ(ψ−) , ω(2|2) = UWδ(ψ+)δ(ψ−) , (63)

and the last expression corresponds to the Berezinian

Ber = U ∧W ∧ δ
(
ψ+
)
∧ δ
(
ψ−
)

. (64)

The two classes in ω(1|0) and ω(1|2) are dual, via the Berezinian complement duality

U ∧ ?U = Ber ; (65)

notice that they live in two distinct (though quasi-isomorphic) complexes. In the present
case, the Hilbert–Poincaré polynomial is given by

P(t, t̃) = (1− t)(1− tt̃2) (66)

Each term corresponds to Equations (62) and (63); in particular, we have (1 − t)
correspond to ω(0|0) and ω(1|0), while (1− t)(−tt̃2) = −tt̃2 + t2 t̃2 correspond to ω(1|2)

and ω(2|2).
Notice that by setting t̃ = 1 we recover the bosonic subgroup U(1)×U(1) and the

Hilbert–Poincaré polynomial is just the product of the polynomial for each Abelian factor.
On the other hand, if we set t̃ = t we obtain the polynomial (1− t)(1− t3) which is the
Poincaré polynomial of U(2), and finally setting t̃ = 0 we obtain (1− t) which is, according
to Fuks theorem [42], just the superform cohomology, and it corresponds to a U(1).

By following the constructive methods of FDAs (see, e.g., [10]), we have to introduce
new forms to the Lie superalgebra to trivialize the CE cohomology classes. In particular, in
order to compensate for the class ω(1|0) = U, one has to introduce an even (0|0)-form ω0
such that

dω0 = U . (67)

We should now re-evaluate the CE cohomology of the FDA generated by U, W, ψ1, ψ2, ω0.
Again, we will investigate both superforms and integral forms. It is not difficult to show
that the only non-trivial cohomology group among superforms is H0: the new closed
objects introduced by ω0 are of the form

ω(p+1|0) = ω0U ∧ω(p|0)(ψ+, ψ−
)

, ∀p ≥ 0 , (68)

where ω(p|0)(ψ+, ψ−) is a degree p polynomial in the variables ψ+, ψ−. If p = 0, one has

ω0U =
1
2

d
[
ω2

0

]
. (69)
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If p ≥ 1, by using the relations

ω0U ∧
(
ψ+
)p

=
1
p

d
[

ω0 ∧
(
ψ+
)p − 1

p
(
ψ+
)p
]

,

ω0 ∧U ∧
(
ψ−
)p

= − 1
p

d
[

ω0 ∧
(
ψ−
)p − 1

p
(
ψ−
)p
]

, ∀p ≥ 1 , (70)

together with Equations (61) and (67), it is easy to show that any superform as Equation (68)
is exact. This can be easily checked by modifying the Hilbert–Poincaré polynomial: the
introduction of the new form ω0 implies that

P(t, t̃) 7→ P(t, t̃)
(1− t)

= (1− tt̃2) (71)

Let us move to integral forms: the first important remark involves the class Ber. The
introduction of the (0|0)-superform ω0 implies that Ber is exact:

Ber = U ∧W ∧ δ
(
ψ+
)
∧ δ
(
ψ−
)
= d

[
ω0W ∧ δ

(
ψ+
)
∧ δ
(
ψ−
)]

. (72)

This fact has as a direct implication the failure of the “Berezinian complement duality”,
which then does not hold for the FDA g′. Analogously, notice that also the form Ber ⊗
ω

p
0 , p ≥ 0, is exact:

ω
p
0 U ∧W ∧ δ

(
ψ+
)
∧ δ
(
ψ−
)
=

1
p + 1

d
[
ω

p+1
0 W ∧ δ

(
ψ+
)
∧ δ
(
ψ−
)]

, ∀p ≥ 0 . (73)

Notice that adding ω0 still defines a cohomology space, since it does not involve the
form U (hence, the introduction of ω0 does not spoil the non-exactness). This indicates that
despite U and ιUBer being dual (in the sense of Equation (65)), they can not be compensated
by a single new term in the FDA. Moreover, it is not difficult to prove that ω0 does not
introduce new cohomology classes among integral forms and among superforms. Really,
the new closed objects introduced by ω0 (except for Equation (73)) are of the form

ω(2−p|2) = ω0U ∧ω(ι+, ι−)δ
(
ψ+
)
∧ δ
(
ψ−
)

, (74)

where ω(−p|0)(ι+, ι−) is a (formal) degree p polynomial in the variables ι+, ι−. The exact-
ness of terms as Equation (74) is easily seen by considering Equations (61) and (67) and
the relations

ω0U ∧ ι
p
+δ
(
ψ+
)
∧ δ
(
ψ−
)

= − 1
p

d
[

ω0ι
p
+δ
(
ψ+
)
∧ δ
(
ψ−
)
+

1
p

ι
p
+δ
(
ψ+
)
∧ δ
(
ψ−
)]

,

ω0U ∧ δ
(
ψ+
)
∧ ι

p
−δ
(
ψ−
)

=
1
p

d
[

ω0δ
(
ψ+
)
∧ ι

p
−δ
(
ψ−
)
− 1

p
δ
(
ψ+
)
∧ ι

p
−δ
(
ψ−
)]

. (75)

We now want to trivialize the remaining cohomology class among integral forms. We
introduce then a (0|2)-integral form η0|2 so that

dη0|2 = W ∧ δ
(
ψ+
)
∧ δ
(
ψ−
)

. (76)

This new generator does not introduce new cohomology classes. Since the new
generator η0|2 is commuting, we have to multiply the Hilbert–Poincaré polynomial with
1/(1− tt̃2), which cancels the remaining factor of Equation (71). In this way, we have
completed the FIDA for this model.
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2.3. Non-Abelian Group Manifold Example: OSp(1|2)

