Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions
Abstract
:1. Introduction
2. Theory
3. Method of Evaluation
4. Results and Discussion
4.1. Magic Wavelengths
4.1.1. Mg
4.1.2. Ca
4.1.3. Sr
4.1.4. Ba
4.2. Tune-Out Wavelengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.L.; Zhu, M.; Buch, P. Prospects for using laser-prepared atomic fountains for optical frequency standards applications. JOSA B 1989, 6, 2194–2205. [Google Scholar] [CrossRef]
- Kosteleckỳ, V.A.; Vargas, A.J. Lorentz and C P T tests with clock-comparison experiments. Phys. Rev. D 2018, 98, 036003. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.; Bennett, S.; Cho, D.; Masterson, B.; Roberts, J.; Tanner, C.; Wieman, C. Measurement of parity nonconservation and an anapole moment in cesium. Science 1997, 275, 1759–1763. [Google Scholar] [CrossRef] [Green Version]
- Tiecke, T.; Thompson, J.D.; de Leon, N.P.; Liu, L.; Vuletić, V.; Lukin, M.D. Nanophotonic quantum phase switch with a single atom. Nature 2014, 508, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Xiaxing, X.; Mouqi, H.; Youyuan, Z.; Zhiming, Z. The parity non-conservation E1 matrix of barium-a semi-empirical calculation. J. Phys. B Mol. Opt. Phys. 1990, 23, 4239. [Google Scholar] [CrossRef]
- Berengut, J.C.; Dzuba, V.A.; Flambaum, V.V. Isotope-shift calculations for atoms with one valence electron. Phys. Rev. A 2003, 68, 022502. [Google Scholar] [CrossRef] [Green Version]
- Fortier, T.M.; Ashby, N.; Bergquist, J.C.; Delaney, M.J.; Diddams, S.A.; Heavner, T.P.; Hollberg, L.; Itano, W.M.; Jefferts, S.R.; Kim, K.; et al. Precision Atomic Spectroscopy for Improved Limits on Variation of the Fine Structure Constant and Local Position Invariance. Phys. Rev. Lett. 2007, 98, 070801. [Google Scholar] [CrossRef] [Green Version]
- Roos, C.F.; Riebe, M.; Haffner, H.; Hansel, W.; Benhelm, J.; Lancaster, G.P.; Becher, C.; Schmidt-Kaler, F.; Blatt, R. Control and measurement of three-qubit entangled states. Science 2004, 304, 1478–1480. [Google Scholar] [CrossRef] [Green Version]
- Kajita, M.; Li, Y.; Matsubara, K.; Hayasaka, K.; Hosokawa, M. Prospect of optical frequency standard based on a 43Ca+ ion. Phys. Rev. A 2005, 72, 043404. [Google Scholar] [CrossRef]
- Enderlein, M.; Huber, T.; Schneider, C.; Schaetz, T. Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 2012, 109, 233004. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.w.; Hume, D.; Koelemeij, J.; Wineland, D.J.; Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 2010, 104, 070802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champenois, C.; Marciante, M.; Pedregosa-Gutierrez, J.; Houssin, M.; Knoop, M.; Kajita, M. Ion ring in a linear multipole trap for optical frequency metrology. Phys. Rev. A 2010, 81, 043410. [Google Scholar] [CrossRef] [Green Version]
- Katori, H.; Ido, T.; Kuwata-Gonokami, M. Optimal design of dipole potentials for efficient loading of Sr atoms. J. Phys. Soc. Jpn. 1999, 68, 2479–2482. [Google Scholar] [CrossRef]
- Liu, P.L.; Huang, Y.; Bian, W.; Shao, H.; Guan, H.; Tang, Y.B.; Li, C.B.; Mitroy, J.; Gao, K.L. Measurement of Magic Wavelengths for the 40Ca+ Clock Transition. Phys. Rev. Lett. 2015, 114, 223001. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Guan, H.; Li, C.; Zhang, H.; Zhang, B.; Wang, M.; Tang, L.; Shi, T.; Gao, K. Measurement of infrared magic wavelength for an all-optical trapping 40Ca+ ion clock. arXiv 2022, arXiv:2202.07828. [Google Scholar]
- Kaur, J.; Singh, S.; Arora, B.; Sahoo, B. Magic wavelengths in the alkaline-earth-metal ions. Phys. Rev. A 2015, 92. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Enderlein, M.; Huber, T.; Schätz, T. Optical trapping of an ion. Nat. Photonics 2010, 4, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Sackett, C.; Kielpinski, D.; King, B.; Langer, C.; Meyer, V.; Myatt, C.; Rowe, M.; Turchette, Q.; Itano, W.; Wineland, D.; et al. Experimental entanglement of four particles. Nature 2000, 404, 256–259. [Google Scholar] [CrossRef]
- Tang, Y.B.; Qiao, H.X.; Shi, T.y.; Mitroy, J. Dynamic polarizabilities for the low lying states of Ca+. Phys. Rev. A 2013, 87, 042517. [Google Scholar] [CrossRef] [Green Version]
