Relativistic Two-Photon Matrix Elements for Attosecond Delays
Abstract
:1. Introduction
2. Theory
2.1. The Dirac Equation
2.2. The Scattering Phase of the Photoelectron
2.3. Phase-Shifted Relativistic Coulomb Functions at Large Distances
3. Delay in Photoionization
3.1. The Wigner Delay
3.2. The Atomic Delay
4. Method
4.1. The Form of the Light–Matter Interaction
4.2. Diagrammatic Perturbation Theory
4.3. The Continuum–Continuum Transition
5. Results
5.1. A Light Element: Argon
5.2. Heavy Elements: Krypton and Xenon
5.3. Study of Continuum–Continuum Delay
5.4. Comparison with Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 1994, 49, 2117–2132. [Google Scholar] [CrossRef]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Itatani, J.; Quéré, F.; Yudin, G.L.; Ivanov, M.Y.; Krausz, F.; Corkum, P.B. Attosecond Streak Camera. Phys. Rev. Lett. 2002, 88, 173903. [Google Scholar] [CrossRef] [PubMed]
- Schultze, M.; Fiess, M.; Karpowicz, N.; Gagnon, J.; Korbman, M.; Hofstetter, M.; Neppl, S.; Cavalieri, A.L.; Komninos, Y.; Mercouris, T.; et al. Delay in Photoemission. Science 2010, 328, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Klünder, K.; Dahlström, J.M.; Gisselbrecht, M.; Fordell, T.; Swoboda, M.; Guénot, D.; Johnsson, P.; Caillat, J.; Mauritsson, J.; Maquet, A.; et al. Probing Single-Photon Ionization on the Attosecond Time Scale. Phys. Rev. Lett. 2011, 106, 143002. [Google Scholar] [CrossRef] [PubMed]
- Guénot, D.; Klünder, K.; Arnold, C.L.; Kroon, D.; Dahlström, J.M.; Miranda, M.; Fordell, T.; Gisselbrecht, M.; Johnsson, P.; Mauritsson, J.; et al. Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section minimum in Ar. Phys. Rev. A 2012, 85, 053424. [Google Scholar] [CrossRef]
- Palatchi, C.; Dahlström, J.M.; Kheifets, A.S.; Ivanov, I.A.; Canaday, D.M.; Agostini, P.; DiMauro, L.F. Atomic delay in helium, neon, argon and krypton. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 245003. [Google Scholar] [CrossRef]
- Guénot, D.; Kroon, D.; Balogh, E.; Larsen, E.W.; Kotur, M.; Miranda, M.; Fordell, T.; Johnsson, P.; Mauritsson, J.; Gisselbrecht, M.; et al. Measurements of relative photoemission time delays in noble gas atoms. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 245602. [Google Scholar] [CrossRef]
- Sabbar, M.; Heuser, S.; Boge, R.; Lucchini, M.; Carette, T.; Lindroth, E.; Gallmann, L.; Cirelli, C.; Keller, U. Resonance Effects in Photoemission Time Delays. Phys. Rev. Lett. 2015, 115, 133001. [Google Scholar] [CrossRef]
- Kotur, M.; Guénot, D.; Jimenez-Galan, A.; Kroon, D.; Larsen, E.W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C.L.; et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 2016, 7, 10566. [Google Scholar] [CrossRef]
- Gruson, V.; Barreau, L.; Jiménez-Galan, Á.; Risoud, F.; Caillat, J.; Maquet, A.; Carré, B.; Lepetit, F.; Hergott, J.F.; Ruchon, T.; et al. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science 2016, 354, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Isinger, M.; Squibb, R.; Busto, D.; Zhong, S.; Harth, A.; Kroon, D.; Nandi, S.; Arnold, C.L.; Miranda, M.; Dahlström, J.; et al. Photoionization in the time and frequency domain. Science 2017, 358, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, C.; Marante, C.; Heuser, S.; Petersson, C.; Galán, Á.J.; Argenti, L.; Zhong, S.; Busto, D.; Isinger, M.; Nandi, S.; et al. Anisotropic photoemission time delays close to a Fano resonance. Nat. Commun. 2018, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Barreau, L.; Petersson, C.L.M.; Klinker, M.; Camper, A.; Marante, C.; Gorman, T.; Kiesewetter, D.; Argenti, L.; Agostini, P.; González-Vázquez, J.; et al. Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements. Phys. Rev. Lett. 2019, 122, 253203. [Google Scholar] [CrossRef]