If we consider the super Lie-algebra osp(1|2), there are the MC forms Va, ψα with the
MC equations

dVa = ψγaψ + (V ∧V)a , dψα = Va(γ
aψ)α . (77)

We have shown that there are the following cocycles:

ω(0|0) = 1 , ω(3|0) =
1
2

ψγaψVa +
1
3!
(V ∧V ∧V) , (78)

ω(0|2) =
1
2
(V ∧V)abιγabιδ2(ψ) + δ2(ψ) , ω(3|2) =

1
3!
(V ∧V ∧V)δ2(ψ) . (79)

where we have displayed in the first line the superform cocycles and, in the second line, the
integral form cocycles. In addition, we have to recall that there are pseudoforms obtained
by acting with Z(α). There are two PCO Z(α) associated with the two directions in the
fermionic space. Then, we have

ω
(0|1)
(α)

= Z(α)(ω
(0|2)) , ω

(3|1)
(α)

= Z(α)(ω
(3|2)) , (80)

By consistency we have that Z(1)Z(2)ω
(0|2) = ω(0|0) and Z(1)Z(2)ω

(3|2) = ω(3|0). The
complete set of cohomologies is easily described by the Hilbert–Poincaré polynomial

P(t, t̃) = (1− t3)(1 + t̃)2 . (81)

Now, we can construct the FDA for the present model. At first, we introduce a 2-form
B(2|0) to cancel the cocycle ω(3|0). This has a twofold effect, it cancels ω(3|0), but it also
cancels ω(3|2) as follows

ω(3|2) = d
(

B(2|0) ∧ω(0|2)
)

(82)

We still have one additional cocycle to cancel: ω(0|2). This can be achieved by intro-
ducing the −1-form potential with picture number +2 as

dA(−1|2) = ω(0|2) (83)

to compensate for the cocycle ω(0|2) (which is the PCO Y). Notice that the ring/module
structure implies also

d
(

A(−1|2) ∧ω(3|0)
)
= ω(3|2) (84)

which means again that the volume form ω(3|2) is written in terms of the additional A(−1|2)

and the superform ω(3|0). This is consistent with Equation (82) since A(−1|2) ∧ ω(3|0) =
B(2|0) ∧ω(0|2) + d(exact). As discussed in Section 3.1, we have still one cocycle of the form

ω(−1|4) = A(−1|2) ∧ω(0|2) (85)

which requires a new potential B(−2|4) to complete the FIDA. Still, at the moment we do not
have a physical interpretation of those new ingredients, and they play a role algebraically.

In addition, we can act with the PCO Z(α) on A(−1|2) to obtain

d
[

Z(α)

(
A(−1|2)

)]
= ω

(0|1)
(α)

(86)
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Namely, the new forms

A(−1|1)
(α)

= Z(α)

(
A(−1|2)

)
, (87)

cancel the cocycle of the pseudo-form type, but they are not new ones. So, we conclude by
observing that the FIDA is generated by

Va , ψα , B(2|0) , A(−1|2), , B(−2|4) , (88)

A remark: Notice there is an additional form A(−1|0) = Z(1)Z(2)

(
A(−1|2)

)
, which has

an interesting behaviour of A(−1|0)
(α)

: d
[

Z(1)Z(2)

(
A(−1|2)

)]
= ω(0|0) = 1, which implies that

in the present case, even the constants are exact forms. This is in a complete analogy with
the superstring Hilbert space: the cohomology (vertex operators) of the BRST superstring
charge selects the physical states on the small Hilbert space, but in the Large Hilbert Space
(where the zero mode ξ0 is introduced) the BRST cohomology is empty. Not even the
constants are considered cohomology classes, if one admits inverse forms. Notice that, once
we have A(−1|0), every closed form can be made exact. In addition, we should observe that
A(−1|0) is an inverse form, and this is a completely new ingredient in the framework. Its
role has to be understood in this new framework.

2.4. Coset Manifold Example: OSp(1|4)/SO(1,3)

We consider the case with D = 4 and N = 1 described by the supercoset manifold
OSp(1|4)/SO(1, 3). It has four bosonic dimensions and four fermionic dimensions. The
vielbeins Va are obtained by the natural identification of Maurer–Cartan forms of osp(1|4)

Vαβ = γ
αβ
a Va + γ

αβ
ab ωab (89)

in terms of Dirac matrix decomposition where ωab is the spin connection of SO(1, 3). The
vielbeins and the spin connection satisfy the MC equations

Rab ≡ dωab + ωac ∧ω b
c = Va ∧Vb +

1
2

ψ̄γabψ ,

ρ ≡ dψ +
1
4

ωabγabψ =
i
2

Vaγaψ , (90)

Ta ≡ dVa + ωa
bVb =

i
2

ψ̄γaψ .

The supervielbeins ψα are in the Majorana representation of SO(1, 3).
The study of the cohomology classes of the coset OSp(1|4)/SO(1, 3) can be easily per-

formed knowing the Chevalley–Eilenberg classes of OSp(1|4) and those of SO(1, 3) (using
the Hochshild–Serre spectral sequence). We list them in terms of Poincaré polynomials

POSp(1|4)(t, t̃) = (1− t3)(1− t7)(1 + t̃4)

PSO(1,3)(t) = (1− t3)2 (91)

POSp(1|4)/SO(1,3)(t, t̃) =
(1− t4)(1− t8)(1 + t̃4)