- Ruffoni, M.; Den Hartog, E.; Lawler, J.; Brewer, N.; Lind, K.; Nave, G.; Pickering, J. Fe I oscillator strengths for the Gaia-ESO survey. Mon. Not. R. Astron. Soc. 2014, 441, 3127–3136. [Google Scholar] [CrossRef] [Green Version]
- Wittkowski, M. Fundamental stellar parameters Technology roadmap for future interferometric facilities. In Bulletin de la Sociètè Royale des Sciences de Liège, Proceedings of the European Interferometry Initiative Workshop Organized in the Context of the 2005 Joint European and National Astronomy Meeting “Distant Worlds”, Liège, Belgium, 6–8 July 2005; Surdej, J., Caro, D., Detal, A., Eds.; Liège University, Institute of Astrophysics: Liège, Belgium, 2005; Volume 74, pp. 165–181. [Google Scholar]
- LeBlanc, L.; Thywissen, J. Species-specific optical lattices. Phys. Rev. A 2007, 75, 053612. [Google Scholar] [CrossRef] [Green Version]
- Catani, J.; Barontini, G.; Lamporesi, G.; Rabatti, F.; Thalhammer, G.; Minardi, F.; Stringari, S.; Inguscio, M. Entropy Exchange in a Mixture of Ultracold Atoms. Phys. Rev. Lett. 2009, 103, 140401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Corcovilos, T.A.; Kumar, A.; Weiss, D.S. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice. Phys. Rev. Lett. 2015, 115, 043003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotochigova, S.; Tiesinga, E. Controlling polar molecules in optical lattices. Phys. Rev. A 2006, 73, 041405. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Abadal, A.; Choi, J.y.; Zeiher, J.; Hollerith, S.; Rui, J.; Bloch, I.; Gross, C. Many-Body Delocalization in the Presence of a Quantum Bath. Phys. Rev. X 2019, 9, 041014. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, W.F.; Trubko, R.; Hromada, I.; Cronin, A.D. Measurement of a Wavelength of Light for Which the Energy Shift for an Atom Vanishes. Phys. Rev. Lett. 2012, 109, 243004. [Google Scholar] [CrossRef] [Green Version]
- Herold, C.D.; Vaidya, V.D.; Li, X.; Rolston, S.L.; Porto, J.V.; Safronova, M.S. Precision Measurement of Transition Matrix Elements via Light Shift Cancellation. Phys. Rev. Lett. 2012, 109, 243003. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.; Makrides, C.; Kotochigova, S. External field control of spin-dependent rotational decoherence of ultracold polar molecules. Mol. Phys. 2013, 111, 1731–1737. [Google Scholar] [CrossRef]
- Henson, B.M.; Khakimov, R.I.; Dall, R.G.; Baldwin, K.G.H.; Tang, L.Y.; Truscott, A.G. Precision Measurement for Metastable Helium Atoms of the 413 nm Tune-Out Wavelength at Which the Atomic Polarizability Vanishes. Phys. Rev. Lett. 2015, 115, 043004. [Google Scholar] [CrossRef] [Green Version]
- Kao, W.; Tang, Y.; Burdick, N.Q.; Lev, B.L. Anisotropic dependence of tune-out wavelength near Dy 741-nm transition. Opt. Express 2017, 25, 3411–3419. [Google Scholar] [CrossRef] [Green Version]
- Heinz, A.; Park, A.J.; Šantić, N.; Trautmann, J.; Porsev, S.G.; Safronova, M.S.; Bloch, I.; Blatt, S. State-Dependent Optical Lattices for the Strontium Optical Qubit. Phys. Rev. Lett. 2020, 124, 203201. [Google Scholar] [CrossRef] [PubMed]
- Arora, B.; Safronova, M.; Clark, C.W. Tune-out wavelengths of alkali-metal atoms and their applications. Phys. Rev. A 2011, 84, 043401. [Google Scholar] [CrossRef] [Green Version]
- Bause, R.; Li, M.; Schindewolf, A.; Chen, X.Y.; Duda, M.; Kotochigova, S.; Bloch, I.; Luo, X.Y. Tune-Out and Magic Wavelengths for Ground-State 23Na40K Molecules. Phys. Rev. Lett. 2020, 125, 023201. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jiang, L.; Wang, X.; Zhang, D.H.; Xie, L.Y.; Dong, C.Z. Magic wavelengths of the Ca+ ion for circularly polarized light. Phys. Rev. A 2017, 96, 042503. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, L.; Wang, X.; Shaw, P.; Zhang, D.H.; Xie, L.Y.; Dong, C.Z. Magic wavelengths of Ca+ ion for linearly and circularly polarized light. J. Physics Conf. Ser. 2017, 875, 122003. [Google Scholar] [CrossRef]
- Chanu, S.R.; Koh, V.P.W.; Arnold, K.J.; Kaewuam, R.; Tan, T.R.; Zhang, Z.; Safronova, M.S.; Barrett, M.D. Magic wavelength of the Ba+138 6s S1/22–5d D5/22 clock transition. Phys. Rev. A 2020, 101, 042507. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, Y.; Wang, X.; Dong, C.Z.; Wu, Z. Tune-out and magic wavelengths of Ba+ ions. Phys. Rev. A 2021, 103, 032803. [Google Scholar] [CrossRef]
