Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides
Abstract
:1. Introduction
2. Experimental Setup
2.1. RADRIS Technique
2.2. RADRIS Measurement Cycle
3. New Detector Developments
3.1. Rotatable Detector Setup
3.2. Movable Detector Setup
4. Short RADRIS Cycle Development
5. Results with the Short RADRIS Cycle Implementation
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RADRIS | RAdiation-Detected Resonance Ionization Spectroscopy |
IP | Ionization Potential |
RCC | Relativistic Coupled-Cluster |
MCDF | Multi-Configuration Dirac–Fock |
CI | Configuration Interaction |
SHIP | Separator for Heavy Ion reaction Products |
UNILAC | Universal Linear Accelerator |
UV | Ultraviolet |
SES | Second Excitation Step |
FES | First Excitation Step |
RIS | Resonance Ionization Spectroscopy |
PIPS | Passivated Implanted Planar Silicon |
References
- Block, M.; Laatiaoui, M.; Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 2021, 116, 103834. [Google Scholar]
- Eliav, E.; Fritzsche, S.; Kaldor, U. Electronic structure theory of the superheavy elements. Nucl. Phys. A 2015, 944, 518–550. [Google Scholar] [CrossRef]
- Campbell, P.; Moore, I.; Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 2016, 86, 127–180. [Google Scholar]
- Robinson, S.M.; Benker, D.E.; Collins, E.D.; Ezold, J.G.; Garrison, J.R.; Hogle, S.L. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 2020, 108, 737–746. [Google Scholar] [CrossRef]
- Schädel, M.; Shaughnessy, D. The Chemistry of Superheavy Elements; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Backe, H.; Lauth, W.; Block, M.; Laatiaoui, M. Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 2015, 944, 492–517. [Google Scholar] [CrossRef]
- Sato, T.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, C.E.; Eberhardt, K.; Eliav, E.; et al. Measurement of the first ionization potential of lawrencium, element 103. Nature 2015, 520, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.K.; Asai, M.; Borschevsky, A.; Beerwerth, R.; Kaneya, Y.; Makii, H.; Mitsukai, A.; Nagame, Y.; Osa, A.; Toyoshima, A.; et al. First ionization potentials of Fm, Md, No, and Lr: Verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 2018, 140, 14609–14613. [Google Scholar] [CrossRef] [Green Version]
- Laatiaoui, M.; Lauth, W.; Backe, H.; Block, M.; Ackermann, D.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; Van Duppen, P.; Even, J.; et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 2016, 538, 495–498. [Google Scholar]
- Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Droese, C.; Düllmann, C.E.; Even, J.; Ferrer, R.; Giacoppo, F.; et al. Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 2018, 120, 263003. [Google Scholar]
- Neugart, R.; Billowes, J.; Bissell, M.; Blaum, K.; Cheal, B.; Flanagan, K.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. Collinear laser spectroscopy at ISOLDE: New methods and highlights. J. Phys. G Nucl. Part. Phys. 2017, 44, 064002. [Google Scholar]
- Fedosseev, V.; Chrysalidis, K.; Goodacre, T.D.; Marsh, B.; Rothe, S.; Seiffert, C.; Wendt, K. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE. J. Phys. G Nucl. Part. Phys. 2017, 44, 084006. [Google Scholar] [CrossRef]
- Lautenschläger, F.; Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Clark, A.; Droese, C.; Ferrer, R.; Giacoppo, F.; et al. Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 383, 115–122. [Google Scholar] [CrossRef]
- Backe, H.; Kunz, P.; Lauth, W.; Dretzke, A.; Horn, R.; Kolb, T.; Laatiaoui, M.; Sewtz, M.; Ackermann, D.; Block, M.; et al. Towards optical spectroscopy of the element nobelium () in a buffer gas cell. Eur. Phys. J. D 2007, 45, 99–106. [Google Scholar] [CrossRef]
- Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; et al. Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 2018, 120, 232503. [Google Scholar] [CrossRef] [Green Version]
- Münzenberg, G.; Faust, W.; Hofmann, S.; Armbruster, P.; Güttner, K.; Ewald, H. The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Methods 1979, 161, 65–82. [Google Scholar] [CrossRef]
- Murböck, T.; Raeder, S.; Chhetri, P.; Diaz, K.; Laatiaoui, M.; Giacoppo, F.; Block, M. Filament studies for laser spectroscopy on lawrencium. Hyperfine Interact. 2020, 241, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Laatiaoui, M.; Backe, H.; Block, M.; Chhetri, P.; Lautenschläger, F.; Lauth, W.; Walther, T. Perspectives for laser spectroscopy of the element nobelium. Hyperfine Interact. 2014, 227, 69–75. [Google Scholar] [CrossRef]
