Atomic Lifetime Data and Databases
Abstract
:1. Introduction
2. Examples
2.1. Types of Wavelength Tables
2.2. On the Brink of Computerising the Presentation
2.3. Transition Rates Enter the Stage
2.4. In Praise of NIST ASD
2.5. Light Sources
2.6. Opacity Projects
3. Spectrum Modelling
4. Accurate Data vs. Theory
5. Examples of Practical Problems with Atomic Lifetimes
5.1. Short Lifetimes
5.2. Medium Long Lifetimes
5.3. Long Lifetimes
5.4. Isoelectronic Perspectives
6. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Grotrian, W. Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften 1939, 27, 214. [Google Scholar] [CrossRef]
- Edlén, B. Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Z. Astrophys. 1942, 22, 30E. [Google Scholar]
- Träbert, E. Radiative-lifetime measurements on highly-charged ions. In Accelerator-Based Atomic Physics Techniques and Applications; Shafroth, S.M., Austin, J.C., Eds.; The American Institute of Physics: Washington, DC, USA, 1997; pp. 567–607. [Google Scholar]
- Striganov, A.R.; Sventitskij, N.S. Tables of Spectral Lines of Neutral and Ionized Atoms; Atomizdat, IFI/Plenum: New York, NY, USA, 1966. [Google Scholar]
- Edlén, B. Atomic Spectra. In Handbuch der Physik; Flügge, S., Ed.; Springer: Berlin, Germany, 1964; Volume 27, pp. 80–220. [Google Scholar]
- Curtis, L.J. Bengt Edlén’s Handbuch der Physik article—26 years later. Phys. Scr. 1987, 35, 805–810. [Google Scholar] [CrossRef]
- Ralchenko, Y.; Kramida, A. Development of NIST atomic databases and online tools. Atoms 2020, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; Version 5.7.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://physics.nist.gov/asd (accessed on 1 June 2021).
- Bashkin, S.; Stoner, J.O., Jr. Atomic Energy Levels and Grotrian Diagrams. Hydrogen I-Phosphorus XV; North-Holland: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Shirai, T.; Funatake, Y.; Mori, K.; Sugar, J.; Wiese, W.L.; Nakai, Y. Spectral data and Grotrian diagrams for highly ionized iron, Fe VIII-XXVI. J. Phys. Chem. Ref. Data 1990, 19, 127–275. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.L.; Palumbo, L.J. Atomic and Ionic Emission Lines below 2000 Å, Hydrogen through Krypton; NRL: Washington, DC, USA, 1978. [Google Scholar]
- Kelly, R.L. Atomic and ionic spectrum lines below 2000 Angstroms: Hydrogen through krypton. J. Phys. Chem. Ref. Data 1987, 16 (Suppl. 1), 1–659. [Google Scholar]
- Träbert, E. Extreme-ultraviolet beam-foil spectra of Na through Cl. Atoms 2021, 9, 93. [Google Scholar] [CrossRef]
- White, H.E.; Eliason, A.Y. Relative intensity tables for spectrum lines. Phys. Rev. 1933, 44, 753–756. [Google Scholar] [CrossRef]
- Engström, L.; Jupén, C.; Denne, B.; Huldt, S.; Meng, W.T.; Kaijser, P.; Ekberg, J.O.; Litzén, U.; Martinson, I. Transition probabilities of allowed and forbidden transitions from the 1s2p 3P levels in He-like O VII and F VIII. Phys. Scr. 1981, 22, 570–574. [Google Scholar] [CrossRef]
- Doerfert, J.; Träbert, E. Relative intensities of 2s22p 2P-2s2p2 2S, 2P transitions in B-like ions of oxygen through chlorine. Phys. Scr. 1993, 47, 524–530. [Google Scholar] [CrossRef]
- Engström, L.; Kirm, M.; Bengtsson, P.; Maniak, S.T.; Curtis, L.J.; Träbert, E.; Doerfert, J.; Granzow, J. Extended analysis of intensity anomalies in the Al I isoelectronic sequence. Phys. Scr. 1995, 52, 516–521. [Google Scholar] [CrossRef]
- Edlén, B.; Tyrén, F. Atomic energy states of an unusual type. Nature 1939, 143, 940–941. [Google Scholar] [CrossRef]
- Lindgård, A.; Nielsen, S.E. Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I. At. Data Nucl. Data Tables 1977, 19, 533–633. [Google Scholar] [CrossRef]
- Wiese, W.L.; Smith, M.W.; Glennon, B.M. Atomic Transition Probabilities Volume 1 Hydrogen through Neon; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1966.
