New Developments in the Production and Research of Actinide Elements
Abstract
:1. Introduction
2. Element Production
3. Atomic Structure Modeling
4. Experiments Targeting the Atomic Structure
5. Nuclear Properties
6. The Thorium-229 Nuclear Isomer
7. Trace Analysis and Medical Applications
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vernon, R.E. The location and composition of Group 3 of the periodic table. Found. Chem. 2021, 23, 155–197. [Google Scholar] [CrossRef]
- de Bettencourt-Dias, A. The Periodic Table and the f Elements. In Rare Earth Elements and Actinides: Progress in Computational Science Applications; ACS Publications: Washington, DC, USA, 2021; pp. 55–61. [Google Scholar]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Roberto, J.B.; Rykaczewski, K.P. Actinide Targets for the Synthesis of Superheavy Nuclei: Current Priorities and Future Opportunities. In Proceedings of the Fission and Properties of Neutron-Rich Nuclei Sixth International Conference on ICFN6, Sanibel Island, FL, USA, 6–12 November 2016; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Robinson, S.M.; Benker, D.E.; Collins, E.D.; Ezold, J.G.; Garrison, J.R.; Hogle, S.L. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 2020, 108, 737–746. [Google Scholar] [CrossRef]
- Moody, K.J. Synthesis of Superheavy Elements. In The Chemistry of Superheavy Elements; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–81. [Google Scholar] [CrossRef]
- Even, J.; Chen, X.; Soylu, A.; Fischer, P.; Karpov, A.; Saiko, V.; Saren, J.; Schlaich, M.; Schlathölter, T.; Schweikhard, L.; et al. The NEXT project: Towards production and investigation of neutron-rich heavy nuclides. Atoms 2022, 10, 59. [Google Scholar] [CrossRef]
- Münzenberg, G.; Devaraja, H.M.; Dickel, T.; Geissel, H.; Gupta, M.; Heinz, S.; Hofmann, S.; Plass, W.R.; Scheidenberger, C.; Winfield, J.S.; et al. SHE Research with Rare-Isotope Beams, Challenges and Perspectives, and the New Generation of SHE Factories. In New Horizons in Fundamental Physics; Schramm, S., Schäfer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–90. [Google Scholar] [CrossRef]
- Miyatake, H. KISS project. AIP Conf. Proc. 2021, 2319, 080006. Available online: https://aip.scitation.org/doi/pdf/10.1063/5.0036990 (accessed on 5 February 2022). [CrossRef]
- Dickel, T.; Kankainen, A.; Spătaru, A.; Amanbayev, D.; Beliuskina, O.; Beck, S.; Constantin, P.; Benyamin, D.; Geissel, H.; Gröf, L.; et al. Multi-nucleon transfer reactions at ion catcher facilities—A new way to produce and study heavy neutron-rich nuclei. J. Phys. Conf. Ser. 2020, 1668, 012012. [Google Scholar] [CrossRef]
- Savard, G.; Brodeur, M.; Clark, J.; Knaack, R.; Valverde, A. The N = 126 factory: A new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 258–261. [Google Scholar] [CrossRef]
- Smartt, S.J.; Chen, T.W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L.; Wollaeger, R.T.; Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 2020, 493, 4143–4171. Available online: https://academic.oup.com/mnras/article-pdf/493/3/4143/32920641/staa485.pdf (accessed on 27 May 2022). [CrossRef] [Green Version]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369–1392. Available online: https://academic.oup.com/mnras/article-pdf/496/2/1369/33424936/staa1576.pdf (accessed on 27 May 2022). [CrossRef]