- Oganessian, Y.T.; Utyonkov, V.; Lobanov, Y.V.; Abdullin, F.S.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Y.S.; Mezentsev, A.; Iliev, S.; Subbotin, V.; et al. Measurements of cross sections for the fusion-evaporation reactions 204,206,207,208Pb + 48Ca and 207Pb + 34S: Decay properties of the even-even nuclides 238Cf and 250No. Phys. Rev. C 2001, 64, 054606. [Google Scholar] [CrossRef]
- Gäggeler, H.; Jost, D.; Türler, A.; Armbruster, P.; Brüchle, W.; Folger, H.; Heßberger, F.; Hofmann, S.; Münzenberg, G.; Ninov, V.; et al. Cold fusion reactions with 48Ca. Nucl. Phys. A 1989, 502, 561–570. [Google Scholar] [CrossRef]
- Zou, Y.; Fischer, C.F. Resonance transition energies and oscillator strengths in lutetium and lawrencium. Phys. Rev. Lett. 2002, 88, 183001. [Google Scholar] [CrossRef]
- Borschevsky, A.; Eliav, E.; Vilkas, M.; Ishikawa, Y.; Kaldor, U. Transition energies of atomic lawrencium. Eur. Phys. J. D 2007, 45, 115–119. [Google Scholar] [CrossRef]
- Fritzsche, S.; Dong, C.; Koike, F.; Uvarov, A. The low-lying level structure of atomic lawrencium (Z = 103): Energies and absorption rates. Eur. Phys. J. D 2007, 45, 107–113. [Google Scholar] [CrossRef]
- Dzuba, V.; Safronova, M.; Safronova, U. Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A 2014, 90, 012504. [Google Scholar] [CrossRef] [Green Version]
- Kahl, E.; Raeder, S.; Eliav, E.; Borschevsky, A.; Berengut, J. Ab initio calculations of the spectrum of lawrencium. Phys. Rev. A 2021, 104, 052810. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Backe, H.; Habs, D.; Kunz, P.; Lauth, W.; Sewtz, M. Low-field mobilities of rare-earth metals. Eur. Phys. J. D 2012, 66, 1–5. [Google Scholar] [CrossRef]
- Raeder, S.; Block, M.; Chhetri, P.; Ferrer, R.; Kraemer, S.; Kron, T.; Laatiaoui, M.; Nothhelfer, S.; Schneider, F.; Van Duppen, P.; et al. A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 463, 272–276. [Google Scholar] [CrossRef]
- Kaleja, O.; Anđelić, B.; Blaum, K.; Block, M.; Chhetri, P.; Droese, C.; Düllmann, C.E.; Eibach, M.; Eliseev, S.; Even, J.; et al. The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 463, 280–285. [Google Scholar] [CrossRef]
- Barzakh, A.; Chubukov, I.Y.; Fedorov, D.; Moroz, F.; Panteleev, V.; Seliverstov, M.; Volkov, Y.M. Isotope shift and hyperfine structure measurements for 155Yb by laser ion source technique. Eur. Phys. J. A Hadron. Nucl. 1998, 1, 3–5. [Google Scholar] [CrossRef]
- Sprouse, G.; Das, J.; Lauritsen, T.; Schecker, J.; Berger, A.; Billowes, J.; Holbrow, C.; Mahnke, H.E.; Rolston, S. Laser spectroscopy of light Yb isotopes on-line in a cooled gas cell. Phys. Rev. Lett. 1989, 63, 1463. [Google Scholar] [CrossRef]
- Barzakh, A.; Fedorov, D.; Panteleev, V.; Seliverstov, M.; Volkov, Y.M. Measurements of charge radii and electromagnetic moments of nuclei far from stability by photoionization spectroscopy in a laser ion source. In AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2002; Volume 610, pp. 915–919. [Google Scholar]
- Das, D.; Barthwal, S.; Banerjee, A.; Natarajan, V. Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399-nm 1S0 → 1P1 line. Phys. Rev. A 2005, 72, 032506. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warbinek, J.; Anđelić, B.; Block, M.; Chhetri, P.; Claessens, A.; Ferrer, R.; Giacoppo, F.; Kaleja, O.; Kieck, T.; Kim, E.; et al. Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. Atoms 2022, 10, 41. https://doi.org/10.3390/atoms10020041
Warbinek J, Anđelić B, Block M, Chhetri P, Claessens A, Ferrer R, Giacoppo F, Kaleja O, Kieck T, Kim E, et al. Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. Atoms. 2022; 10(2):41. https://doi.org/10.3390/atoms10020041
Chicago/Turabian StyleWarbinek, Jessica, Brankica Anđelić, Michael Block, Premaditya Chhetri, Arno Claessens, Rafael Ferrer, Francesca Giacoppo, Oliver Kaleja, Tom Kieck, EunKang Kim, and et al. 2022. "Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides" Atoms 10, no. 2: 41. https://doi.org/10.3390/atoms10020041
APA StyleWarbinek, J., Anđelić, B., Block, M., Chhetri, P., Claessens, A., Ferrer, R., Giacoppo, F., Kaleja, O., Kieck, T., Kim, E., Laatiaoui, M., Lantis, J., Mistry, A., Münzberg, D., Nothhelfer, S., Raeder, S., Rey-Herme, E., Rickert, E., Romans, J., ... Walther, T. (2022). Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. Atoms, 10(2), 41. https://doi.org/10.3390/atoms10020041