- Alexandridi, C.; Platzer, D.; Barreau, L.; Busto, D.; Zhong, S.; Turconi, M.; Neoričić, L.; Laurell, H.; Arnold, C.L.; Borot, A.; et al. Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon. Phys. Rev. Res. 2021, 3, L012012. [Google Scholar] [CrossRef]
- Drescher, L.; Witting, T.; Kornilov, O.; Vrakking, M.J.J. Phase dependence of resonant and antiresonant two-photon excitations. Phys. Rev. A 2022, 105, L011101. [Google Scholar] [CrossRef]
- Caillat, J.; Maquet, A.; Haessler, S.; Fabre, B.; Ruchon, T.; Salières, P.; Mairesse, Y.; Taïeb, R. Attosecond Resolved Electron Release in Two-Color Near-Threshold Photoionization of N2. Phys. Rev. Lett. 2011, 106, 093002. [Google Scholar] [CrossRef] [PubMed]
- Huppert, M.; Jordan, I.; Baykusheva, D.; von Conta, A.; Wörner, H.J. Attosecond Delays in Molecular Photoionization. Phys. Rev. Lett. 2016, 117, 093001. [Google Scholar] [CrossRef]
- Loriot, V.; Marciniak, A.; Nandi, S.; Karras, G.; Hervé, M.; Constant, E.; Plésiat, E.; Palacios, A.; Martín, F.; Lépine, F. High harmonic generation-2ω attosecond stereo-photoionization interferometry in N 2. J. Phys. Photonics 2020, 2, 024003. [Google Scholar] [CrossRef]
- Nandi, S.; Plésiat, E.; Zhong, S.; Palacios, A.; Busto, D.; Isinger, M.; Neoričić, L.; Arnold, C.L.; Squibb, R.J.; Feifel, R.; et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 2020, 6, eaba7762. [Google Scholar] [CrossRef]
- Kamalov, A.; Wang, A.L.; Bucksbaum, P.H.; Haxton, D.J.; Cryan, J.P. Electron correlation effects in attosecond photoionization of CO2. Phys. Rev. A 2020, 102, 023118. [Google Scholar] [CrossRef]
- Cavalieri, A.L.; Muller, N.; Uphues, T.; Yakovlev, V.S.; Baltuska, A.; Horvath, B.; Schmidt, B.; Blumel, L.; Holzwarth, R.; Hendel, S.; et al. Attosecond spectroscopy in condensed matter. Nature 2007, 449, 1029–1032. [Google Scholar] [CrossRef]
- Siek, F.; Neb, S.; Bartz, P.; Hensen, M.; Strüber, C.; Fiechter, S.; Torrent-Sucarrat, M.; Silkin, V.M.; Krasovskii, E.E.; Kabachnik, N.M.; et al. Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science 2017, 357, 1274–1277. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, S.; Saule, T.; Högner, M.; Cui, Y.; Yakovlev, V.S.; Pupeza, I.; Kleineberg, U. Attosecond intra-valence band dynamics and resonant-photoemission delays in W(110). Nat. Commun. 2021, 12, 3404. [Google Scholar] [CrossRef] [PubMed]
- Véniard, V.; Taïeb, R.; Maquet, A. Phase dependence of (N + 1)-color (N >1) ir-uv photoionization of atoms with higher harmonics. Phys. Rev. A 1996, 54, 721–728. [Google Scholar] [CrossRef]
- Toma, E.S.; Muller, H.G. Calculation of matrix elements for mixed extreme-ultraviolet–infrared two-photon above-threshold ionization of argon. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 3435. [Google Scholar] [CrossRef]
- Mauritsson, J.; Gaarde, M.B.; Schafer, K.J. Accessing properties of electron wave packets generated by attosecond pulse trains through time-dependent calculations. Phys. Rev. A 2005, 72, 013401. [Google Scholar] [CrossRef]
- Nagele, S.; Pazourek, R.; Feist, J.; Doblhoff-Dier, K.; Lemell, C.; Tőkési, K.; Burgdörfer, J. Time-resolved photoemission by attosecond streaking: Extraction of time information. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 081001. [Google Scholar] [CrossRef]