- Smith, M.W.; Wiese, W.L. Graphical presentations of systematic trends of atomic oscillator strengths along isoelectronic sequences and new oscillator strengths derived by interpolation. Astrophys. J. Suppl. Ser. 1971, 23, 103–192. [Google Scholar] [CrossRef]
- Fuhr, J.R.; Martin, G.A.; Wiese, W.L.; Younger, S.M. Atomic transition probabilities for iron, cobalt, and nickel (A critical data compilation of allowed lines). J. Phys. Chem. Ref. Data 1981, 10, 305–565. [Google Scholar] [CrossRef]
- Martin, G.A.; Fuhr, J.R.; Wiese, W.L. Atomic transition probabilities. Scandium through manganese. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. 3), 1–512. [Google Scholar]
- Fuhr, J.R.; Martin, G.A.; Wiese, W.L. Atomic transition probabilities. Iron through nickel. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. 4), 1–499. [Google Scholar]
- Fuhr, J.R.; Wiese, W.L. A critical compilation of atomic transition probabilities for neutral and singly ionized iron. J. Phys. Chem. Ref. Data 2006, 35, 1669–1809. [Google Scholar] [CrossRef] [Green Version]
- Wiese, W.L. The critical assessment of atomic oscillator strengths. Phys. Scr. 1996, T 65, 188–191. [Google Scholar] [CrossRef]
- Träbert, E.; Beiersdorfer, P. Laboratory data on the EUV/soft-X-ray flux problem of Fe XVIII and Fe XIX. Astroph. J. 2021, 913, 20. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R.; Deters, T.M. Atomic transition probabilities of carbon, nitrogen, and oxygen: A critical data compilation. In Journal of Physical and Chemical Reference Data, Monograph 7; AIP Press: Melville, NY, USA, 1996. [Google Scholar]
- Doerfert, J.S.; Träbert, E.; Wolf, A.; Schwalm, D.; Uwira, O. Precision measurement of the electric dipole intercombination rate in C2+. Phys. Rev. Lett. 1997, 78, 4355–4358. [Google Scholar] [CrossRef]
- Jönsson, P.; Froese Fischer, C.; Träbert, E. On the status and perspectives of MCDF computations and measurements of transition data in the Be isoelectronic sequence. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 3497–3511. [Google Scholar] [CrossRef]
- Chen, M.H.; Cheng, K.T.; Johnson, W.R. Large-scale relativistic configuration-interaction computation of the 2s2 1S0 – 2s2p 3P1 intercombination transition in C III. Phys. Rev. 2001, 64, 042507. [Google Scholar] [CrossRef]
- Fawcett, B.C. Wavelengths and classifications of emission lines due to 2s22pn-2s2pn+1 and 2s2pn-2pn+1 transitions, Z ≤ 28. At. Data Nucl. Data Tables 1975, 16, 135–164. [Google Scholar] [CrossRef]
- Fawcett, B.C. Theoretical oscillator strengths for 2s22pn – 2s2pn+1 and 2s2pn+1 – 2pn+2 transitions and for 2s22pn “forbidden" transitions Be I, B I, C I, N I, O I series, Z ≤ 26. At. Data Nucl. Data Tables 1978, 22, 473–489. [Google Scholar] [CrossRef]
- Kramida, A. Cowan code: 50 years of growing impact on atomic physics. Atoms 2019, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.T.; Kim, Y.K.; Desclaux, J.P. Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F. At. Data Nucl. Data Tables 1979, 24, 111–189. [Google Scholar] [CrossRef]
- Badnell, N.R. Dielectronic recombination of Fe22+ and Fe21+. J. Phys. B At. Mol. Opt. Phys. 1986, 19, 3827–3835. [Google Scholar] [CrossRef]
- Curtis, L.J. Precision Oscillator Strength and Lifetime Measurements. In Atomic, Molecular, and Optical Physics Reference Book; Drake, G.W.F., Ed.; AIP Press: New York, NY, USA, 1996; pp. 206–212. [Google Scholar]
- Träbert, E. Atomic lifetime measurements with ion traps of many sizes. Phys. Scr. 2000, 61, 257–286. [Google Scholar] [CrossRef]