- Silva, R.F.; Sampaio, J.M.; Amaro, P.; Flörs, A.; Martínez-Pinedo, G.; Marques, J.P. Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling. Atoms 2022, 10, 18. [Google Scholar] [CrossRef]
- Pyykkö, P. The RTAM electronic bibliography, version 17.0, on relativistic theory of atoms and molecules. J. Comput. Chem. 2013, 34, 2667. [Google Scholar] [CrossRef] [PubMed]
- Naubereit, P.; Studer, D.; Viatkina, A.V.; Buchleitner, A.; Dietz, B.; Flambaum, V.V.; Wendt, K. Intrinsic quantum chaos and spectral fluctuations within the protactinium atom. Phys. Rev. A 2018, 98, 022506. [Google Scholar] [CrossRef]
- Naubereit, P.; Gottwald, T.; Studer, D.; Wendt, K. Excited atomic energy levels in protactinium by resonance ionization spectroscopy. Phys. Rev. A 2018, 98, 022505. [Google Scholar] [CrossRef]
- Eliav, E.; Borschevsky, A.; Kaldor, U. Electronic Structure at the Edge of the Periodic Table. Nucl. Phys. News 2019, 29, 16–20. [Google Scholar] [CrossRef]
- Fritzsche, S. Symbolic Evaluation of Expressions from Racah’s Algebra. Symmetry 2021, 13, 1558. [Google Scholar] [CrossRef]
- Safronova, M.S.; Safronova, U.I.; Kozlov, M.G. Atomic properties of actinide ions with particle-hole configurations. Phys. Rev. A 2018, 97, 012511. [Google Scholar] [CrossRef] [Green Version]
- Fritzsche, S. Level Structure and Properties of Open f-Shell Elements. Atoms 2022, 10, 7. [Google Scholar] [CrossRef]
- Dzuba, V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry 2020, 12, 1950. [Google Scholar] [CrossRef]
- Kahl, E.; Berengut, J. Ambit: A programme for high-precision relativistic atomic structure calculations. Comput. Phys. Commun. 2019, 238, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Flambaum, V.V.; Roberts, B.M. Calculations of the atomic structure for the low-lying states of actinium. Phys. Rev. A 2019, 100, 022504. [Google Scholar] [CrossRef] [Green Version]
- Allehabi, S.O.; Li, J.; Dzuba, V.; Flambaum, V. Theoretical study of electronic structure of erbium and fermium. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107137. [Google Scholar] [CrossRef]
- Li, J.; Dzuba, V. Theoretical study of the spectroscopic properties of mendelevium (Z = 101). J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106943. [Google Scholar] [CrossRef] [Green Version]
- Kahl, E.V.; Berengut, J.C.; Laatiaoui, M.; Eliav, E.; Borschevsky, A. High-precision ab initio calculations of the spectrum of Lr+. Phys. Rev. A 2019, 100, 062505. [Google Scholar] [CrossRef] [Green Version]
- Kahl, E.V.; Raeder, S.; Eliav, E.; Borschevsky, A.; Berengut, J.C. Ab initio calculations of the spectrum of lawrencium. Phys. Rev. A 2021, 104, 052810. [Google Scholar] [CrossRef]
- Ramanantoanina, H.; Borschevsky, A.; Block, M.; Laatiaoui, M. Electronic structure of Lr+ (Z = 103) from ab initio calculations. Atoms 2022, 10, 48. [Google Scholar] [CrossRef]
- Ramanantoanina, H.; Borschevsky, A.; Block, M.; Laatiaoui, M. Electronic structure of Rf+ (Z = 104) from ab initio calculations. Phys. Rev. A 2021, 104, 022813. [Google Scholar] [CrossRef]
- Allehabi, S.O.; Dzuba, V.A.; Flambaum, V.V. Theoretical study of the electronic structure of hafnium (Hf,Z = 72) and rutherfordium (Rf,Z = 104) atoms and their ions: Energy levels and hyperfine-structure constants. Phys. Rev. A 2021, 104, 052811. [Google Scholar] [CrossRef]
- Lackenby, B.G.C.; Dzuba, V.A.; Flambaum, V.V. Calculation of atomic spectra and transition amplitudes for the superheavy element Db (Z = 105). Phys. Rev. A 2018, 98, 022518. [Google Scholar] [CrossRef] [Green Version]
