Mass Spectra Resulting from Collision Processes
Abstract
:1. Introduction
2. Implementation
2.1. Software
2.2. Adding Datasets
- a mass spectrum with one column of mass-to-charge values in atomic mass units and one column of ion yields in arbitrary units; Both columns must have equal length;
- one or more authors responsible for the data;
- the used experiment, which should be described in a peer-reviewed article;
- a set of parameters explaining the experimental conditions.
2.3. Accessing Data Sets
2.3.1. XML Schema for Atomic Molecular and Solid Data (XSAMS)
2.3.2. Graphical User Interface (GUI)
2.4. REST-API Endpoint
2.5. Access
- The database including the list of measurements, the data viewer, and additional information can be reached at https://ideadb.uibk.ac.at/mscp (accessed on 29 April 2022).In the “Data Sets” section one can add measurements to the list of interest and start the visualization.
- The API is accessible at https://ideadb.uibk.ac.at/mscp/api/ (accessed on 29 April 2022).
- The code repository including is hosted on https://github.com/nano-bio/NodeSoftware/tree/cluster-db/nodes/mscp (accessed on 29 April 2022).
3. Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Denifl, S.; Garcia, G.; Huber, B.A.; Marinković, B.P.; Mason, N.; Postler, J.; Rabus, H.; Rixon, G.; Solov’yov, A.V.; Suraud, E.; et al. Radiation damage of biomolecules (RADAM) database development: Current status. J. Phys. Conf. Ser. 2013, 438, 012016. [Google Scholar] [CrossRef] [Green Version]
- Ribar, A.; Fink, K.; Probst, M.; Huber, S.E.; Feketeová, L.; Denifl, S. Isomer Selectivity in Low-Energy Electron Attachment to Nitroimidazoles. Chem. Eur. J. 2017, 23, 12892–12899. [Google Scholar] [CrossRef] [PubMed]
- Tiefenthaler, L.; Ameixa, J.; Martini, P.; Albertini, S.; Ballauf, L.; Zankl, M.; Goulart, M.; Laimer, F.; von Haeften, K.; Zappa, F.; et al. An intense source for cold cluster ions of a specific composition. Rev. Sci. Instrum. 2020, 91, 033315. [Google Scholar] [CrossRef] [PubMed]
- Albertini, S.; Bergmeister, S.; Laimer, F.; Martini, P.; Gruber, E.; Zappa, F.; Ončák, M.; Scheier, P.; Echt, O. SF6+: Stabilizing Transient Ions in Helium Nanodroplets. J. Phys. Chem. Lett. 2021, 12, 4112–4117. [Google Scholar] [CrossRef]
- Martini, P.; Albertini, S.; Laimer, F.; Meyer, M.; Gatchell, M.; Echt, O.; Zappa, F.; Scheier, P. Splashing of Large Helium Nanodroplets upon Surface Collisions. Phys. Rev. Lett. 2021, 127, 263401. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Renzler, M.; Postler, J.; Ralser, S.; Spieler, S.; Simpson, M.; Linnartz, H.; Tielens, A.G.G.M.; Cami, J.; Mauracher, A.; et al. Atomically resolved phase transition of fullerene cations solvated in helium droplets. Nat. Commun. 2016, 7, 13550. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Martini, P.; Schiller, A.; Zappa, F.; Krasnokutski, S.A.; Scheier, P. Electronic Spectroscopy of Anthracene Cations and Protonated Anthracene in the Search for Carriers of Diffuse Interstellar Bands. Astrophys. J. 2021, 913, 136. [Google Scholar] [CrossRef]
- Mauracher, A.; Echt, O.; Ellis, A.; Yang, S.; Bohme, D.; Postler, J.; Kaiser, A.; Denifl, S.; Scheier, P. Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K. Phys. Rep. 2018, 751, 1–90. [Google Scholar] [CrossRef] [Green Version]
- Albertini, S.; Gruber, E.; Zappa, F.; Krasnokutski, S.; Laimer, F.; Scheier, P. Chemistry and physics of dopants embedded in helium droplets. Mass Spectrom. Rev. 2021. Early View. [Google Scholar] [CrossRef]
- González-Lezana, T.; Echt, O.; Gatchell, M.; Bartolomei, M.; Campos-Martínez, J.; Scheier, P. Solvation of ions in helium. Int. Rev. Phys. Chem. 2020, 39, 465–516. [Google Scholar] [CrossRef]
- Schöbel, H.; Bartl, P.; Leidlmair, C.; Denifl, S.; Echt, O.; Märk, T.D.; Scheier, P. High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton. Eur. Phys. J. D 2011, 63, 209–214. [Google Scholar] [CrossRef]
- Gatchell, M.; Martini, P.; Laimer, F.; Goulart, M.; Calvo, F.; Scheier, P. Spectroscopy of corannulene cations in helium nanodroplets. Faraday Discuss. 2019, 217, 276–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballauf, L.; Duensing, F.; Hechenberger, F.; Scheier, P. A high sensitivity, high resolution tandem mass spectrometer to research low-energy, reactive ion–surface interactions. Rev. Sci. Instrum. 2020, 91, 065101. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Schulze, T.; Neumann, S.; Rainer, J.; Schymanski, E. MassBank Europe—Progress Report 2021. 2021. Available online: https://zenodo.org/record/5504121#.Yo8VpP5BxPY (accessed on 29 April 2022).
- MassBank of North America. Available online: https://mona.fiehnlab.ucdavis.edu (accessed on 29 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duensing, F.; Scheier, P. Mass Spectra Resulting from Collision Processes. Atoms 2022, 10, 56. https://doi.org/10.3390/atoms10020056
Duensing F, Scheier P. Mass Spectra Resulting from Collision Processes. Atoms. 2022; 10(2):56. https://doi.org/10.3390/atoms10020056
Chicago/Turabian StyleDuensing, Felix, and Paul Scheier. 2022. "Mass Spectra Resulting from Collision Processes" Atoms 10, no. 2: 56. https://doi.org/10.3390/atoms10020056
APA StyleDuensing, F., & Scheier, P. (2022). Mass Spectra Resulting from Collision Processes. Atoms, 10(2), 56. https://doi.org/10.3390/atoms10020056