- Träbert, E. Precise measurements of long atomic lifetimes using stored ion beams and ion traps. Can. J. Phys. 2002, 80, 1481–1503. [Google Scholar] [CrossRef]
- Mannervik, S. Experimental lifetime studies of metastable levels. Phys. Scr. 2003, 105, 67–75. [Google Scholar] [CrossRef]
- Träbert, E. Atomic lifetime measurements using electron beam ion traps. Can. J. Phys. 2008, 86, 73–97. [Google Scholar] [CrossRef]
- Träbert, E. Problems with accurate atomic lifetime measurements of multiply charged ions. Phys. Scr. 2009, 79, 068101. [Google Scholar] [CrossRef]
- Träbert, E. In pursuit of high precision atomic lifetime measurements of multiply charged ions. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 074034. [Google Scholar] [CrossRef] [Green Version]
- Reistad, N.; Martinson, M. Accurate transition probabilities in ions obtained by isoelectronic smoothing of line strengths. Phys. Rev. 1986, 34, 2632–2637. [Google Scholar] [CrossRef] [PubMed]
- Träbert, E. Isoelectronic smoothing of oscillator strengths in the beryllium sequence. Z. Phys. D-At. Mol. Clusters 1988, 9, 143–145. [Google Scholar] [CrossRef]
- Träbert, E.; Doerfert, J.; Granzow, J.; Büttner, R.; Brauckhoff, J.; Nicolai, M.; Schartner, K.-H.; Folkmann, F.; Mokler, P.H. Lifetimes of n = 2 levels in foil-excited Kr32+ and Kr33+ ions. Phys. Lett. 1995, 202, 91–98. [Google Scholar] [CrossRef]
- Träbert, E. E1-forbidden transition rates in ions of astrophysical interest. Phys. Scr. 2014, 89, 114003. [Google Scholar] [CrossRef]
- Brown, C.M.; Seely, J.F.; Kania, D.R.; Hammel, B.A.; Back, C.A.; Lee, R.W.; Bar-Shalom, A.; Behring, W.E. Wavelengths and energy levels for the Zn I isoelectronic sequence Sn20+ through U62+. At. Data Nucl. Data Tables 1994, 58, 203–217. [Google Scholar] [CrossRef]
- Utter, S.B.; Beiersdorfer, P.; Träbert, E. Accurate wavelengths of resonance lines in Zn-like heavy ions. Can. J. Phys. 2003, 81, 911–918. [Google Scholar] [CrossRef]
- Munger, C.T.; Gould, H. Lamb shift in heliumlike uranium (U90+). Phys. Rev. Lett. 1986, 57, 2927–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beiersdorfer, P. A “brief” history of spectroscopy on EBIT. Can. J. Phys. 2008, 86, 1–10. [Google Scholar] [CrossRef]
- Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An atomic database for emission lines. I. Wavelengths greater than 50 Å. Astrophys. J. 1997, 125, 149–173. [Google Scholar]
- Dere, K.P.; Landi, E.; Young, P.R.; Del Zanna, G.; Landini, M.; Mason, H.E. CHIANTI—An atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 2009, 498, 915–929. [Google Scholar] [CrossRef]
- Landi, E.; Del Zanna, G.; Young, P.R.; Dere, K.P.; Mason, H.E. CHIANTI—An atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 2012, 744, 99. [Google Scholar] [CrossRef] [Green Version]
- Landi, E.; Young, P.R.; Dere, K.P.; Del Zanna, G.; Mason, H.E. CHIANTI—An atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 2013, 763, 86. [Google Scholar] [CrossRef]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E.; Mason, H.E. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015, 582, 56. [Google Scholar] [CrossRef]
- Del Zanna, G.; Young, P.R. Atomic data for plasma spectroscopy: The CHIANTI database, improvements and challenges. Atoms 2020, 8, 46. [Google Scholar] [CrossRef]
- Huggins, W.; Miller, W.A. On the Spectra of some of the Nebulae. Trans. R. Soc. Lond. 1864, 154, 437–444. [Google Scholar]
- Bowen, I.S. The Origin of the Nebulium Spectrum. Nature 1927, 120, 473. [Google Scholar] [CrossRef]
- Bowen, I.S. The origin of the chief nebular lines. Proc. Astron. Soc. Pac. 1927, 39, 295B. [Google Scholar] [CrossRef]