- Sewtz, M.; Backe, H.; Dretzke, A.; Kube, G.; Lauth, W.; Schwamb, P.; Eberhardt, K.; Grüning, C.; Thörle, P.; Trautmann, N.; et al. First Observation of Atomic Levels for the Element Fermium (Z = 100). Phys. Rev. Lett. 2003, 90, 163002. [Google Scholar] [CrossRef] [Green Version]
- Backe, H.; Dretzke, A.; Fritzsche, S.; Haire, R.G.; Kunz, P.; Lauth, W.; Sewtz, M.; Trautmann, N. Laser Spectroscopic Investigation of the Element Fermium (Z = 100). Hyperfine Interact. 2005, 162, 3–14. [Google Scholar] [CrossRef]
- Fritzsche, S. On the accuracy of valence–shell computations for heavy and super–heavy elements. Eur. Phys. J. D 2005, 33, 15–21. [Google Scholar] [CrossRef]
- Borschevsky, A.; Eliav, E.; Vilkas, M.J.; Ishikawa, Y.; Kaldor, U. Predicted spectrum of atomic nobelium. Phys. Rev. A 2007, 75, 042514. [Google Scholar] [CrossRef]
- Indelicato, P.; Santos, J.P.; Boucard, S.; Desclaux, J.P. QED and relativistic corrections in superheavy elements. Eur. Phys. J. D 2007, 45, 155–170. [Google Scholar] [CrossRef]
- Liu, Y.; Hutton, R.; Zou, Y. Atomic structure of the super-heavy element No I (Z = 102). Phys. Rev. A 2007, 76, 062503. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Safronova, M.S.; Safronova, U.I. Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A 2014, 90, 012504. [Google Scholar] [CrossRef] [Green Version]
- Laatiaoui, M.; Lauth, W.; Backe, H.; Block, M.; Ackermann, D.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; van Duppen, P.; Even, J.; et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 2016, 538, 495–498. [Google Scholar] [CrossRef]
- Lackenby, B.G.C.; Dzuba, V.A.; Flambaum, V.V. Atomic structure calculations of superheavy noble element oganesson (Z = 118). Phys. Rev. A 2018, 98, 042512. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Pašteka, L.F.; Eliav, E.; Borschevsky, A. Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method. In New Electron Correlation Methods and Their Applications, and Use of Atomic Orbitals with Exponential Asymptotes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–123. [Google Scholar] [CrossRef]
- Smits, O.R.; Mewes, J.M.; Jerabek, P.; Schwerdtfeger, P. Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas. Angew. Chem. Int. Ed. 2020, 59, 23636–23640. [Google Scholar] [CrossRef]
- Sato, T.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, C.E.; Eberhardt, K.; Eliav, E.; et al. Measurement of the first ionization potential of lawrencium, element 103. Nature 2015, 520, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.K.; Asai, M.; Borschevsky, A.; Beerwerth, R.; Kaneya, Y.; Makii, H.; Mitsukai, A.; Nagame, Y.; Osa, A.; Toyoshima, A.; et al. First ionization potentials of Fm, Md, No, and Lr: Verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 2018, 140, 14609–14613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlov, M.; Safronova, M.; López-Urrutia, J.C.; Schmidt, P. Highly charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef] [Green Version]
- Porsev, S.G.; Safronova, U.I.; Safronova, M.S.; Schmidt, P.O.; Bondarev, A.I.; Kozlov, M.G.; Tupitsyn, I.I.; Cheung, C. Optical clocks based on the Cf15+ and Cf17+ ions. Phys. Rev. A 2020, 102, 012802. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.9); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 26 April 2022).
