Probing C60 Fullerenes from within Using Free Electron Lasers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Photoionization of C60 with High-Fluence X-ray FEL Pulses
3.2. Time-Resolved Photoionization of C60 with Mid-Fluence X-ray FEL Pulses
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berrah, N.; Bucksbaum, P.H. The Ultimate X-ray Machine. Sci. Am. 2014, 310, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Ahr, J.B.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 2007, 1, 336–342. [Google Scholar] [CrossRef]
- Duris, J.; Li, S.; Driver, T.; Champenois, E.G.; MacArthur, J.P.; Lutman, A.A.; Zhang, Z.; Rosenberger, P.; Aldrich, J.W.; Marinelli, A.; et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 2020, 14, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Berrah, N.; Fang, L.; Murphy, B.; Osipov, T.; Ueda, K.; Kukk, E.; Feifel, R.; van der Meulen, P.; Salen, P.; Schmidt, H.T.; et al. Double Core-Hole Spectroscopy for Chemical Analysis with an Intense X-Ray Femtosecond Laser. Proc. Natl. Acad. Sci. USA 2011, 108, 16912. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Kanter, E.P.; Krässig, B.; Li, Y.; March, A.M.; Pratt, S.T.; Santra, R.; Southworth, S.H.; Rohringer, N.; DiMauro, L.F.; et al. Femtosecond electronic response of atoms to ultraintense X-rays. Nature 2010, 466, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.O.; Campbell, E.E.B. Probing excited electronic states and ionisation mechanisms of fullerenes. Chem. Soc. Rev. 2013, 42, 5661–5671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Zha, J.; Petek, H. Atomlike, hollow-core-bound molecular orbitals of C60. Science 2008, 320, 359–362. [Google Scholar] [CrossRef]
- Mignolet, B.; Johansson, J.O.; Campbell, E.E.B. Probing rapidly ionizing super-atom molecular orbitals in C60: A computational and femtosecond photoelectron spectroscopy study. Chem. Phys. Chem. 2013, 14, 3332–3340. [Google Scholar] [CrossRef]
- Li, H.; Mignolet, B.; Wachter, G.; Skruszewicz, S.; Zherebtsov, S.; Süßmann, F.; Kessel, A.; Trushin, S.A.; Kling, N.G.; Kübel, M.; et al. Coherent Electronic Wave Packet Motion in C60 Controlled by the Waveform and Polarization of Few-Cycle Laser Fields. Phys. Rev. Lett. 2015, 114, 123004. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Mignolet, B.; Fang, L.; Osipov, T.; Wolf, T.; Wolf, J.A.; Sistrunk, E.; Gühr, M.; Remacle, R.; Berrah, N. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field. Sci. Rep. 2017, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, V.R.; Corkum, P.B.; Rayner, D.M. Internal laser-induced dipole force at work in C60 molecule. Phys. Rev. Lett. 2003, 91, 203004. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mignolet, B.; Wang, Z.; Betsch, K.J.; Carnes, K.D.; Ben-Itzhak, I.; Cocke, C.L.; Remacle, F.; Kling, M.F. Transition from SAMO to Rydberg State Ionization in C60 in Femtosecond Laser Fields. J. Phys. Chem. Lett. 2016, 7, 4677–4682. [Google Scholar] [CrossRef] [PubMed]
- Jaroń-Becker, A.; Becker, A.; Faisal, F.H.M. Single-active-electron ionization of C60 in intense laser pulses to high charge states. J. Chem. Phys. 2007, 126, 124310. [Google Scholar] [CrossRef] [PubMed]
- Lebeault, M.-A.; Baguenard, B.; Concina, B.; Calvo, F.; Climen, B.; Leépine, F.; Bordas, C. Decay of C60 by delayed ionization and C2 emission: Experiment and statistical modeling of kinetic energy release. J. Chem. Phys. 2012, 137, 054312. [Google Scholar] [CrossRef] [PubMed]
- Berrah, N.; Fang, L.; Osipov, T.; Jurek, Z.; Murphy, B.F.; Santra, R. Emerging photon technologies for probing ultrafast molecular dynamics. Faraday Disc. 2014, 171, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Canton, S.E.; Yencha, A.J.; Kukk, E.; Bozek, J.D.; Lopes, M.C.A.; Snell, G.; Berrah, N. Experimental Evidence of a Dynamic Jahn-Teller Effect in C60+. Phys. Rev. Lett. 2002, 89, 45502. [Google Scholar] [CrossRef] [Green Version]
- Duris, J.P.; MacArthur, J.P.; Glownia, J.M.; Li, S.; Vetter, S.; Miahnahri, A.; Coffee, R.; Hering, P.; Fry, A.; Welch, M.E.; et al. Controllable X-Ray Pulse Trains from Enhanced Self-Amplified Spontaneous Emission. Phys. Rev. Lett. 2021, 126, 104802. [Google Scholar] [CrossRef]