(1− t4)2 = (1 + t4)(1 + t̃4)

where t counts the form degree, and t̃ counts the picture degree. For the last equation
we have used the theorem by Greub–Vanstone–Halperin which allows us to write the
Poincaré polynomial for coset spaces, but also we have studied at each picture number the
different cohomologies.
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Notice that in the case of the supergroup OSp(1|4), the factor (1 + t̃4) indicates that
there are two sets of classes: the superforms and the integral forms. Explicitly, we have the
four classes

ω(0|0) = 1 , ω(4|0) = ψ̄γabψVaVb + εabcdVaVbVcVd ,

ω(0|4) = δ4(ψ) + VaVb ῑγabιδ4(ψ) , ω(4|4) = εabcdVaVbVcVdδ4(ψ) . (92)

with the relation ω(0|0) ∧ ω(4|4) = ω(4|0) ∧ ω(0|4). They are all closed and not exact. In
particular the class ω(0|4) is to be identified with the PCO which can be used to compute
the action in superspace (see [43]). To simplify the description of the result it is convenient
to use a chiral/antichiral decomposition and we make the cosmological constant λ explicit

Rαβ ≡ dωαβ + ωαβεγδωδβ = λ2Vαβ
2 + λψαψβ ,

Rα̇β̇ ≡ dωα̇β̇ + ωα̇β̇εγ̇δ̇ωδ̇β̇ = λ2V α̇β̇
2 + λψ̄α̇ψ̄β̇ ,

ρα ≡ dψα +
1
4

ωαβεβγψγ = λVαα̇εα̇β̇ψ̄β̇ , (93)

ρα̇ ≡ dψ̄α̇ +
1
4

ωα̇β̇εβ̇γ̇ψ̄γ̇ = λVαα̇εαβψβ ,

Tαα̇ ≡ dVαα̇ + ωαγεγδVδα̇ + ωα̇γ̇εγ̇δ̇V δ̇α = ψ̄α̇ψα .

By setting λ = 0, we reproduce the flat MC equations and the Lorentz subgroup decouples
from the MC equations (actually it plays a role as a semidirect product of siso(1, 3) of the
super-Poincaré). Notice that the spin connection ωab is split into a self-dual and anti-self
dual part ωαβ, ωα̇β̇. In the same way, we have the self-dual and anti-self dual curvatures

Rαβ, Rα̇β̇ and the combinations Vαβ
2 and V α̇β̇

2 . Using the cosmological constant, we can
redefine the scaling of the different coordinates as [V] = t2, [ψ] = t, [ω] = t0 and [λ] = t−2.
This scaling commutes with Equation (93). Now we can express the cohomology classes on
a new basis as follows

ω(0|0) = 1 , ←→ 1

ω(4|0) =
(

Vαβ
2 ψαψβ + V α̇β̇

2 ψ̄α̇ψ̄β̇

)
+ λV4 , ←→ t6 (94)

ω(0|4) = λ−1δ4(ψ) +
(

Vαβ
2 ιαιβδ4(ψ) + V α̇β̇

2 ῑα̇ ῑβ̇δ4(ψ)
)

, ←→ t2 t̃4

ω(4|4) = V4δ4(ψ) . ←→ t8 t̃4

The constant λ is placed in such a way as to respect the ring structure ω(4|0) ∧ω(0|4) = ω(4|4).
Notice that compared with the flat case, only two classes of each sector (superforms, and
integral forms) survive the curvature of the space. In particular, the cocycle ω

(3)
2 discussed

above disappears from the cohomology. This is consistent with the fact that the cohomology
discussed is the equivariant Chevalley–Eilenberg cohomology of the coset space.

In the present case, the FIDA is easily built. We have to add an anticommuting (3|0)-
form A(3|0) which scales as t6, and an anticommuting (0|4)-form A(−1|4) which scales as
t2 t̃4, such that

dA(3|0) = ω(4|0) , dA(−1|4) = ω(0|4) (95)

and in turn, we also have to add two commuting potentials B(2|0) and B(−2|4), which
scale as t8 and t4 t̃8. This renders the cohomology trivial as can be seen by using the
Poincaré polynomial

PFIDA
OSp(1/4)/SO(1,3) = (1 + t6)(1 + t2 t̃4)

(1− t6)

(1− t12)

(1− t2 t̃4)

(1− t̃4t8)
= 1 (96)



Universe 2023, 9, 376 17 of 27

The complete analysis of psuedoforms will be deferred to future publications.

3. Hodge Dual Operator, Dual Cocycles and Harmonic Cocycles
3.1. D = 4

The computation for the cocycles has been discussed and performed in [32]. We use
here the same notations and conventions.

Let us use the Hodge dual construction: given a (p|0)-form in the superspace R(4|4),
ω(p)(V, ψ, ψ̄). We can calculate its Hodge dual by the formula

?ω(p)(V, ψ, ψ̄) = #
∫

ei(Vαβεαβεα̇β̇σββ̇+ψαεαβbβ+ψ̄α̇εα̇β̇ b̄β̇)
ω(p)(σ, b, b̄)[d4σd2bd2b̄] (97)

where σ, b, b̄ are auxiliary variables needed to define the Hodge dual operation on a given
form. The coefficient # is computed by choosing the signature of the superspace, requiring
the idempotency of the star operation (see [27,28]) and it is irrelevant for the present
purposes. Then, we have