- Kramida, A. Update of Atomic Data for the First Three Spectra of Actinium. Atoms 2022, 10, 42. [Google Scholar] [CrossRef]
- Block, M.; Laatiaoui, M.; Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 2021, 116, 103834. [Google Scholar] [CrossRef]
- Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Droese, C.; Düllmann, C.E.; Even, J.; Ferrer, R.; Giacoppo, F.; et al. Precision Measurement of the First Ionization Potential of Nobelium. Phys. Rev. Lett. 2018, 120, 263003. [Google Scholar] [CrossRef]
- Warbinek, J.; Andelic, B.; Block, M.; Chhetri, P.; Claessens, A.; Ferrer, R.; Giacoppo, F.; Kaleja, O.; Kieck, T.; Kim, E.; et al. Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. Atoms 2022, 10, 41. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Buchachenko, A.A.; Viehland, L.A. Laser Resonance Chromatography of Superheavy Elements. Phys. Rev. Lett. 2020, 125, 023002. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Buchachenko, A.A.; Viehland, L.A. Exploiting transport properties for the detection of optical pumping in heavy ions. Phys. Rev. A 2020, 102, 013106. [Google Scholar] [CrossRef]
- Romero-Romero, E.; Block, M.; Kim, E.; Nothhelfer, S.; Raeder, S.; Ramanantoanina, H.; Rickert, E.; Schneider, J.; Sikora, P.; Laatiaoui, M. A progress report on Laser Resonance Chromatography. Atoms 2022. manuscript in preparation. [Google Scholar]
- Rickert, E.; Backe, H.; Block, M.; Laatiaoui, M.; Lauth, W.; Raeder, S.; Schneider, J.; Schneider, F. Ion Mobilities for Heaviest Element Identification. Hyperfine Interact. 2020, 241, 49. [Google Scholar] [CrossRef] [Green Version]
- Cheal, B.; Flanagan, K.T. Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G Nucl. Part. Phys. 2010, 37, 113101. [Google Scholar] [CrossRef]
- Campbell, P.; Moore, I.; Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 2016, 86, 127–180. [Google Scholar] [CrossRef]
- Voss, A.; Sonnenschein, V.; Campbell, P.; Cheal, B.; Kron, T.; Moore, I.D.; Pohjalainen, I.; Raeder, S.; Trautmann, N.; Wendt, K. High-resolution laser spectroscopy of long-lived plutonium isotopes. Phys. Rev. A 2017, 95, 032506. [Google Scholar] [CrossRef] [Green Version]
- Raggio, A.; Pohjalainen, I.; Moore, I.D. Observation of Collisional De-Excitation Phenomena in Plutonium. Atoms 2022, 10, 40. [Google Scholar] [CrossRef]
- Zhang, K.; Studer, D.; Weber, F.; Gadelshin, V.M.; Kneip, N.; Raeder, S.; Budker, D.; Wendt, K.; Kieck, T.; Porsev, S.G.; et al. Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium. Phys. Rev. Lett. 2020, 125, 073001. [Google Scholar] [CrossRef]
- Verstraelen, E.; Teigelhöfer, A.; Ryssens, W.; Ames, F.; Barzakh, A.; Bender, M.; Ferrer, R.; Goriely, S.; Heenen, P.H.; Huyse, M.; et al. Search for octupole-deformed actinium isotopes using resonance ionization spectroscopy. Phys. Rev. C 2019, 100, 044321. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 2017, 8, 14520. [Google Scholar] [CrossRef] [Green Version]
- Granados, C.; Creemers, P.; Ferrer, R.; Gaffney, L.P.; Gins, W.; de Groote, R.; Huyse, M.; Kudryavtsev, Y.; Martínez, Y.; Raeder, S.; et al. In-gas laser ionization and spectroscopy of actinium isotopes near the N = 126 closed shell. Phys. Rev. C 2017, 96, 054331. [Google Scholar] [CrossRef] [Green Version]