- Dahlström, J.M.; L’Huillier, A.; Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 183001. [Google Scholar] [CrossRef]
- Pazourek, R.; Nagele, S.; Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 2015, 87, 765–802. [Google Scholar] [CrossRef]
- Klarsfeld, S.; Maquet, A. Pade approximants and multiphonon ionisation of atomic hydrogen. J. Phys. B At. Mol. Phys. 1979, 12, L553. [Google Scholar] [CrossRef]
- Aymar, M.; Crance, M. Two-photon ionisation of atomic hydrogen in the presence of one-photon ionisation. J. Phys. B At. Mol. Phys. 1980, 13, L287. [Google Scholar] [CrossRef]
- Dahlström, J.; Guénot, D.; Klünder, K.; Gisselbrecht, M.; Mauritsson, J.; L’Huillier, A.; Maquet, A.; Taïeb, R. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 2013, 414, 53–64. [Google Scholar] [CrossRef]
- Ivanov, M.; Smirnova, O. How Accurate Is the Attosecond Streak Camera? Phys. Rev. Lett. 2011, 107, 213605. [Google Scholar] [CrossRef] [PubMed]
- Wigner, E.P. Lower Limit for the Energy Derivative of the Scattering Phase Shift. Phys. Rev. 1955, 98, 145–147. [Google Scholar] [CrossRef]
- Smith, F.T. Lifetime Matrix in Collision Theory. Phys. Rev. 1960, 118, 349–356. [Google Scholar] [CrossRef]
- Eisenbud, L. The Formal Properties of Nuclear Collisions. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1948. [Google Scholar]
- Cooper, J.W. Photoionization from Outer Atomic Subshells. A Model Study. Phys. Rev. 1962, 128, 681–693. [Google Scholar] [CrossRef]
- Baykusheva, D.; Wörner, H.J. Theory of attosecond delays in molecular photoionization. J. Chem. Phys. 2017, 146, 124306. [Google Scholar] [CrossRef]
- Benda, J.; Mašín, Z.; Gorfinkiel, J.D. Analysis of RABITT time delays using the stationary multiphoton molecular R-matrix approach. Phys. Rev. A 2022, 105, 053101. [Google Scholar] [CrossRef]
- Dahlström, J.M.; Carette, T.; Lindroth, E. Diagrammatic approach to attosecond delays in photoionization. Phys. Rev. A 2012, 86, 061402. [Google Scholar] [CrossRef]
- Dahlström, J.M.; Lindroth, E. Study of attosecond delays using perturbation diagrams and exterior complex scaling. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 124012. [Google Scholar] [CrossRef]
- Lindroth, E.; Dahlström, J.M. Attosecond delays in laser-assisted photodetachment from closed-shell negative ions. Phys. Rev. A 2017, 96, 013420. [Google Scholar] [CrossRef]
- Vinbladh, J.; Dahlström, J.M.; Lindroth, E. Many-body calculations of two-photon, two-color matrix elements for attosecond delays. Phys. Rev. A 2019, 100, 043424. [Google Scholar] [CrossRef]
- Kheifets, A.S.; Ivanov, I.A. Delay in Atomic Photoionization. Phys. Rev. Lett. 2010, 105, 233002. [Google Scholar] [CrossRef] [PubMed]
- Kheifets, A.S. Time delay in valence-shell photoionization of noble-gas atoms. Phys. Rev. A 2013, 87, 063404. [Google Scholar] [CrossRef]
- Amusia, M.Y. Atomic Photoeffect; Plenum Press: New York, NY, USA, 1990. [Google Scholar]
- Heuser, S.; Jiménez Galán, A.; Cirelli, C.; Marante, C.; Sabbar, M.; Boge, R.; Lucchini, M.; Gallmann, L.; Ivanov, I.; Kheifets, A.S.; et al. Angular dependence of photoemission time delay in helium. Phys. Rev. A 2016, 94, 063409. [Google Scholar] [CrossRef]
- Busto, D.; Vinbladh, J.; Zhong, S.; Isinger, M.; Nandi, S.; Maclot, S.; Johnsson, P.; Gisselbrecht, M.; L’Huillier, A.; Lindroth, E.; et al. Fano’s Propensity Rule in Angle-Resolved Attosecond Pump-Probe Photoionization. Phys. Rev. Lett. 2019, 123, 133201. [Google Scholar] [CrossRef]
