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Abstract: Theoretical investigation of the scattering of electrons and positrons from the plasma
etching gas trifluoroiodomethane (CF3I) is presented in the present work. The investigation is
carried out by taking into account the screening correction arising from a semiclassical analysis of
atomic geometrical overlapping of the scattering cross-sections calculated in the independent atom
approximation. The scattering system e±-CF3I is studied through the calculations of the observable
quantities, namely, absolute differential, Sherman function, total elastic and inelastic, momentum
transfer, viscosity, ionization and total cross sections over the energy range 1 eV–1 MeV. Energy
dependency of the differential cross section and Sherman function are also picturized in this work. A
comparative study is carried out between scattering observables for electron impact with those for
positron impact to get a better understanding of the interaction and dynamics of the collision process.
The corresponding scattering quantities of the constituent atoms are calculated employing a complex
optical model potential by solving the Dirac relativistic wave equations in the framework of partial
wave analysis. The comparison of our results with the available experimental and theoretical data
shows a reasonable agreement.

Keywords: electron and positron scattering; molecular scattering; CF3I; independent atom model;
screening correction

1. Introduction

The knowledge of electron–molecule (or atom) collision plays a significant role in
understanding the structure of atoms and molecules, the interaction of ionizing radiation
with matter, the deposition of energy by radiation in matter, the interactions and transport
of electrons in plasmas, and the behavior of electrons in the condensed phases of matter [1].
This fundamental knowledge is of practical importance in many research and technological
areas such as magneto-hydrodynamic power generation, material processing applications,
manufacturing semiconductor devices, plasma-assisted combustion, modeling of various
laser systems, electron beam technology, radiology and dosimetry, mass spectrometry,
atmospheric physics, astrophysics, astrochemistry, applied atomic physics, photochemistry,
auroras, supernova ejecta, artificial, terrestrial, space and astrophysical plasmas, etc. [2–5].
On the other hand, a comprehensive data set of positron impact molecular scattering cross-
sections is required in astrophysical research, radiation-based technologies, and energy
deposition models [6]. In addition to general importance, CF3I carries special attention, as
a promising feedstock gas, in the semiconductor plasma industry. Perfluorocarbons, the
main feed gases used in the plasma processing industry, are strong greenhouse gases due to
their large infrared absorption and long atmospheric lifetime. These environmental reasons
have led to an international agreement (under the Kyoto protocol) to phase out the use of
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strong greenhouse gases as feedstock gases and find environmentally friendly alternatives
of these gases [7]. Hence, it is now a worldwide research need to seek alternative feedstock
gases with reduced environmental consequences [7]. To use a new feed gas in the existing
plasma industry, a comprehensive set of accurate cross-section data of the scattering of
electrons and positrons with the gas is a requisite to run simulations of the reactant plasma.

CF3I is a promising feedstock gas, in the plasma etching industry, due to its short
atmospheric lifetime (<2 days) and its ability of providing copious quantities of reactive
species CF+ and CF3 [8]. To use CF3I as a feed gas, an extended database regarding the
scattering of electrons and positrons off the CF3I is needed. However, both experimental
and theoretical databases regarding the scattering system e±-CF3I are sparse. Experimental
data is time consuming and expensive. Moreover, there are very few laboratories worldwide
that can provide experimental data. Therefore, theoretical investigation is a great option to
provide such data. Despite the aforesaid theoretical importance, the theoretical modeling
of e±-molecule collision is more complex than the corresponding e±-atom collision system.
Firstly, molecules have more than one center (nucleus), while an atom has one center.
The energy spectra of molecules are much more complex than the atomic spectra due
to the additional degrees of freedom arising from the motion of the nuclei. Moreover,
heteronuclear diatomic molecules and a large number of polyatomic molecules do not have
a center of symmetry. This gives rise to a noncentral interaction between the molecular
target and the incident lepton [9]. Furthermore, at intermediate and high energies, almost
all inelastic channels (excitation, ionization, rotation, vibration, etc.) are open, which makes
an ab initio calculation more complex [10]. The advantage is that these complexities do not
play a significant role in shaping up cross-sections at intermediate and high energies. Many
approximated methods have been proposed to deal e±-molecule collision at intermediate
and high energies.