- Bowen, I.S. The origin of the nebular lines and the structure of the planetary nebulae. Astroph. J. 1928, 67, 1B–15B. [Google Scholar] [CrossRef]
- Bowen, I.S. The spectrum and composition of the gaseous nebulae. Astroph. J. 1935, 81, 1B–16B. [Google Scholar] [CrossRef]
- Smith, R.K.; Brickhouse, N.S.; Liedahl, D.A.; Raymond, J.C. Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astroph. J. Lett. 2001, 556, L91. [Google Scholar] [CrossRef] [Green Version]
- Foster, A.R.; Heuer, K. PyAtomDB: Extending the AtomDB atomic database to model new plasma processes and uncertainties. Atoms 2020, 8, 49. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Lepson, J.K. Measurement of the Fe VIII–Fe XVI emission in the extreme ultraviolet and comparison with CHIANTI. Astrophys. J. Suppl. Ser. 2012, 201, 28. [Google Scholar] [CrossRef] [Green Version]
- Beiersdorfer, P.; Träbert, E. High-resolution laboratory Measurements of coronal lines near the Fe IX line at 171 Å. Astrophys. J. 2018, 854, 114. [Google Scholar] [CrossRef]
- Träbert, E.; Beiersdorfer, P.; Lepson, J.K.; Reinke, M.L.; Rice, J.E. EUV spectra and line ratios of multiply ionized calcium and argon atoms in a laboratory plasma. Astroph. J. 2018, 865, 148. [Google Scholar] [CrossRef]
- Gu, M.F. The Flexibe Atomic Code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Mewe, R.; Kaastra, J.S.; Liedahl, D.A. Update of MEKA: MEKAL. Legacy 1995, 6, 16. [Google Scholar]
- Kaastra, J.S.; Raassen, A.J.J.; Mewe, R.; Arav, N.; Behar, E.; Constantini, E.; Gabel, J.R.; Kriss, G.A.; Proga, D.; Sako, M.; et al. X-ray/UV campaign on the Mrk 279 outflow: Density diagnostics in active galactic nuclei using O V K-shell absorption lines. Astron. Astrophys. 2004, 428, 57–66. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Träbert, E.; Brickhouse, N.S.; Golub, L. High-resolution laboratory spectra of the λ 193 channel of the atmospheric imaging assembly instrument on board Solar Dynamics Observatory. Astrophys. J. Suppl. Ser. 2014, 215, 6. [Google Scholar]
- Beiersdorfer, P.; Träbert, E.; Lepson, J.K.; Brickhouse, N.S.; Golub, L. HIgh-resolution laboratory measurements of coronal lines in the 198–218 Å region. Astrophys. J. 2014, 788, 25. [Google Scholar] [CrossRef]
- Lepson, J.K.; Beiersdorfer, P.; Kaita, R.; Majeski, R.; Boyle, D. Responsivity calibration of the LoWEUS spectrometer. Rev. Sci. Instrum. 2016, 87, 11D614. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Magee, E.W.; Brown, G.V.; Hell, N.; Träbert, E.; Widmann, K. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap. Rev. Sci. Instrum. 2014, 85, 11E422. [Google Scholar] [CrossRef]
- Brinkman, A.C.; Gunsing, C.J.T.; Kaastra, J.S.; van der Meer, R.L.J.; Mewe, R.; Paerels, F.; Raassen, A.J.J.; van Rooijen, J.J.; Bräuninger, H.; Burkert, W.; et al. First light measurements of Capella with the low-energy transmission grating spectrometer aboard the Chandra X-ray Observatory. Astrophys. J. 2000, 530, L111–L114. [Google Scholar] [CrossRef] [Green Version]
- Culhane, J.L.; Harra, L.K.; James, A.M.; Al-Janabi, K.; Bradley, L.J.; Chaudry, R.A.; Rees, K.; Tandy, J.A.; Thomas, P.; Whillock, M.C.R.; et al. The EUV imaging spectrometer for Hinode. Sol. Phys. 2007, 243, 19–61. [Google Scholar] [CrossRef]
- Canizares, C.R.; Davis, J.E.; Dewey, D.; Flanagan, K.A.; Galton, E.B.; Huenemoerder, D.P.; Ishibashi, K.; Markert, T.H.; Marshall, H.L.; McGuirk, M.; et al. The Chandra high-energy transmission grating: Design, fabrication, ground calibration, and 5 years in flight. Publ. Astron. Soc. Pac. 2005, 117, 1144–1171. [Google Scholar] [CrossRef] [Green Version]