- Fuchs, J.; Douguet, N.; Donsa, S.; Martin, F.; Burgdörfer, J.; Argenti, L.; Cattaneo, L.; Keller, U. Time delays from one-photon transitions in the continuum. Optica 2020, 7, 154–161. [Google Scholar] [CrossRef]
- Boll, D.I.R.; Martini, L.; Fojón, O.A. Analytical model for attosecond time delays and Fano’s propensity rules in the continuum. arXiv 2022. [Google Scholar] [CrossRef]
- Argenti, L.; Jiménez-Galán, A.; Caillat, J.; Taïeb, R.; Maquet, A.; Martín, F. Control of photoemission delay in resonant two-photon transitions. Phys. Rev. A 2017, 95, 043426. [Google Scholar] [CrossRef]
- Swoboda, M.; Fordell, T.; Klünder, K.; Dahlström, J.M.; Miranda, M.; Buth, C.; Schafer, K.J.; Mauritsson, J.; L’Huillier, A.; Gisselbrecht, M. Phase Measurement of Resonant Two-Photon Ionization in Helium. Phys. Rev. Lett. 2010, 104, 103003. [Google Scholar] [CrossRef]
- Kheifets, A.S.; Bray, A.W. RABBITT phase transition across the ionization threshold. Phys. Rev. A 2021, 103, L011101. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Lin, C.D. Theory of laser-assisted autoionization by attosecond light pulses. Phys. Rev. A 2005, 71, 060702. [Google Scholar] [CrossRef]
- Jimenez-Galan, A.; Argenti, L.; Martin, F. Modulation of Attosecond Beating in Resonant Two-Photon Ionization. Phys. Rev. Lett. 2014, 113, 263001. [Google Scholar] [CrossRef]
- Jiménez-Galán, A.; Martín, F.; Argenti, L. Two-photon finite-pulse model for resonant transitions in attosecond experiments. Phys. Rev. A 2016, 93, 023429. [Google Scholar] [CrossRef]
- Carette, T.; Dahlström, J.M.; Argenti, L.; Lindroth, E. Multiconfigurational Hartree-Fock close-coupling ansatz: Application to the argon photoionization cross section and delays. Phys. Rev. A 2013, 87, 023420. [Google Scholar] [CrossRef]
- Magrakvelidze, M.; Madjet, M.E.A.; Dixit, G.; Ivanov, M.; Chakraborty, H.S. Attosecond time delay in valence photoionization and photorecombination of argon: A time-dependent local-density-approximation study. Phys. Rev. A 2015, 91, 063415. [Google Scholar] [CrossRef]
- Sato, S.A.; Hübener, H.; Rubio, A.; De Giovannini, U. First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory. Eur. Phys. J. B 2018, 91, 126. [Google Scholar] [CrossRef]
- Amusia, M.; Ivanov, V.; Cherepkov, N.; Chernysheva, L. Interference effects in photoionization of noble gas atoms outer s-subshells. Phys. Lett. A 1972, 40, 361–362. [Google Scholar] [CrossRef]
- Kheifets, A.S.; Toffoli, D.; Decleva, P. Angular dependent time delay near correlation induced Cooper minima. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 115201. [Google Scholar] [CrossRef]
- Wijesundera, W.; Kelly, H.P. Correlation satellites in the photoelectron spectrum of argon. Phys. Rev. A 1989, 39, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Amusia, M.; Kheifets, A. The influence of “two-electron-two-hole” excitations on the 3s–14p autoionization profile in Ar atoms. Phys. Lett. A 1981, 82, 407–411. [Google Scholar] [CrossRef]
- Kobe, D.H.; Smirl, A.L. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter. Am. J. Phys. 1978, 46, 624–633. [Google Scholar] [CrossRef]
- Kobe, D.H. Gauge-Invariant Resolution of the Controversy over Length versus Velocity Forms of the Interaction with Electric Dipole Radiation. Phys. Rev. A 1979, 19, 205–214. [Google Scholar] [CrossRef]
- Saha, S.; Mandal, A.; Jose, J.; Varma, H.R.; Deshmukh, P.C.; Kheifets, A.S.; Dolmatov, V.K.; Manson, S.T. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms. Phys. Rev. A 2014, 90, 053406. [Google Scholar] [CrossRef]