The independent atom model (IAM) is one of the fruitful models in which molecular
scattering amplitudes are obtained by adding atomic scattering amplitudes multiplied
by a phase vector. Thus, in the lAM, interference of scattering waves originating from
the different atoms and the geometry of the molecule are taken into account. This model
is based on the following assumptions: (i) each atom of the molecule scatters indepen-
dently; (ii) redistribution of atomic electrons due to molecular binding is unimportant; and
(iii) multiple scattering within the molecule is negligible [9]. These assumptions are valid
only when de Broglie wavelengths of the incident electron are small in comparison to the
inter-atomic distances. Hence, IAM is a high-energy approximation that assumes that the
target molecule can be approximately substituted by the constituent atoms in the corre-
sponding positions. Moreover, this model can be applied to arbitrary molecular species as
it does not use molecular symmetry consideration [11]. Hence, this approximation opens
the possibility of obtaining data for a large number of arbitrary molecular species from a
smaller number of atoms. Thus, this model reduces the complex anisotropic e±-molecule
to the e±-atom problem, which is easier to handle.

The incident electrons possess high resolving power when they have de Broglie
wavelength λ = 2π/k < 2.3 a. u. and the target molecule becomes fully transparent to
them [10,11]. As a result, the consideration of each constituent atom as an independent
scatterer works well. However, as the energy falls below 100 eV, the resolving power of the
incident electron becomes low and the target does not remain fully transparent. Moreover,
since the low energy atomic cross-sections are usually very large (of the order of molecular
bond lengths), overlapping of atomic cross-sections would occur inside the molecule if
geometrically visualized. Ignoring this overlapping will count each electron interaction
with a pair of overlapped atoms twice, and will not account for angular distributions due
to multiple dispersions [11]. As a result, IAM overestimates molecular cross-sections at
low energy (<100 eV). To extend the validity of IAM to low energies, Blanco et al. [12]
proposed a screening correction, arising from a semiclassical analysis of atomic geometrical
overlapping, for the scattering cross-section calculations in the IAM. Blanco et al. [12]
applied this screening correction to various observables calculated in IAM. Earlier we
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applied this screening correction to the scattering observables calculated in the IAM based
on Dirac relativistic partial wave analysis [13–15] and significant improvement, as expected,
was observed at low incident energies.

In an objective of catering to the raw data need in the aforesaid applications and
better understanding the lepton–molecule interaction, screening corrected independent
atom model (SCIAM) with complex free-atom optical model potential (OPM) in the fold of
Dirac relativistic partial wave analysis has been employed in this work to investigate the
e±-CF3I scattering system throughout the calculations of different observable quantities
over the energy range 1 eV–1 MeV. The main reason for adopting the Dirac partial wave
analysis in this study is that this relativistic approach automatically includes the spin-orbit
term, while the Schrödinger equation requires the inclusion of a spin-orbit interaction
term separately in the collision dynamics [5,16]. Optical model potential, a complex local
potential, consists of two parts—real and imaginary parts. The real part comprises static,
exchange, and correlation–polarization potentials. Static potential is determined, in the
context of the static-field approximation, from the interaction of incident lepton with
the undeformed distribution of nuclear protons and orbital electrons of the target. An
approximate local-exchange interaction [17] is added to the electrostatic potential to handle
the exchange effects. The deformation of the target charge distribution by the approach of an
incident lepton is described by the correlation–polarization potential (CPP), a combination
of asymptotic polarization potential [18] and a short range correlation potential [19,20]. The
accuracy of real potential is limited by the existence of open inelastic channels above the
excitation threshold. A depletion of the elastically scattered electrons or positrons occurs
due to the loss of projectile flux from the elastic channel to the inelastic channels. This loss
is described by a semi-relativistic imaginary potential [21].