- den Herder, J.W.; Brinkman, A.C.; Kahn, S.M.; Branduardi-Raymond, G.; Thomson, K.; Aarts, H.; Audard, M.; Bixler, J.V.; den Boggende, A.J.; Gottam, J.; et al. The reflection grating spectrometer on board XMM-Newton. Astron. Astrophys. 2001, 365, L7–L17. [Google Scholar] [CrossRef]
- Santana, J.A.; Träbert, E. Resonance and intercombination lines in Mg-like ions of atomic numbers Z = 13–92. Phys. Rev. 2015, 91, 022503. [Google Scholar] [CrossRef] [Green Version]
- Bickel, W.S.; Goodman, A.S. Mean lives of the 2p and 3p levels in atomic hydrogen. Phys. Rev. 1966, 148, 1–4. [Google Scholar] [CrossRef]
- Tielert, R.; Bukow, H.H. A correlated-fit method including cascade corrections in beam-foil experiments on hydrogen. Z. Phys. 1973, 264, 119–127. (In German) [Google Scholar] [CrossRef]
- Tielert, R.; Bukow, H.H.; Heckmann, P.H.; Woodruff, R.; von Buttlar, H. Beam-foil spectroscopy using hydrogen ions as incident particles. Z. Phys. 1973, 264, 129–138. (In German) [Google Scholar] [CrossRef]
- Bates, D.R.; Damgaard, A. The calculation of the absolute strengths of spectral lines. Phil. Trans. Roy Soc. Lond. A 1949, 242, 101–122. [Google Scholar]
- McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium. Phys. Rev. 1995, 51, R871–R874. [Google Scholar] [CrossRef] [Green Version]
- McAlexander, W.I.; Abraham, E.R.I.; Hulet, R.G. Radiative lifetime of the 2P state of lithium. Phys. Rev. 1996, 54, R5–R8. [Google Scholar] [CrossRef] [Green Version]
- Volz, U.; Majerus, M.; Liebel, H.; Schmitt, A.; Schmoranzer, H. Precision lifetime measurements on Na I 3p 2P1/2 and 3p 2P3/2 by beam-gas-laser spectroscopy. Phys. Rev. Lett. 1996, 76, 2862–2865. [Google Scholar] [CrossRef]
- Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C. Energies and E1, M1, E2, and M2 transition rates for states of the 2s22p4, 2s2p5, and 2p6 configurations in oxygen-like ions between F II and Kr XXIX. Astron. Astrophys. 2013, 557, A136. [Google Scholar] [CrossRef] [Green Version]
- Vilkas, M.J.; Ishikawa, Y.; Koc, K. Relativistic multireference many-body perturbation theory for quasidegenerate systems: Energy levels of ions of the oxygen isoelectronic sequence. Phys. Rev. 1999, 60, 2808–2821. [Google Scholar] [CrossRef]
- Hibbert, A. Charlotte Froese Fischer–her work and her impact. Atoms 2019, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Froese Fischer, C.; Godefroid, M. Multi-configuration Hartree-Fock plus Breit-Pauli results for some forbidden transitions. J. Phys. B At. Mol. Phys. 1986, 19, 137–148. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Tachiev, G.; Irimia, A. Relativistic energy levels, lifetimes, and transition probabilities for the sodium-like to argon-like sequences. At. Data Nucl. Data Tables 2006, 92, 607–812. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Osterheld, A.L.; Decaux, V.; Widmann, K. Observation of lifetime-limited X-ray line widths in cold highly charged ions. Phys. Rev. Lett. 1996, 77, 5353–5356. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.R.; Plante, D.R.; Sapirstein, J. Relativistic calculations of transition amplitudes in the helium isoelectronic sequence. In Advances of Atomic, Molecular and Optical Physics; Bederson, B., Walther, H., Eds.; Academic Press: San Diego, CA, USA, 1995; Volume 35, pp. 255–329. [Google Scholar]
- Graf, A.; Beiersdorfer, P.; Harris, C.L.; Hwang, D.Q.; Neill, P.A. Lifetime of the 1s2p 1P1 excited level in Fe24+. In CP645, Spectral Line Shapes; Back, C.A., Ed.; The American Institute of Physics: Washington, DC, USA, 2002; Volume 12, pp. 74–78. [Google Scholar]
- Beiersdorfer, P.; Lawrence Livermore National Laboratory, Livermore, CA, USA. Private communication, 2015.