- Bucksbaum, P.; Berrah, N. Brighter and faster: The promise and challenge of the X-ray free-electron laser. Phys. Today 2015, 68, 26. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hoener, M.; Fang, L.; Kornilov, O.; Gessner, O.; Pratt, S.T.; Gühr, M.; Kanter, E.P.; Blaga, C.; Bostedt, C.; Bozek, J.D.; et al. Ultra-intense X-ray Induced Ionization, Dissociation and Frustrated Absorption in Molecular Nitrogen. Phys. Rev. Lett. 2010, 104, 253002. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.F.; Osipov, T.; Jurek, Z.; Fang, L.; Son, S.-K.; Mucke, M.; Eland, J.; Zhaunerchyk, V.; Feifel, R.; Avaldi, L.; et al. Femtosecond X-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 2014, 5, 4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutman, I.A.; Maxwell, T.J.; MacArthur, J.P.; Guetg, M.W.; Berrah, N.; Coffee, R.N.; Ding, Y.; Huang, Z.; Marinelli, A.; Moeller, S.; et al. Fresh-slice multicolour X-ray free-electron lasers. Nat. Photon. 2016, 10, 745. [Google Scholar] [CrossRef]
- Kumagai, Y.; Jurek, Z.; Xu, W.; Fukuzawa, H.; Motomura, K.; Iablonskyi, D.; Nagaya, K.; Wada, S.-I.; Mondal, S.; Tachibana, T.; et al. Radiation-induced chemical dynamics in Ar clusters exposed to strong X-ray pulses. Phys. Rev. Lett. 2011, 20, 223201. [Google Scholar] [CrossRef] [PubMed]
- Berrah, N.; Sanchez-Gonzalez, A.; Jurek, Z.; Obaid, R.; Xiong, H.; Squibb, R.J.; Osipov, T.; Lutman, A.; Fang, L.; Barillot, T.; et al. X-ray multiphoton ionization of molecules: Femtosecond-resolved observation of delayed fragmentation and evaporation of neutral atoms. Nat. Phys. 2019, 15, 1279. [Google Scholar] [CrossRef]
- LaForge, A.; Mishra, D.; Obaid, R.; Trost, F.; Meiste, S.; Lindenblatt, H.; Rosenberger, P.; Biswas, S.; Shashank, P.; Moshammer, R.; et al. XUV pump-probe of the shape resonance in C60. Phys. Rev. Lett. 2022. manuscript in preparation. [Google Scholar]
- Schnorr, K.; Augustin, S.; Saalmann, U.; Schmid, G.; Rouzee, A.; Obaid, R.; AlHaddad, A.; Berrah, N.; Blaga, C.; Bostedt, C.; et al. Visualizing the light-induced reshaping of C60 via X-ray diffraction. Science 2022. submitted, under review. [Google Scholar]
- Amusia, M.Y.; Baltenkov, A.S.; Krakov, B.G. Photodetachment of negative C60- ions. J. Phys. Lett. A 1998, 243, 99–105. [Google Scholar] [CrossRef]
- Bilodeau, R.C.; Gibson, N.D.; Walter, C.W.; Esteves-Macaluso, D.A.; Schippers, S.; Müller, A.; Phaneuf, R.A.; Aguilar, A.; Hoener, M.; Rost, J.M.; et al. Single-Photon Multiple-Detachment in Fullerene Negative Ions: Absolute Ionization Cross Sections and the Role of the Extra Electro. Phys. Rev. Lett. 2013, 111, 043003. [Google Scholar] [CrossRef]
- Scully, S.W.J.; Emmons, E.D.; Gharaibeh, M.F.; Phaneuf, R.A.; Kilcoyne, A.L.D.; Schlachter, A.S.; Schippers, S.; Müller, A.; Chakraborty, H.S.; Madjet, M.E.; et al. Photoexcitation of a volume plasmon in C60 ions. Phys. Rev. Lett. 2005, 94, 065503. [Google Scholar] [CrossRef]
- Wolf, T.J.A.; Sanchez, D.M.; Yang, J.; Parrish, R.M.; Nunes, J.P.F.; Centurion, M.; Coffee, R.; Cryan, J.P.; Gühr, M.; Hegazy, K.; et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 2019, 11, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Driver, T.; Rosenberger, P.; Champenois, E.G.; Duris, J.; Al-Haddad, A.; Averbukh, V.; Barnard, J.C.T.; Berrah, N.; Bostedt, C.; et al. Real-time Observation of Coherent Electron Motion by Attosecond Streaking of Auger-Meitner Decay. Science 2022, 375, 285–290. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrah, N. Probing C60 Fullerenes from within Using Free Electron Lasers. Atoms 2022, 10, 75. https://doi.org/10.3390/atoms10030075
Berrah N. Probing C60 Fullerenes from within Using Free Electron Lasers. Atoms. 2022; 10(3):75. https://doi.org/10.3390/atoms10030075
Chicago/Turabian StyleBerrah, Nora. 2022. "Probing C60 Fullerenes from within Using Free Electron Lasers" Atoms 10, no. 3: 75. https://doi.org/10.3390/atoms10030075
APA StyleBerrah, N. (2022). Probing C60 Fullerenes from within Using Free Electron Lasers. Atoms, 10(3), 75. https://doi.org/10.3390/atoms10030075