- Weber, F.; Düllmann, C.E.; Gadelshin, V.; Kneip, N.; Oberstedt, S.; Raeder, S.; Runke, J.; Mokry, C.; Thörle-Pospiech, P.; Studer, D.; et al. Probing the Atomic Structure of Californium by Resonance Ionization Spectroscopy. Atoms 2022, 10, 51. [Google Scholar] [CrossRef]
- Nothhelfer, S.; Albrecht-Schönzart, T.E.; Block, M.; Chhetri, P.; Düllmann, C.E.; Ezold, J.G.; Gadelshin, V.; Gaiser, A.; Giacoppo, F.; Heinke, R.; et al. Nuclear structure investigations of Es253-255 by laser spectroscopy. Phys. Rev. C 2022, 105, l021302. [Google Scholar] [CrossRef]
- Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; et al. Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy. Phys. Rev. Lett. 2018, 120, 232503. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, Y.; Ferrer, R.; Huyse, M.; den Bergh, P.V.; Duppen, P.V. The in-gas-jet laser ion source: Resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 297, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Zadvornaya, A.; Creemers, P.; Dockx, K.; Ferrer, R.; Gaffney, L.; Gins, W.; Granados, C.; Huyse, M.; Kudryavtsev, Y.; Laatiaoui, M.; et al. Characterization of Supersonic Gas Jets for High-Resolution Laser Ionization Spectroscopy of Heavy Elements. Phys. Rev. X 2018, 8, 041008. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, R.; Verlinde, M.; Verstraelen, E.; Claessens, A.; Huyse, M.; Kraemer, S.; Kudryavtsev, Y.; Romans, J.; den Bergh, P.V.; Duppen, P.V.; et al. Hypersonic nozzle for laser-spectroscopy studies at 17 K characterized by resonance-ionization-spectroscopy-based flow mapping. Phys. Rev. Res. 2021, 3, 043041. [Google Scholar] [CrossRef]
- Piot, J. Studying Nuclear Structure at the extremes with S3. EPJ Web Conf. 2018, 178, 02027. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, R.; Bastin, B.; Boilley, D.; Creemers, P.; Delahaye, P.; Liénard, E.; Fléchard, X.; Franchoo, S.; Ghys, L.; Huyse, M.; et al. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Romans, J.; Ajayakumar, A.; Authier, M.; Boumard, F.; Caceres, L.; Cam, J.F.; Claessens, A.; Damoy, S.; Delahaye, P.; Desrues, P.; et al. First Offline Results from the S3 Low-Energy Branch. Atoms 2022, 10, 21. [Google Scholar] [CrossRef]
- Papadakis, P.; Liimatainen, J.; Sarén, J.; Moore, I.; Eronen, T.; Partanen, J.; Pohjalainen, I.; Rinta-Antila, S.; Tuunanen, J.; Uusitalo, J. The MARA-LEB ion transport system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 286–289. [Google Scholar] [CrossRef]
- Raeder, S.; Block, M.; Chhetri, P.; Ferrer, R.; Kraemer, S.; Kron, T.; Laatiaoui, M.; Nothhelfer, S.; Schneider, F.; Duppen, P.V.; et al. A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 272–276. [Google Scholar] [CrossRef]
- Münzberg, D.; Block, M.; Claessens, A.; Ferrer, R.; Laatiaoui, M.; Lantis, J.; Nothhelfer, S.; Raeder, S.; Van Duppen, P. Resolution characterizations of JetRIS in Mainz using 164Dy. Atoms 2022, 10, 57. [Google Scholar] [CrossRef]
- Verlinde, M.; Ferrer, R.; Claessens, A.; Granados, C.A.; Kraemer, S.; Kudryavtsev, Y.; Li, D.; den Bergh, P.V.; Duppen, P.V.; Verstraelen, E. Single-longitudinal-mode pumped pulsed-dye amplifier for high-resolution laser spectroscopy. Rev. Sci. Instrum. 2020, 91, 103002. [Google Scholar] [CrossRef] [PubMed]