- Bernitt, S.; Brown, G.V.; Rudolph, J.K.; Steinbrügge, R.; Graf, A.; Leutenegger, M.; Epp, S.W.; Eberle, S.; Kubiček, K.; Mäckel, V.; et al. An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem. Nature 2012, 492, 225–228. [Google Scholar] [CrossRef]
- Oreshkina, N.S.; Cavaletto, S.M.; Keitel, C.H.; Harman, Z. Astrophysical line diagnosis requires nonlinear dynamical atomic modeling. Phys. Rev. Lett. 2014, 113, 143001. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Cheung, C.; Oreshkina, N.S.; Steinbrügge, R.; Togawa, M.; Shah, C.; Bernitt, S.; Buck, J.; Hoesch, M.; Seltmann, J.; et al. Oscillator-strength ratio of two Fe XVII soft X-ray transitions essential for plasma diagnostics finally agrees with theory. arXiv 2022, arXiv:2201.09070v1. [Google Scholar]
- Astner, G.; Curtis, L.J.; Liljeby, L.; Mannervik, S. Martinson, I. A high-precision beam-foil meanlife measurement of the 1s3p 1P level in He I. Z. Phys. 1976, 279, 1–6. [Google Scholar] [CrossRef]
- Baumann, P.; Blum, M.; Friedrich, A.; Geyer, C.; Grieser, M.; Holzer, B.; Jaeschke, E.; Krämer, D.; Martin, C.; Matl, K.; et al. The Heidelberg heavy ion test storage ring TSR. Nucl. Instrum. Meth. Phys. Res. A 1988, 268, 531–537. [Google Scholar] [CrossRef]
- Kaufman, V.; Sugar, J. Forbidden lines in ns2 npk ground configurations and nsnp excited configurations of beryllium through molybdenum atoms and ions. J. Phys. Chem. Ref. Data 1986, 15, 321–426. [Google Scholar] [CrossRef]
- Träbert, E.; Grieser, M.; Hoffmann, J.; Krantz, C.; Repnow, R.; Wolf, A. Heavy-ion storage-ring-lifetime measurement of metastable levels in the C-, N-, and O-like ions of Si, P, and S. Phys. Rev. 2012, 85, 042508. [Google Scholar] [CrossRef]
- Lestinsky, M.; Andrianov, V.; Aurand, B.; Bagnoud, V.; Bernhardt, D.; Beyer, H.; Bishop, S.; Blaum, K.; Bleile, A.; Borovik, A., Jr.; et al. Physics book: CRYRING@ESR. Eur. Phys. J. Spec. Top. 2016, 225, 797–882. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Träbert, E.; Pinnington, E.H. Experimental transition rate of the green coronal line of Fe XIV. Astrophys. J. 2003, 587, 836–840. [Google Scholar] [CrossRef]
- Brenner, G.; Crespo López-Urrutia, J.R.; Harman, Z.; Mokler, P.H.; Ullrich, J. Lifetime determination of the Fe XIV 3s23p 2Po metastable level. Phys. Rev. 2007, 75, 032504. [Google Scholar] [CrossRef]
- Lapierre, A.; Crespo López-Urrutia, J.R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; González-Martínez, A.J.; Mironov, V.; Osborne, C.J.; Sikler, G.; et al. Lifetime measurement of the Ar XIV 1s22s22p 2Po3/2 metastable level at the Heidelberg electron-beam ion trap. Phys. Rev. 2006, 73, 052507. [Google Scholar] [CrossRef]
- Nemouchi, M.; Godefroid, M.R. Irreducible tensor form of the relativistic corrections to the M1 transition operator. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 175002. [Google Scholar] [CrossRef] [Green Version]
- Träbert, E.; Hoffmann, J.; Krantz, C.; Wolf, A.; Ishikawa, Y.; Santana, J.A. Atomic lifetime measurements on forbidden transitions of Al-, Si-, P- and S-like ions at a heavy-ion storage ring. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 025002. [Google Scholar] [CrossRef]