ω
(4|4)
0 = ?1 = V4δ4(ψ) , ←→ t8 t̃4

ω
(1|4)
1 = ?ω

(3)
1 = Vαα̇

3 ια ῑα̇δ4(ψ) , ←→ − t4 t̃4

ω
(0|4)
2 = ?ω

(4)
2 = Vαβ

2 ιαιβδ4(ψ) , ←→ t2 t̃4

ω
(0|4)
3 = ?ω

(4)
3 = V α̇β̇

2 ῑα̇ ῑβ̇δ4(ψ) , ←→ t2 t̃4

ω
(−1|4)
4 = ?ω

(5)
4 = Vαα̇ια ῑα̇δ4(ψ) , ←→ − t̃4

ω
(0|4)
5 = ?ω

(4)
5 = δ4(ψ) , ←→ t̃4 , (98)

where ια and ῑα̇ are the derivatives of the Dirac delta’s δ4(ψ), with respect to their arguments.
The scale t̃ is assigned to every single delta δ(ψ). Notice that all forms are closed except
ω
(−1|4)
4 which gives

dω
(−1|4)
4 = ψαψ̄α̇ια ῑα̇δ4(ψ) = 4 δ4(ψ) = 4 ω

(0|4)
5 (99)

by integration by parts. Therefore, cohomology in that sector is represented by the
Poincaré polynomial

PN=1(t) = (2t2 − t4 + t8)t̃4 (100)

which is exactly the Poincaré dual expression to

PN=1(t) = (1− t4 + 2t6) (101)

Notice that, differently from the usual cohomologies, the Poincaré duality cannot be
established in the same complex of differential forms, but it has to be searched into the
complex of integral forms. The overall t̃4 stands for the picture equal to 4 of each term.

The complete Poincaré polynomial has the following form:

PN=1(t) = (1− t4 + 2t6) + (2t2 − t4 + t8)t̃4 (102)

One might also consider a partial Hodge dualization as follows:

?Cω(p)(V, ψ, ψ̄) = #
∫

ei(Vαβεαβεα̇β̇σββ̇+ψαεαβbβ)
ω(p)(σ, b, ψ̄)[d4σd2b] (103)

where only the dual of ψ is considered. ?C stands for chiral Hodge dual.
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In that case, we have the following expressions

ω
(4|2)
0 = ?C1 = V4δ2(ψ) , ←→ t8 t̃2

ω
(3|2)
1 = ?Cω

(3)
1 = Vαα̇

3 ιαψ̄α̇δ2(ψ) , ←→ − t6 t̃2

ω
(0|2)
2 = ?Cω

(4)
2 = Vαβ

2 ιαιβδ2(ψ) , ←→ t2 t̃2

ω
(4|2)
3 = ?Cω

(4)
3 = V α̇β̇

2 ψ̄α̇ψ̄β̇δ2(ψ) , ←→ t6 t̃2

ω
(1|2)
4 = ?Cω

(5)
4 = Vαα̇ιαψ̄α̇δ2(ψ) , ←→ − t2 t̃2

ω
(0|2)
5 = ?Cω

(4)
5 = δ2(ψ) , ←→ t̃2 , (104)

Notice that we have computed the different cocycles with respect to only the variables
V and ψ. Accordingly, we have computed the form degree and the picture number.

By computing the closure of the different expressions we obtain

dω
(4|2)
0 = 0 ,

dω
(3|2)
1 = ω

(4|2)
3 ,

dω
(0|2)
2 = ω

(1|2)
4 ,

dω
(4|2)
3 = 0 ,

dω
(1|2)
4 = 0 ,

dω
(0|2)
5 = 0 , (105)

and this implies that there are only two cohomology classes ω
(4|2)
0 and ω

(0|2)
5 (the chiral

volume form and the chiral PCO). This can be expressed in terms of the Poincaré polynomial
as follows:

PN=1(t) = 2(1 + t8)t̃2 (106)

where factor 2 stands for the chiral and the antichiral representations.

3.2. D = 6

The computation for the cocycles has been discussed and performed in [32]. We use
here the same notations and conventions.

In this section, we introduce the Hodge dual operator for the flat supermanifold (6|16)
underlying the model N = (4, 0). We recall the supervielbeins (Vαβ, ψA

α ) are respectively
anticommuting and commuting 1-forms and we introduce the Hodge dual operator ?.
For that, we need a metric on the supermanifold space (η[αβ][δγ], η

αβ
AB) to construct scalar

products, then one needs dual variables (σαβ, bA
α ) (in the same representation of (Vαβ, ψA

α )),
and finally, given a form ω(V, ψ), we set

?ω(V, ψ) = #
∫

ω(σ, b)ei(σαβη[αβ][δγ]Vδγ+bA
α η

αβ
ABψB

β )[d6σd16b] (107)

where ω(σ, b) is the original form ω(V, ψ) where we substitute the supervielbeins in terms
of the dual variables. The coefficient # is needed to implement the idempotency: ?2 = 1.

In the vectorial representation (since it is an SO(6) representation), we have ηab using
the vector indices a, b = 1, . . . , 6, or written in the spinorial representation (antisymmetric
tensor of SU(4)), it reads η[αβ][δγ] = εαβδγ. In the spinorial representation for ψA

α however,
there is no such metric. This is due to the well-known properties of the SU(4) group.
Therefore, η

αβ
AB does not exist. This means the Hodge dual operation ? is not invertible,

and therefore it is not well-defined. However, we can restrict the action of the Hodge dual
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operator on the bilinear expressions in the spinors, where we can define a well-defined
action of the Hodge dual operation.