Despite the importance of both theoretical and practical standpoints, data of the scat-
tering system e±-CF3I are sparse in the literature. Most of the experimental data that are
available in the literature are on electron-CF3I scattering. Underwood-Lemons et al. [22]
reported TCS, measured using electron transmission spectroscopy, for the scattering process
of CF3I by low energy electron impact. Christophorou and Olthoff [8] published a data
compilation recommending data on absolute differential (DCS), total (TCS), momentum
transfer (MTCS), total ionization (TICS), total photoabsorption, and total electron attach-
ment cross-sections for e−-CF3I scattering. Rozum et al. [23] provided a summery on the
available experimental and theoretical data suggesting cross-sections for electron scattering
(total, excitation, momentum transfer, and elastic integral), electron impact dissociation,
and dissociative electron attachment. Kitajima et al. [24] reported experimental DCS in the
angular region 20◦–130◦ over the energy range 1.5 eV–60 eV obtained using the relative flow
technique. Francis-Staite et al. [25] published experimental DCS (in the angular range of
20◦–135◦) and integrated elastic cross-sections (IECS) in the energy range 10–50 eV obtained
using a cross-beam apparatus. H Cho et al. [26] presented experimental DCS for scattering
angles from 10◦ to 180◦, IECS and MTCS, measured with a crossed electron–molecular
beam spectrometer, over the incident energy range 5–50 eV. Kiataki et al. [27] calculated
DCS and IECS, using Born-corrected static-exchange plus polarization (SEP) approximation,
in the low energy region (1.5–12 eV). Nishimura and Nakamura [28] measured TCS for
electron scattering, in the energy range 1–3000 eV, using a linear-type election transmission
apparatus. Kawada et al. [29] published experimental TCS, both for electron and positron
impact, over the energy range 1–600 eV obtained using the linear transmission method. This
is the only available data, to the best of our knowledge, for e+-CF3I scattering. Theoretical
investigation of e±-CF3I collision dynamics is rare. Bettega et al. [30] reported IECS, DCS,
and MTCS over the energy range 5–30 eV calculated using the Schwinger multichannel
method with the pseudopotentials (SMCPP) method and static-exchange approximation.
Antony et al. [7] presented TCS and TICS over the incident energy range 50–2000 eV using
the spherical complex potential formalism (SCPF).
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Hence, it is clear that the available data is not enough to fulfill the demand. In some
works, limited incident energy range is used and, in some works, limited spectrum of
observable quantities are reported. The purpose of this theoretical investigation is to
present a wide spectrum of scattering quantities namely, DCS, IECS, MTCS, viscosity cross
section (VICS), inelastic cross section (INCS), TCS, TICS, and Sherman function of the
scattering system e±-CF3I over a wide energy range 1 eV–1 MeV to meet the demand of
a detailed database of e± interactions with trifluoroiodomethane in the semiconductor
plasma industry and other research and technical areas.

This paper is presented as follows. The mathematical details of this investigation are
discussed in Section 2. The results of our proposed model and comparison of our results
with the available data are vignetted in Section 3. In Section 4, we have drawn conclusion
on our results. In this manuscript, equations are expressed in CGS Gaussian units unless
otherwise specified. However, most of the calculations in the FORTRAN code [21] are
performed in Hatree atomic units, in which h̄ = me = e = 1.

2. Outline of the Theory
2.1. The Interaction Potential

The complex free-atom optical potential for the electron and positron scattering has
the following form [31]:

V(r) = Vst(r) + Vex(r) + Vcp(r)− iWabs(r). (1)

Here, Vst(r), Vex(r), and Vcp(r), the components of the real part of OPM, represent the
static, exchange, and correlation–polarization potential respectively and the imaginary part,
Wabs represents the absorption potential. For positron, Vex in V(r) is omitted as exchange
does not arise due to distinguishability of the projectile positron and bound electrons.

Within the static-field approximation, elastic collision of projectiles, electrons, or
positrons, with the target is assumed to reduce to the instantaneous Coulomb interaction.
The potential of this interaction, termed as static potential, at a distance r from the nucleus
of the target can be written as:

Vst(r) = ze[φ(r)], (2)

where ze is the charge of the projectile and φ(r) = φn(r) + φe(r) is the electrostatic potential
with φn(r) and φe(r) being the contributions of the nuclear protons and atomic electrons
to this potential. Under the static-field approximation, φn(r) and φe(r) can be completely
modeled by the spatial charge distributions of nuclear protons, $n, and that of bound
electrons, $e [21], respectively. Using these density distributions, static potential can now
be presented as [32]:

φ(r) = e
[∫

dr′
$n(r′)
|r− r′| −

∫
dr′

$e(r′)
|r− r′|

]
. (3)

Space densities, $n and $e are normalized according to
∫

$(r)4πr2dr = Z with Z being the
atomic number of the target. Two-parameter Fermi nuclear density [33] and Dirac–Fock
electron density, generated within the framework of the multi-configuration relativistic
Dirac–Fock method using Desclaux code [34], are used in the present work.