- Träbert, E.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Diaz, F.J.; Ishikawa, Y.; Santana, J.A. Isoelectronic trends of the E1-forbidden decay rates of Al-, Si-, P-, and S-like ions of Cl, Ti, Mn, Cu, and Ge. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 215003. [Google Scholar] [CrossRef]
- Träbert, E. Critical assessment of theoretical calculations of atomic structure and transition probabilities: An experimenter’s view. Atoms 2014, 2, 15–85. [Google Scholar] [CrossRef] [Green Version]
- Träbert, E.; Beiersdorfer, P.; Utter, S.B.; Brown, G.V.; Chen, H.; Harris, C.L.; Neill, P.A.; Savin, D.W.; Smith, A.J. Experimental M1 transition rates of coronal lines from Ar X, Ar XIV, and Ar XV. Astrophys. J. 2000, 541, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Träbert, E. On the transition rates of the Fe X and Fe XIV coronal lines. Astron. Astrophys. 2004, 415, L39–L42. [Google Scholar] [CrossRef]
- Brage, T.; Judge, P.G.; Proffitt, C.R. Determination of hyperfine-induced transition rates from observations of a planetary nebula. Phys. Rev. Lett. 2002, 89, 281101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.T.; Chen, M.H.; Johnson, W.R. Hyperfine quenching of the 2s2p 3P0 state of berylliumlike ions. Phys. Rev. 2008, 77, 052504. [Google Scholar] [CrossRef] [Green Version]
- Schippers, S.; Schmidt, E.W.; Bernhardt, D.; Yu, D.; Müller, A.; Lestinsky, M.; Orlov, D.A.; Grieser, M.; Repnow, R.; Wolf, A. Storage-ring measurement of the hyperfine induced 47Ti18+ (2s2p 3P0→ 2s2 1S0) transition rate. Phys. Rev. Lett. 2007, 98, 033001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Träbert, E.; Grieser, M.; Hoffmann, J.; Krantz, C.; Reinhardt, S.; Repnow, R.; Wolf, A.; Indelicato, P. M1, M2 and hyperfine-induced decay rates in Mg-like ions of Co, Ni and Cu measured at a heavy-ion storage ring. New J. Phys. 2011, 13, 023017. [Google Scholar] [CrossRef] [Green Version]
- Schippers, S.; Bernhardt, D.; Müller, A.; Lestinsky, M.; Hahn, M.; Novotný, O.; Savin, D.W.; Grieser, M.; Krantz, C.; Repnow, R.; et al. Storage-ring measurement of the hyperfine-induced 2s2p 3P0→ 2s2 1S0 transition rate in berylliumlike sulfur. Phys. Rev. 2012, 85, 012513. [Google Scholar] [CrossRef] [Green Version]
- Czyzak, S.J.; Keyes, C.D.; Aller, L.H. Atomic structure calculations and nebular diagnostics. Astroph. J. Suppl. 1986, 61, 159–175. [Google Scholar] [CrossRef]
- Czyzak, S.J.; Krueger, T.K. Forbidden transition probabilities for some P, S, Cl, and A ions. Mon. Not. R. Astron. Soc. 1963, 126, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Morisset, C.; Luridiana, V.; García-Roja, J.; Gómez-Llanos, V.; Bautista, M.; Mendoza, C. Atomic data assessment with PyNeb. Atoms 2020, 8, 66. [Google Scholar] [CrossRef]
- Träbert, E. A laboratory astrophysics problem: The lifetime of very long-lived levels in low-charge ions. Atoms 2020, 8, 21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Träbert, E. Atomic Lifetime Data and Databases. Atoms 2022, 10, 46. https://doi.org/10.3390/atoms10020046
Träbert E. Atomic Lifetime Data and Databases. Atoms. 2022; 10(2):46. https://doi.org/10.3390/atoms10020046
Chicago/Turabian StyleTräbert, Elmar. 2022. "Atomic Lifetime Data and Databases" Atoms 10, no. 2: 46. https://doi.org/10.3390/atoms10020046
APA StyleTräbert, E. (2022). Atomic Lifetime Data and Databases. Atoms, 10(2), 46. https://doi.org/10.3390/atoms10020046