Note that since the R-symmetry is Usp(4) for N = (4, 0) and SU(2) for N = (2, 0),
the only invariant expressions are built with the antisymmetric tensors CAB or εABCD (in
the case of USp(4)). Since only the spinor fields ψA

α carry those indices, we have that the
bilinear expressions are always antisymmetric in the spinorial indices α, β, . . . . Therefore,
we can set the Hodge dual operation of those bilinears as follows (that can be also deduced
by an integral formula as above by introducing dual variables bαβγ)

?
(

ψ
[A
[α

ψ
B]
β]

)
= V6εαβγδCARCBSι

γ
RιδSδ(16)(ψ) (108)

which is a (4|16) integral form. Notice that the contraction ιαA = ∂/∂ψA
α removes the

one-degree form, and it carries the opposite representation with respect to ψA
α . The Hodge

dual is defined such that

ψ
[R
[γ

ψ
S]
δ]
∧ ?
(

ψ
[A
[α

ψ
B]
β]

)
= εαβγδCARCBSV6δ(16)(ψ) (109)

where the integral form ω
(6|16)
0 = V6δ(16)(ψ) is the Berezinian of the supermanifold. De-

composing the supervielbeins along the curved coordinates (xm, θA
µ ) of the supermanifold,

we have

Va = Ea
mdxm + Ea,µ

A dθA
µ , ψA

α = EA
α,mdxm + EA,µ

α,B dθB
µ , (110)

where (Ea
m, Ea,µ

A , EA
α,m, EA,µ

α,B ) are superfields in the coordinates (xm, θA
µ ) and

ω
(6|16)
0 = V6δ(16)(ψ) = Sdet

(
Ea

m Ea,µ
A

EA
α,m EA,µ

α,B

)
d6xδ(16)(dθ) . (111)

The matrix in the superdeterminant is a supermatrix with dimension (6+ 16)× (6+ 16). So,
the definition of the Hodge dual corresponds to the definition of the Berezinian complement.
Given a superform ω(p), its Hodge dual is an integral form ω(6−p|16) = ?ω(p) such that

ω(p) ∧ ?ω(p) = F(xm, θA
µ )V

6δ(16)(ψ) (112)

where F(xm, θA
µ ) = ||ω(p)||2.

Let us now consider the case N = (2, 0) and N = (4, 0) with the classes ω
(4)
1 , ω

(3)
2 , ω

(6)
3

and ω
(7)
4 computed in [32]. Their Hodge duals read

ω
(2|16)
1 = ?ω

(4)
1 =

1
6!

V6εABCDηab ῑ[AγaιB] ῑ[CγbιD]δ
16(ψ) ,

ω
(3|16)
2 = ?ω

(3)
2 =

1
5!

εabcde f VbVcVdVeVfCAB ῑ[AγaιB]δ
16(ψ) ,

ω
(0|16)
3 = ?ω

(6)
3 = δ16(ψ) , (113)

ω
(−1|16)
4 = ?ω

(7)
4 = VaCAB ῑ[AγaψB]δ

16(ψ) ,

ω
(6|16)
0 = ?ω

(0)
0 = V6δ16(ψ) .

The indices over the new integral forms denote the form degree and the picture
number. Now, we can apply the differential operator d and we use the MC equations
to obtain

dω
(2|16)
1 = ω

(3|16)
2 , dω

(3|16)
2 = 0 ,

dω
(−1|16)
4 = ω

(0|16)
3 , dω

(0|16)
3 = 0 . (114)
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In the case of N = (2, 0), the invariant ω
(2|16)
1 = 0 and the invariant ω

(3|16)
2 is a

cohomology class in the integral form sector, together with the class ω
(6|16)
0 given in

Equation (110).
The polynomial PN=(2,0) is

PN=(2,0) = −(1− t4)t8 t̃16 (115)

where t̃16 counts the picture number of the integral forms. The term t12 t̃16 corresponds to
the Berezinian ω

(6|16)
0 while −t8 t̃16 corresponds to the class ω

(3|16)
2 . The signs respect the

statistic of the cohomology classes.
Finally, notice that acting with the Hodge dual on Equation (114), we had

? d ? ω
(4)
1 = ω

(3)
2 , ? d ? ω

(3)
2 = 0 ,

? d ? ω
(7)
4 = ω

(3)
3 , ? d ? ω

(3)
3 = 0 . (116)

Combining these equations with the closure of the cocycles, and using the conventional
Laplace–Beltrami ∆ = dd† + d†d and d† = ?d? we obtain

∆ω
(4)
1 = ω

(4)
1 , ∆ω

(3)
2 = ω

(3)
2 ,

∆ω
(6)
3 = ω

(7)
4 , ∆ω

(7)
4 = ω

(7)
4 , (117)

In the case N = (2, 0), since ω
(4)
1 = 0, there are two cohomology classes ω3

2 and ω
(3|16)
3

and they satisfy

∆ω
(3)
2 = 0 , ∆ω

(3|16)
3 = 0 . (118)

This shows that the cocycles that are cohomology classes are also harmonic in the
usual sense, while those classes that are not in the cohomology are eigenforms of the
Lapalce-Beltrami operator with a non-zero eigenvalue. This corresponds to the Hodge
theorem for superforms.

In the present context, in the case of N = (2, 0) and N = (2, 2), we can apply the
procedure to identify new forms to add to the theory. Again, we use the conventions and
the results of [32].

In the case of N = (2, 0), we have the form cocycles ω
(0)
0 , ω

(3)
2 , ω

(6)
3 , ω

(7)
4 and the inte-

gral cocycles ω
(3|16)
2 , ω

(0|16)
3 , ω

(−1|16)
4 , ω

(6|16)
0 . Computing the cohomology, we are left with

ω
(0)
0 , ω

(3)
2 , ω

(3|16)
2 , ω

(6|16)
0 (119)

represented by the polynomial (putting together forms and integral forms)

PN=(2,0)(t) = (1− t4)(1− t8 t̃16)

Now, to follow the FDA technique, we cancel the ω
(3)
2 cocycle by adding the A(2) form

(which scales as t4, according to our conventions) such that

dA(2) = ω
(3)
2 , (120)

Notice that the newborn A(2) carries no representation of the R-symmetry and Lorentz
group. It is a 2-form and therefore it is a commuting field with respect to the wedge product.
Notice that we can form wedge products between forms and integral forms, and we can
immediately observe that
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d
(

A(2) ∧ω
(3|16)
2

)
= ω

(6|16)
0 , (121)

namely, also the cohomology class ω
(6|16)
0 is trivialized! This is rather striking: the

Berezinian class ω
(6|16)
0 becomes an exact form, and it drops out from the cohomology. No-

tice that also the scales match correctly: A(2) ∧ω
(3|16)
2 scales as t12 t̃16 as the Berezinian ω

(6|16)
0 .

