Two-Dimensional Six-Body van der Waals Interactions
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Smith, E.B.; Tindell, A.R. Faraday Discussions of the Chemical Society: Van der Waals molecules. R. Soc. Chem. 1982, 73, 19–31. [Google Scholar]
- Johnston, D.C. Advances in Thermodynamics of the van der Waals Fluid; Morgan & Claypool Publishers: Kentfield, CA, USA, 2014. [Google Scholar]
- London, F. The general theory of molecular forces. Trans. Faraday Soc. 1937, 33, 8. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. Influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. Influence of retardation on the London-van der Waals forces. Nature 1946, 158, 787–788. [Google Scholar] [CrossRef]
- Li, W.; Tanner, P.J.; Gallagher, T.F. Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 2005, 94, 173001. [Google Scholar] [CrossRef]
- Dobson, J.F.; Savin, A.; Angyan, J.G.; Liu, R.F. Spooky correlations and unusual van der Waals forces between gapless and near-gapless molecules. J. Chem. Phys. 2016, 145, 204107. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- McGuire, E.J. Completeness in configuration-interaction calculations. Phys. Rev. A 1986, 33, 1492. [Google Scholar] [CrossRef]
- Milling, A.; Mulvaney, P.; Larson, I. Direct Measurement of Repulsive van der Waals Interactions Using an Atomic Force Microscope. J. Colloid Interface Sci. 1996, 180, 460–465. [Google Scholar] [CrossRef]
- Meurk, A.; Luckham, P.F.; Bergström, L. Direct Measurement of Repulsive and Attractive van der Waals Forces between Inorganic Materials. Langmuir 1997, 13, 3896. [Google Scholar] [CrossRef]
- Wineland, D.J.; Drullinger, R.E.; Walls, F.L. Radiation-Pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 1978, 40, 1639. [Google Scholar] [CrossRef] [Green Version]
- Neuhauser, W.; Hohenstatt, M.; Toschek, P.; Dehmelt, H. Optical-Sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 1978, 41, 233. [Google Scholar] [CrossRef]
- Phillips, W.D.; Metcalf, H.J. Cooling and trapping atoms. Sci. Am. 1987, 256, 50. [Google Scholar] [CrossRef]
- Chu, S.; Hollberg, L.; Bjorkholm, J.E.; Cable, A.; Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 1985, 55, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lett, P.D.; Watts, R.N.; Westbrook, C.I.; Phillips, W.D.; Gould, P.L.; Metcalf, H.J. Observation of Atoms Laser Cooled below the Doppler Limit. Phys. Rev. Lett. 1988, 61, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 2002, 74, 1131. [Google Scholar] [CrossRef] [Green Version]
- Cornell, E.A.; Wieman, C.E. Nobel Lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 2002, 74, 875. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Gallagher, T.F. Millimeter-wave rubidium Rydberg van der Waals spectroscopy. Phys. Rev. A 2009, 79, 053409. [Google Scholar] [CrossRef]
- Teixeira, R.C.; Hermann-Avigliano, C.; Nguyen, T.L.; Cantat-Moltrecht, T.; Raimond, J.M.; Haroche, S.; Gleyzes, S.; Brune, M. Microwave probe dipole blockade and van der Waals forces in a cold Rydberg gas. Phys. Rev. Lett. 2015, 115, 013001. [Google Scholar] [CrossRef]
- Faoro, R.; Simonelli, C.; Archimi, M.; Masella, G.; Valado, M.M.; Arimondo, E.; Mannella, R.; Ciampini, D.; Morsch, O. van der Waals explosion of cold Rydberg clusters. Phys. Rev. A 2016, 93, 030701(R). [Google Scholar] [CrossRef] [Green Version]
- Han, J. Broadband laser excitation of van der Waals polymers from a cold atomic gas. Mol. Phys. 2017, 115, 2479–2485. [Google Scholar] [CrossRef]
- Endres, M. Quantum Science with Alkaline Earth Tweezer Arrays. In APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts; College Park, MD, USA; 2020; Available online: https://ui.adsabs.harvard.edu/abs/2020APS..DMPG08003E/abstract (accessed on 20 January 2022).
- Engels, P. Lattice Experients with Raman dressed Bose–Einstein condensate. In APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts; College Park, MD, USA; 2020; Available online: https://ui.adsabs.harvard.edu/abs/2020APS..DMPM08004E/abstract (accessed on 20 January 2022).
- Han, J. MHz few-body frequency shift detected in a cold 85 Rb Rydberg gas. Phys. Rev. A 2011, 84, 052516. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Robinson, J.A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond Graphene: Progress in Novel Two-dimensional Materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27. [Google Scholar] [CrossRef]
- Edmonds, A.R. Angular Momentum in Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Han, J. Dipole Effects in a Cold Rydberg Gas. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2009. [Google Scholar]
- von Stecher, J.; D’Incao, J.P.; Greene, C.H. Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 2009, 5, 417–421. [Google Scholar] [CrossRef]
- Han, J. Five-body van der Waals interactions. Phys. Rev. A 2017, 95, 062502. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J. Two-Dimensional Six-Body van der Waals Interactions. Atoms 2022, 10, 12. https://doi.org/10.3390/atoms10010012
Han J. Two-Dimensional Six-Body van der Waals Interactions. Atoms. 2022; 10(1):12. https://doi.org/10.3390/atoms10010012
Chicago/Turabian StyleHan, Jianing. 2022. "Two-Dimensional Six-Body van der Waals Interactions" Atoms 10, no. 1: 12. https://doi.org/10.3390/atoms10010012
APA StyleHan, J. (2022). Two-Dimensional Six-Body van der Waals Interactions. Atoms, 10(1), 12. https://doi.org/10.3390/atoms10010012