- Kheifets, A.S.; Saha, S.; Deshmukh, P.C.; Keating, D.A.; Manson, S.T. Dipole phase and photoelectron group delay in inner-shell photoionization. Phys. Rev. A 2015, 92, 063422. [Google Scholar] [CrossRef]
- Johnson, W.R.; Cheng, K.T. Photoionization of the outer shells of neon, argon, krypton, and xenon using the relativistic random-phase approximation. Phys. Rev. A 1979, 20, 978–988. [Google Scholar] [CrossRef]
- Johnson, W.R.; Lin, C.D. Multichannel relativistic random-phase approximation for the photoionization of atoms. Phys. Rev. A 1979, 20, 964–977. [Google Scholar] [CrossRef]
- Jordan, I.; Huppert, M.; Pabst, S.; Kheifets, A.S.; Baykusheva, D.; Wörner, H.J. Spin-orbit delays in photoemission. Phys. Rev. A 2017, 95, 013404. [Google Scholar] [CrossRef]
- Jain, A.; Gaumnitz, T.; Kheifets, A.; Wörner, H.J. Using a passively stable attosecond beamline for relative photoemission time delays at high XUV photon energies. Opt. Express 2018, 26, 28604–28620. [Google Scholar] [CrossRef]
- Jain, A.; Gaumnitz, T.; Bray, A.; Kheifets, A.; Wörner, H.J. Photoionization delays in xenon using single-shot referencing in the collinear back-focusing geometry. Opt. Lett. 2018, 43, 4510–4513. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Vinbladh, J.; Busto, D.; Squibb, R.J.; Isinger, M.; Neoričić, L.; Laurell, H.; Weissenbilder, R.; Arnold, C.L.; Feifel, R.; et al. Attosecond electron–spin dynamics in Xe 4d photoionization. Nat. Commun. 2020, 11, 5042. [Google Scholar] [CrossRef] [PubMed]
- Amusia, M.Y.; Cherepkov, N.A.; Chernysheva, L.V. Cross Section for the Photoionization of Noble-gas Atoms with Allowance for Multielectron Correlations. Sov. Phys. JETP 1971, 33, 90. [Google Scholar]
- Wendin, G. Collective resonance in the 4d10 shell in atomic Xe. Phys. Lett. A 1971, 37, 445–446. [Google Scholar] [CrossRef]
- Zapata, F.; Vinbladh, J.; Ljungdahl, A.; Lindroth, E.; Dahlström, J.M. Relativistic time-dependent configuration-interaction singles method. Phys. Rev. A 2022, 105, 012802. [Google Scholar] [CrossRef]
- Lindgren, I.; Rosén, A. Relativistic self-consistent-field calculations with application to atomic hyperfine interaction, Part I, relativistic self-consistent fields. Case Stud. At. Phys. 1974, 4, 93–149. [Google Scholar]
- Jamieson, M.J. Time-Dependent Hartree-Fock Theory for Atoms. Int. J. Quantum Chem. 1970, 5, 103–115. [Google Scholar] [CrossRef]
- Johnson, W.R.; Cheng, K.T. Quantum defects for highly stripped ions. J. Phys. B At. Mol. Phys. 1979, 12, 863–879. [Google Scholar] [CrossRef]
- Friedrich, H. Theoretical Atomic Physics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Abramowitz, M. Handbook of Mathematical Functions, 4th ed.; 14. Coulomb Wave, Functions; Abramowitz, M., Stegun, I.A., Eds.; National Bureau of Standards: Washington, DC, USA, 1964; p. 537. [Google Scholar]
- Slater, L.J. Handbook of Mathematical Functions, 4th ed.; 13. Confluent Hypergeometric, Functions; Abramowitz, M., Stegun, I.A., Eds.; National Bureau of Standards: Washington, DC, USA, 1964; p. 503. [Google Scholar]
- Isinger, M.; Busto, D.; Mikaelsson, S.; Zhong, S.; Guo, C.; Salières, P.; Arnold, C.L.; L’Huillier, A.; Gisselbrecht, M. Accuracy and precision of the RABBIT technique. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20170475. [Google Scholar] [CrossRef] [PubMed]
- Sörngård, J.; Dahlström, J.M.; Lindroth, E. Study of the possibilities with combinations of circularly and linearly polarized light for attosecond delay investigations. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 134003. [Google Scholar] [CrossRef]