Did we completely trivialize the cohomology? Let us check it by using the Poincaré
polynomial. To compute the polynomial for the FDA, we just divide PN=(2,0)(t) by the
contribution of A(2), namely

PN=(2,0)(t) −→ PFDA
N=(2,0)(t) =

(1− t4)(1− t8 t̃16)

(1− t4)
= (1− t8 t̃16) (122)

which clearly shows that the cohomology related to (1− t4) is removed, but there is still a
remainder. Indeed, we still have one cohomology class around: ω

(3|16)
2 . Let us follow the

FDA prescription and introduce the integral form A(2|16) with scales t8 t̃16 such that

dA(2|16) = ω
(3|16)
2 , (123)

which finally cancels the last cohomology class. Notice that it seems the natural ingre-
dient: it is a 2-integral form to be compared with the conventional 2-form introduced
in Equation (120), but they are not related. This is crucial, since it appears that the new
FDA requires new ingredients never seen before. Finally, observe that A(2|16) is again a
commuting, invariant tensor, and therefore we can apply the computation of the Poincaré
polynomial as above

PFDA
N=(2,0)(t) −→ PFIDA

N=(2,0)(t) =
(1− t8 t̃16)

1− t8 t̃16)
= 1 (124)

which signifies that we have trivial cohomology and we were able to construct a complete
and consistent FDA. Notice that it is also true

d
(

A(2|16) ∧ω
(3)
2

)
= ω

(3|16)
2 , (125)

but that implies that
(

A(2|16) ∧ω
(3)
2

)
differs from

(
A(2) ∧ω

(3|16)
2

)
by exact terms, indeed

we have that

A(2|16) ∧ω
(3)
2 + A(2) ∧ω

(3|16)
2 = d

(
A(2) ∧ A(2|16)

2

)
(126)

as a consistency check.
Two important remarks:
(1) Notice that we have treated A(2) as a commuting quantity. Indeed, we have

multiplied the Poincaré polynomial by 1/(1− t4). The expansion of which leads to

1
1− t4 = 1 + t4 + t8 + t12 + . . . , ←→ 1 , A(2) , A(2) ∧ A(2) , A(2) ∧ A(2) ∧ A(2) . . . (127)

which implies that we have to take any power of A(2). That can be understood if we admit
that this form is expanded on the basis of superforms that allow any power of them.

(2) What about A(2|16)? Again, we have adopted the pragmatic point of view: we have
considered as a commuting quantity, and therefore we admit any power of it. Nevertheless,
this clashes with the picture number. It carries picture number 16 and therefore, we
cannot admit any more powers of it. We can conceive a way out by introducing new
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commuting spinorial 1-form η in the game as in Fré-D’Auria algebra and the related
pictures δ(η) [1,33,34].

3.3. D = 11

The computation of cocycles for 11d supergravity can be done using the Molien–Weyl
formula and it gives 4

P11d(t) = 1 + t6 (128)

where the t6 stands for ω(4) = ψ̄ΓabψVaVb. There is only one cocycle in the present sector
and the result is consistent with the literature [1]. To construct the FDA, we have to add a
3-form A(3), which scales with t6 such that

dA(3) = ω(4) (129)

Then the resulting Poincaré polynomial becomes

P11d(t, t2) = 1 + t6 −→ PFDA
11d (t, t2) = (1 + t6)(1− t6) = 1− t12 (130)

This means that the FDA is not complete. Indeed, we see immediately, that there is a
new cohomology class

ω(7) = A(3) ∧ω
(4)
3 − ψ̄Γa1 ...a5 ψVa1 . . . Va5 (131)

To cancel that class, one needs to introduce a further commuting potential B(6) such
that dB(6) = ω(7). Therefore, the final expression for the Poincaré polynomial is

PFDA
11d (t, t2) = (1 + t6)(1− t6) = 1− t12 −→ PFDA

11d (t, t2) =
(1 + t6)(1− t6)

1− t12 = 1 (132)

Notice that in this expression, the factor 1/(1− t12) takes into account the infinite
series of the powers (B(6))k.

The relevant Fierz identity is

(ψ̄Γabψ)(ψ̄Γaψ) = 0 . (133)

and bi-spinor decomposition is

ψ∧ψ̄ =
1
32

(
Γa(ψ̄Γaψ)− 1

2
Γab(ψ̄Γabψ) +

1
5!

Γa1 ...a5(ψ̄Γa1 ...a5 ψ)

)
(134)

We recall that there are two interesting forms written in terms of 1-forms ψα and
vielbeins Va:

ω(4) = ψ̄ΓabψVaVb , ω(7) = ψ̄Γa1 ...a5 ψVa1 . . . Va5 , (135)

They satisfy the following equations

dω(4) = 0 , dω(7) = −1
2

ω
(4)
3 ∧ω

(4)
3 . (136)

The second equation is a consequence of the Fiersz identities

ψ̄Γa1 ...a5 ψψ̄Γa5 ψ = ψ̄Γ[a1a2
ψψ̄Γa3a4]

ψ
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Let us consider the Hodge dual of those superforms