- Singh, S.; Sahoo, B.; Arora, B. Magnetic-sublevel-independent magic wavelengths: Application to Rb and Cs atoms. Phys. Rev. A 2016, 93, 063422. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Singh, S.; Arora, B.; Sahoo, B. Annexing magic and tune-out wavelengths to the clock transitions of the alkaline-earth-metal ions. Phys. Rev. A 2017, 95, 042501. [Google Scholar] [CrossRef] [Green Version]
- Sherman, J.A.; Koerber, T.W.; Markhotok, A.; Nagourney, W.; Fortson, E.N. Precision Measurement of Light Shifts in a Single Trapped Ba+ Ion. Phys. Rev. Lett. 2005, 94, 243001. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.K.; Wansbeek, L.W.; Jungmann, K.; Timmermans, R.G.E. Light shifts and electric dipole matrix elements in Ba+ and Ra+. Phys. Rev. A 2009, 79, 052512. [Google Scholar] [CrossRef]
- Beloy, K. Theory of the Ac Stark Effect on the Atomic Hyperfine Structure and Applications to Microwave Atomic Clocks; University of Nevada: Reno, NV, USA, 2009. [Google Scholar]
- Blundell, S.; Johnson, W.; Sapirstein, J. Relativistic all-order calculations of energies and matrix elements in cesium. Phys. Rev. A 1991, 43, 3407. [Google Scholar] [CrossRef] [PubMed]
- Safronova, M.; Johnson, W. All-order methods for relativistic atomic structure calculations. Adv. At. Mol. Opt. Phys. 2008, 55, 191–233. [Google Scholar]
- Sahoo, B.; Nandy, D.; Das, B.; Sakemi, Y. Correlation trends in the hyperfine structures of Fr 210, 212. Phys. Rev. A 2015, 91, 042507. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.; Das, B. Theoretical studies of the long lifetimes of the 6 d D 3/2, 5/2 2 states in Fr: Implications for parity-nonconservation measurements. Phys. Rev. A 2015, 92, 052511. [Google Scholar] [CrossRef]
- Safronova, M.; Johnson, W.; Derevianko, A. Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms. Phys. Rev. A 1999, 60, 4476. [Google Scholar] [CrossRef] [Green Version]
- Iskrenova-Tchoukova, E.; Safronova, M.S.; Safronova, U. High-precision study of Cs polarizabilities. J. Comput. Methods Sci. Eng. 2007, 7, 521–540. [Google Scholar] [CrossRef]
- Safronova, U.; Johnson, W.; Safronova, M. Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence. Phys. Rev. A 2007, 76, 042504. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Dar, D.F.; Sahoo, B.; Arora, B. Radiative transition properties of singly charged magnesium, calcium, strontium and barium ions. At. Data Nucl. Data Tables 2020, 137, 101381. [Google Scholar] [CrossRef]
- Arora, B.; Safronova, M.; Clark, C. Magic wavelengths for the np-ns transitions in alkali-metal atoms. Phys. Rev. A 2007, 76, 052509. [Google Scholar] [CrossRef] [Green Version]
- Ralchenko, Y. NIST atomic spectra database. Mem. Della Soc. Astron. Ital. Suppl. 2005, 8, 96. [Google Scholar]
- Barakhshan, P.; Marrs, A.; Bhosale, A.; Arora, B.; Eigenmann, R.; Safronova, M.S. Portal for High-Precision Atomic Data and Computation, (Version 2.0); University of Delaware: Newark, DE, USA. Available online: https://www.udel.edu/atom (accessed on 27 March 2022).
- Kaur, M.; Singh, S.; Sahoo, B.; Arora, B. Tune-out and magic wavelengths, and electric quadrupole transition properties of the singly charged alkaline-earth metal ions. At. Data Nucl. Data Tables 2021, 140, 101422. [Google Scholar] [CrossRef]
Resonance | Resonance | ||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jyoti; Kaur, H.; Arora, B.; Sahoo, B.K. Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions. Atoms 2022, 10, 72. https://doi.org/10.3390/atoms10030072
Jyoti, Kaur H, Arora B, Sahoo BK. Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions. Atoms. 2022; 10(3):72. https://doi.org/10.3390/atoms10030072
Chicago/Turabian StyleJyoti, Harpreet Kaur, Bindiya Arora, and Bijaya Kumar Sahoo. 2022. "Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions" Atoms 10, no. 3: 72. https://doi.org/10.3390/atoms10030072
APA StyleJyoti, Kaur, H., Arora, B., & Sahoo, B. K. (2022). Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions. Atoms, 10(3), 72. https://doi.org/10.3390/atoms10030072