- Saha, S.; Vinbladh, J.; Sörngård, J.; Ljungdahl, A.; Lindroth, E. Angular anisotropy parameters for photoionization delays. Phys. Rev. A 2021, 104, 033108. [Google Scholar] [CrossRef]
- Selstø, S.; Lindroth, E.; Bengtsson, J. Solution of the Dirac equation for hydrogenlike systems exposed to intense electromagnetic pulses. Phys. Rev. A 2009, 79, 043418. [Google Scholar] [CrossRef]
- Lin, D.L. Gauge properties of the Hartree-Fock and random-phase approximations. Phys. Rev. A 1977, 16, 600–605. [Google Scholar] [CrossRef]
- Breit, G. Dirac’s Equation and the Spin-Spin Interactions of Two Electrons. Phys. Rev. 1932, 39, 616–624. [Google Scholar] [CrossRef]
- Lindroth, E.; Mårtensson-Pendrill, A.M.; Ynnerman, A.; Öster, P. Self-consistent treatment of the Breit interaction, with application to the electric dipole moment in thallium. J. Phys. B 1989, 22, 2447–2464. [Google Scholar] [CrossRef]
- deBoor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 1978. [Google Scholar]
- Froese Fischer, C.; Zatsarinny, O. A B-spline Galerkin method for the Dirac equation. Comput. Phys. Commun. 2009, 180, 879. [Google Scholar] [CrossRef]
- Kjellsson, T.; Selstø, S.; Lindroth, E. Relativitic ionization dynamics for a hydrogen atom exposed to super-intense XUV laser pulses. Phys. Rev. A 2017, 95, 043403. [Google Scholar] [CrossRef]
- NIST. Atomic Spectra Database. Available online: http://physics.nist.gov/cgi-bin/AtData/main_asd (accessed on 20 July 2022).
- Becker, U.; Szostak, D.; Kerkhoff, H.G.; Kupsch, M.; Langer, B.; Wehlitz, R.; Yagishita, A.; Hayaishi, T. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A 1989, 39, 3902–3911. [Google Scholar] [CrossRef]
- Shannon, S.P.; Codling, K.; West, J.B. The absolute photoionization cross sections of the spin-orbit components of the xenon 4d electron from 70–130 eV. J. Phys. B At. Mol. Phys. 1977, 10, 825. [Google Scholar] [CrossRef]
- Adam, M.; Wuilleumier, F.; Krummacher, S.; Sandner, N.; Schmidt, V.; Mehlhorn, W. Recent progress in the study of photoionization processes of atomic species by electron spectroscopy using synchrotron radiation. J. Electron Spectrosc. Relat. Phenom. 1979, 15, 211–224. [Google Scholar] [CrossRef]
- Cheng, K.T.; Johnson, W.R. Orbital collapse and the photoionization of the inner 4d shells for Xe-like ions. Phys. Rev. A 1983, 28, 2820–2828. [Google Scholar] [CrossRef]
- King, G.C.; Tronc, M.; Read, F.H.; Bradford, R.C. An investigation of the structure near the L2,3edges of argon, the M4,5edges of krypton and the N4,5edges of xenon, using electron impact with high resolution. J. Phys. B At. Mol. Phys. 1977, 10, 2479–2495. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinbladh, J.; Dahlström, J.M.; Lindroth, E. Relativistic Two-Photon Matrix Elements for Attosecond Delays. Atoms 2022, 10, 80. https://doi.org/10.3390/atoms10030080
Vinbladh J, Dahlström JM, Lindroth E. Relativistic Two-Photon Matrix Elements for Attosecond Delays. Atoms. 2022; 10(3):80. https://doi.org/10.3390/atoms10030080
Chicago/Turabian StyleVinbladh, Jimmy, Jan Marcus Dahlström, and Eva Lindroth. 2022. "Relativistic Two-Photon Matrix Elements for Attosecond Delays" Atoms 10, no. 3: 80. https://doi.org/10.3390/atoms10030080
APA StyleVinbladh, J., Dahlström, J. M., & Lindroth, E. (2022). Relativistic Two-Photon Matrix Elements for Attosecond Delays. Atoms, 10(3), 80. https://doi.org/10.3390/atoms10030080