ω(7|32) = ?ω(4) = Va1 . . . Va9 εa1 ...a9b1b2 ῑΓb1b2 ιδ32(ψ) ,

ω(4|32) = ?ω(7) = Va1 . . . Va6 εa1 ...a6b1 ...b5 ῑΓb1 ...b5 ιδ32(ψ) , (137)

where ῑΓb1b2 ι = δ
δψ̄

Γb1b2 δ
δψ are the derivatives with respect to the argument of the delta

functions. Therefore, they act by integration by parts. In particular, if we compute the
wedge product of ω4 with ?ω4 (and analogously for ω7), we obtain the volume form

ω(4) ∧ ?ω(4) = V1 . . . V11δ(ψ1) . . . δ(ψ32) , ω(7) ∧ ?ω(7) = V1 . . . V11δ(ψ1) . . . δ(ψ32) . (138)

Notice that the first one has degrees (7|32) (due to the presence of nine vielbeins and
two derivatives), while the second one has degree (4|32). Notice that both are closed

d ? ω(4) = 9 (ψ̄Γa1 ψ)Va2 . . . Va9 εa1 ...a9b1b2 ῑΓb1b2 ιδ32(ψ)

= 9 tr(Γa1 Γb1b2)Va2 . . . Va9 εa1 ...a9b1b2 δ32(ψ) = 0 ,

d ? ω(7) = 6 Va2 . . . Va6 εa1 ...a6b1 ...b5 ῑΓb1 ...b5 ιδ32(ψ)

= 6 tr(Γa1 Γb1 ...b5)Va2 . . . Va9 εa1 ...a6b1 ...b5 δ32(ψ) = 0 (139)

and they vanish because of the trace between the gamma matrices. On the other hand, if
we compute the Hodge dual of dω(7), we obtain

?dω(7) = −1
4

Va1 . . . Va7 εa1 ...a7b1 ...b4 ῑΓb1b2 ιῑΓb3b4 ιδ32(ψ) (140)

Using the Fiersz identities, we can recast the derivatives as follows:

?dω(7) = −1
4

Va1 . . . Va7 εa1 ...a7b1 ...b4 ῑΓb1b2b3b4b5 ιῑΓb5 ιδ32(ψ) (141)

Then we can compute the differential

d ? dω(7) = −7
4

ψ̄Γa1 ψ . . . Va7 εa1 ...a7b1 ...b4 ῑΓb1b2b3b4b5 ιῑΓb5 ιδ32(ψ) (142)

The integration by part produces two different structures: one vanishes because of the
usual trace of gamma matrices, but the second structure gives the expression

d ? dω(7) = −7
2
? ω(7) =⇒ ? d ? dω(7) = −7

2
ω(7) (143)

then finally it leads (together the vanishing of d ? ω7 = 0, to the equations

∆ω(7) = −7
2

ω(7) , ∆ω
(4)
3 = 0 . (144)

The second equation follows from dω4 = 0. Then, we found that those forms satisfy
a (massive) Laplace–Beltrami equation(as discussed in [44]. This is an indication that a
Hodge theory may be established for supermanifolds).

One question arises. Can one compute the dual forms from the Molien-Weyl formula?
For that, we need to change the plethystic exponential for ψ as follows (for details see [32])

PE
[

1
t

χ32(z1, . . . , z5)

]
= t̃32

32

∏
i=1

1
(1− χ32,i1/t)

, (145)
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where the parameter t counts the degree of forms. This is to count the number of derivatives
ιDi (which technically is the contraction along an odd vector field Di) acting on

∧32
i=1 δ(ψi).

The factor t̃32 counts the picture number. Thus, we finally obtain the result

P?11d(1/t, u) =
(1− u)

(
u
(

1− u4

t6 − u6+u4+u2

t4 − u8+u4+1
t2 +

(
u2 + u + 1

)(
u6 + u3 + 1

)
u + 1

))
1

1−t4

which leads to

P?11d(1/t, t2) = −(1 + t6)t16 t̃32 = −(t16 + t22)t̃32 (146)

which represent the two classes

ω(7|32) = ?ω(4) = Va1 . . . Va9 εa1 ...a9b1b2 ῑΓb1b2 ιδ32(ψ)

ω(11|32) = ?1 = V1 . . . V11δ32(ψ) . (147)

The overall sign in Equation (146) correctly detects the parity of those classes. Note
that it does not appear in the cohomology the dual form ?ω(7). Indeed, it can be easily
shown that this form is exact

?ω(7) = dω(3|32) ,

ω(3|32) = Va1 . . . Va7 εa1 ...a7b1 ḃ4
ῑΓb1b2 ιῑΓb3b4 ιδ32(ψ) (148)

Then, finally, we can compute the FDA of 11d superspace in both sectors: superforms
and integral forms. The complete Poincaré polynomial is

P11d(t) = (1 + t6)− (1 + t6)t16 t̃32 = (1 + t6)(1− t16 t̃32) (149)

Therefore, following the prescription of the FDA, we have to add the 3-form A(3)
6 and

the 6-form B(6)
12 such that

dA(3)
6 = ω

(4)
6

dB(6)
12 = ω

(7)
12 − A(3)

6 ∧ω
(4)
6 (150)

which implies, at the level of the Poincaré polynomial

P11d(t) = (1 + t6)(1− t16 t̃32) −→ PFDA
11d (t) = (1− t16 t̃32) (151)

Therefore we need to compensate the last cocycle by adding an integral potential. We
add the (6|32) form such that

dB(6|32) = ω(7|32) (152)

Then, the spectrum of the FDA is given by A(3), B(6), B(6|32).
The 7-cocycle ω(7) plays a crucial role in the analysis of p-branes, making it intriguing

that it arises solely from algebraic analysis, as demonstrated here. In their work cited
as [1], the authors aimed to incorporate B(6) as an original degree of freedom of the
theory. However, it was found that its Lagrangian formulation, as presented in [1], is not
appropriate. Its significance can only be grasped from a non-perturbative perspective, such
as in its coupling to M5 branes.