- Raeder, S.; Ferrer, R.; Granados, C.; Huyse, M.; Kron, T.; Kudryavtsev, Y.; Lecesne, N.; Piot, J.; Romans, J.; Savajols, H.; et al. Performance of Dye and Ti:sapphire laser systems for laser ionization and spectroscopy studies at S3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 86–95. [Google Scholar] [CrossRef]
- Sonnenschein, V.; Ohashi, M.; Tomita, H.; Iguchi, T. A direct diode pumped continuous-wave Ti:sapphire laser as seed of a pulsed amplifier for high-resolution resonance ionization spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 512–514. [Google Scholar] [CrossRef]
- Dobaczewski, J.; Engel, J.; Kortelainen, M.; Becker, P. Correlating Schiff Moments in the Light Actinides with Octupole Moments. Phys. Rev. Lett. 2018, 121, 232501. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, R.F.G.; Berger, R.; Billowes, J.; Binnersley, C.L.; Bissell, M.L.; Breier, A.A.; Brinson, A.J.; Chrysalidis, K.; Cocolios, T.E.; Cooper, B.S.; et al. Spectroscopy of short-lived radioactive molecules. Nature 2020, 581, 396–400. [Google Scholar] [CrossRef]
- von der Wense, L.; Seiferle, B.; Laatiaoui, M.; Neumayr, J.B.; Maier, H.J.; Wirth, H.F.; Mokry, C.; Runke, J.; Eberhardt, K.; Düllmann, C.E.; et al. Direct detection of the 229Th nuclear clock transition. Nature 2016, 533, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Seiferle, B.; von der Wense, L.; Bilous, P.V.; Amersdorffer, I.; Lemell, C.; Libisch, F.; Stellmer, S.; Schumm, T.; Düllmann, C.E.; Pálffy, A.; et al. Energy of the 229Th nuclear clock transition. Nature 2019, 573, 243–246. [Google Scholar] [CrossRef] [Green Version]
- Sikorsky, T.; Geist, J.; Hengstler, D.; Kempf, S.; Gastaldo, L.; Enss, C.; Mokry, C.; Runke, J.; Düllmann, C.E.; Wobrauschek, P.; et al. Measurement of the Th229 Isomer Energy with a Magnetic Microcalorimeter. Phys. Rev. Lett. 2020, 125, 142503. [Google Scholar] [CrossRef]
- Peik, E.; Schumm, T.; Safronova, M.S.; Pálffy, A.; Weitenberg, J.; Thirolf, P.G. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 2021, 6, 034002. [Google Scholar] [CrossRef]
- Thirolf, P.G.; Seiferle, B.; Wense, L.V. The Thorium-Isomer: Heartbeat for a Nuclear Clock. Nucl. Phys. News 2021, 31, 13–18. [Google Scholar] [CrossRef]
- Beeks, K.; Sikorsky, T.; Schumm, T.; Thielking, J.; Okhapkin, M.V.; Peik, E. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 2021, 3, 238–248. [Google Scholar] [CrossRef]
- Verlinde, M.; Kraemer, S.; Moens, J.; Chrysalidis, K.; Correia, J.G.; Cottenier, S.; Witte, H.D.; Fedorov, D.V.; Fedosseev, V.N.; Ferrer, R.; et al. Alternative approach to populate and study the Th229 nuclear clock isomer. Phys. Rev. C 2019, 100, 024315. [Google Scholar] [CrossRef] [Green Version]
- Seiferle, B.; Moritz, D.; Scharl, K.; Ding, S.; Zacherl, F.; Löbell, L.; Thirolf, P.G. Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms 2022, 10, 24. [Google Scholar] [CrossRef]