On the other hand the B(6|32) might jeopardize the interpretation introducing new
degrees of freedom (DOFs). However, if we set

F(4) = dA(3) = ?F(7|32) = ?dB(6|32) (153)
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we finally related the DOFs of the four form F(4) of the CJS supergravity with those of the
new integral potential B(6|32). The question of whether this equation can be derived by an
action principle is not known at the moment, but the existence of pseudoforms in picture
16 might be crucial. To verify Equation (153), we list the components of F(4)

F(4) = F(4)
a1 ...a4 Va1 . . . Va4 + F(4)

a1 ...a3α1 Va1 . . . Va3 ψα1 + · · ·+ F(4)
α1 ...α4 ψα1 . . . ψα4 (154)

while for the dual form

F(7|32) =
(
Fa1 ...a7 Va1 . . . Va7 +F α1

a1 ...a8 Va1 . . . Va8 ια1+

. . . +F α1 ...α4
a1 ...a11 Va1 . . . Va11 ια1 . . . ια4

)
δ(32)(ψ) (155)

Imposing Equation (153) we can fix the components of F(7|32) in terms of those of F(4)

as follows

Fa1 ...a7 = ε b1 ...b4
a1 ...a7 F(4)

b1 ...b4

F α
a1 ...a8

= ε b1 ...b3
a1 ...a8 CαβF(4)

b1 ...b3β

...
...

...

F α1 ...α4
a1 ...a11 = εa1 ...a11 Cα1β1 . . . Cα4β4 F(4)

β1 ...β4
(156)

where Cαβ is the charge conjugation matrix.
Equation (153) can be derived by an action as follows

S =
∫
M(11|32)

(
1
2

F(7|32) ∧ ?F(7|32) − F(4) ∧ F(7|32) + L(11|0)(V, ψ, A(3)) ∧Y(0|32)
)

(157)

whereM(11|32) is the supermanifold on which we integrate the Lagrangian L(11|0)(V, ψ, A(3))
(given in [10] without the zero form fa1 ...a4) and Y(0|32) is the PCO operator which allows
us to convert the Lagrangian into an integral form. The PCO Y(0|32) depends upon the
vielbein and the gravitino field ψ. It is closed and not exact. Introducing the 3-form A(3),
we can compute the equations of motion with respect to A(3) and F(7|32) as follows

F(7|32) − ?F(4) = 0

dF(7|32) +

(
δ

δA(3)
L(11|0)(V, ψ, A(3))

)
∧Y(0|32) = 0 . (158)

where the derivative with respect to A(3) is the Euler-Lagrangian derivative. Since Y(0|32)

is independent of A(3) and, therefore, it can be extracted from the derivatives. In addition,
since Y(0|32) is closed, we can perform integration by parts in computing the functional
derivatives of the action. The first equation implies the identifications of the d.o.f.’s of F(4)

with those of F(7|32). Inserting this result into the first equation, we obtain

d ? F(4) +

(
δ

δA(3)
L(11|0)(V, ψ, A(3))

)
∧Y(0|32) = 0 . (159)

Acting the inverse PCO Z (which is also closed and not exact), we obtain

d Z
(
?dA(3)

)
+

δ

δA(3)
L(11|0)(V, ψ, A(3)) = 0 . (160)

(at the moment assume that Z acts only on Y(0|32), but there should be more difficult cases).
The expression is an (8|0) form. We notice that with the integral form F(7|32), the auxiliary
zero form fa1 ...a4 is no longer needed.
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4. Conclusions and Outlook

In the present work, we have completed the analysis of the supergravity cocycles
for different models extending the FDA beyond the superforms to integral forms and
pseudoforms. We give general arguments of the structure of the FIDA, but we do not
provide a complete mathematical analysis which might be very interesting along the lines
of [17]. We use the Hodge dual operator to complete some of the results obtained in
previous work [32], and we also plan to work the pseudo-form sector for those theories.
A dual construction along [45–47] will be certainly interesting in order to develop the
geometrical understanding of the underlying supergeometry and application to more
general supermanifolds is a target for future works.
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Notes
1 In the original paper [1], R. D’Auria and P. Fré referred to commutative semi free differential algebras as “Cartan integrable systems”.

In nowadays literature, the semi free differential algebras used in supergravity are misnamed as “FDA”s. We keep the same
terminology in the present work.

2 Under a generic infinitesimal transformation ψα → ψα + ∑β 6=α δΛα
βψβ , where δΛα

β are the infinitesimal parameters of the
transformation, δ(ψα) transforms as

δ(ψα)→ δ
(
ψα + ∑

β 6=α

δΛα
βψβ

)
= δ(ψβ) + ∑

β 6=α

δΛα
βψβδ′(ψα) + . . .

where the Taylor expansion is used. The formal Taylor series is taken as a definition for the transformation properties of a single
delta and, since the derivatives of delta are easy to deal with, there is a consistent method to handle with single-delta expressions
(see for example [36]).

3 Expressing ω
(pI |0)
I in terms of the potentials A(pI−1|0)

I , we have d(A(pI−1|0)
I ∧ dA(pJ−1|0)

J − ∑K C̃K
I J A(pI+pJ−1|0)

K ) = 0, which

implies that A(pI−1|0)
I ∧ dA(pJ−1|0)

J = ∑K C̃K
I J A(pI+pJ−1|0)

K + f I Jω(pI+pJ−1|0), but if all ω(pI+pJ−1|0) are replaced by dA(pI+pJ−2|0),
we can redefine the contributions on the left hand side of Equation (30) by exact terms.

4 The computation is presented in a separate paper [32].
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