- Seiferle, B.; von der Wense, L.; Thirolf, P.G. Lifetime Measurement of the Th229 nuclear isomer. Phys. Rev. Lett. 2017, 118, 042501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkalya, E.V.; Si, R. Internal conversion of the low-energy Th229m isomer in the thorium anion. Phys. Rev. C 2020, 101, 054602. [Google Scholar] [CrossRef]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A. Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer. Phys. Rev. Lett. 2011, 106, 223001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielking, J.; Okhapkin, M.V.; Głowacki, P.; Meier, D.M.; von der Wense, L.; Seiferle, B.; Düllmann, C.E.; Thirolf, P.G.; Peik, E. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 2018, 556, 321–325. [Google Scholar] [CrossRef]
- Hotchkis, M.; Child, D.; Zorko, B. Actinides AMS for nuclear safeguards and related applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1257–1260. [Google Scholar] [CrossRef]
- Bosco, H.; Hamann, L.; Kneip, N.; Raiwa, M.; Weiss, M.; Wendt, K.; Walther, C. New horizons in microparticle forensics: Actinide imaging and detection of 238 Pu and 242m Am in hot particles. Sci. Adv. 2021, 7, 44. [Google Scholar] [CrossRef]
- Kneip, N.; Düllmann, C.E.; Gadelshin, V.; Heinke, R.; Mokry, C.; Raeder, S.; Runke, J.; Studer, D.; Trautmann, N.; Weber, F.; et al. Highly selective two-step laser ionization schemes for the analysis of actinide mixtures. Hyperfine Interact. 2020, 241, 45. [Google Scholar] [CrossRef] [Green Version]
- Raeder, S.; Kneip, N.; Reich, T.; Studer, D.; Trautmann, N.; Wendt, K. Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements. Radiochim. Acta 2019, 107, 645–652. [Google Scholar] [CrossRef]
- Liu, Y.; Stracener, D. High efficiency resonance ionization of thorium. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 462, 95–101. [Google Scholar] [CrossRef]
- Galindo-Uribarri, A.; Liu, Y.; Romero, E.R.; Stracener, D.W. High efficiency laser resonance ionization of plutonium. Sci. Rep. 2021, 11, 23432. [Google Scholar] [CrossRef]
- Schönenbach, D.; Berg, F.; Breckheimer, M.; Hagenlocher, D.; Schönberg, P.; Haas, R.; Amayri, S.; Reich, T. Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage. Anal. Bioanal. Chem. 2021, 413, 3987–3997. [Google Scholar] [CrossRef]
- Savina, M.R.; Isselhardt, B.H.; Trappitsch, R. Simultaneous Isotopic Analysis of U, Pu, and Am in Spent Nuclear Fuel by Resonance Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 9505–9512. [Google Scholar] [CrossRef]
- Dockx, K.; Cocolios, T.E.; Stora, T. ISOL Technique for the Production of 225Ac at CERN-MEDICIS. J. Med Imaging Radiat. Sci. 2019, 50, S92. [Google Scholar] [CrossRef]
- Duchemin, C.; Ramos, J.P.; Stora, T.; Ahmed, E.; Aubert, E.; Audouin, N.; Barbero, E.; Barozier, V.; Bernardes, A.P.; Bertreix, P.; et al. CERN-MEDICIS: A Review Since Commissioning in 2017. Front. Med. 2021, 8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laatiaoui, M.; Raeder, S. New Developments in the Production and Research of Actinide Elements. Atoms 2022, 10, 61. https://doi.org/10.3390/atoms10020061
Laatiaoui M, Raeder S. New Developments in the Production and Research of Actinide Elements. Atoms. 2022; 10(2):61. https://doi.org/10.3390/atoms10020061
Chicago/Turabian StyleLaatiaoui, Mustapha, and Sebastian Raeder. 2022. "New Developments in the Production and Research of Actinide Elements" Atoms 10, no. 2: 61. https://doi.org/10.3390/atoms10020061
APA StyleLaatiaoui, M., & Raeder, S. (2022). New Developments in the Production and Research of Actinide Elements. Atoms, 10(2), 61. https://doi.org/10.3390/atoms10020061