Rearrangement collisions and ejection of bound electrons instead of incoming electrons,
arise from the antisymmetrization of the wavefunction of the whole projectile-target system
with respect to electrons. This interaction, non-local by nature, is considerably complicated
because it involves the solutions of integro-differential equations. It is thus desirable to
have an approximation to this non-local potential. A semi-classical local exchange potential
of Furness and McCarthy [17] of the following form is used in our present work:

Vex(r) =
1
2
[E−Vst(r)]−

1
2
{[E−Vst(r)]

2 + 4πa0e4$e(r)}1/2. (4)

Here, E is the impact energy of the electron and a0 is the Bohr radius.
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As the projectile approaches the target, its electric field causes distortion in the atomic
electron cloud system. This distortion depends on the separation between the projectile and
target. When the projectile is far from the constituent atom, the electric field produced by it
over the dimension of target is practically uniform. This electric field induces polarization
in the target that acts back on the impinging particle. This asymptotic polarization potential
can be approximated as [18]:

Vp(r) = −
α

2(r2 + d2)2 , (5)

where α is the static polarizability of constituent atom. The constant d can be determined
from the following condition:

Vp(0) = −
α

2d4 = Vco(0). (6)

Thus
d = (−α/2Vco(0))

1/4. (7)

This polarization potential is the same for both electron and positron-atom scattering.
However, when the projectile approaches the target sufficiently close, the electric field it
produces over the dimension of the target is no longer uniform and the distortion of the
electron cloud becomes different for different projectiles. When the projectile penetrates
the target, the atomic configuration must adjust for the close proximity of this additional
electron or positron. The asymptotic expansion completely breaks down and hence inter-
action potential for the correlation between the projectile and electron cloud is needed to
describe this near-target region interaction. Based on the localized electron in an electron
gas, the following correlation potential was given by Perdew and Zunger [19].

V(−)
co (r) = − e2

a0
(0.0311 ln(rs)− 0.0584 + 0.00133rs ln(rs)− 0.0084rs), for rs < 1 (8)

and:

V(−)
co (r) = − e2

a0
β0

1 + (7/6)β1r
1
2
s + (4/3)β2rs

(1 + β1r
1
2
s + β2rs)2

for rs ≥ 1. (9)

where β0 = 0.1423, β1 = 1.0529 and β2 = 0.3334.
For positrons, the correlation potential as given by Jain [20] is:

V(+)
co (r) = e2

2a0
{−1.82r−1/2

s + [0.051 ln(rs)− 0.115] ln(rs) + 1.167},
for rs < 0.302, (10)

V(+)
co (r) =

e2

2a0

[
−0.92305− 0.09098r−2

s

]
for 0.302 ≤ rs < 0.56, (11)

and:

V(+)
co (r) = e2

2a0

[
− 8.7674

(rs+2.5)3 +
−13.151+0.9552rs

(rs+2.5)2 + 2.8655
(rs+2.5) − 0.6298

]
for 0.56 ≤ rs < 8.0. (12)

For the asymptotic region, 8.0 ≤ rs ≤ ∞, the polarization potential is accurately given by the
polarization potential in Equation (5). The parameter rs is given by the following equation:

rs ≡
1
a0

[
3

4π$e(r)

] 1
3
. (13)



Atoms 2022, 10, 85 6 of 26

The global correlation-polarization potential is determined by combining the long-
range Buckingham potential with the short-range LDA correlation potential as follows [31],

V±cp(r) ≡
{

max{V±co (r), Vcp,B(r)} if r < rcp
Vcp,B(r) if r ≥ rcp,

(14)

where rcp is the outer radius at which V±co (r) and Vpol(r) cross first.
Projectiles with incident kinetic energy greater than the first inelastic threshold are

absorbed due to the open inelastic channels above this threshold. The following semi-
relativistic absorption potential, Wabs is included with the real potential to describe this
effect [21]:

Wabs(r) ≡

√
2(EL + mec2)2

mec2(EL + 2mec2)
× Aabs

h̄
2
[vL$e(r)σbc(EL, $e, ∆)]. (15)

Here, me is the mass of the electron and vL
√

2EL/me is the non-relativistic velocity corre-
sponding to the local kinetic energy:

EL(r) =
{

E−Vst(r)−Vex(r) for electron
max{E−Vst(r), 0 } for positron.

(16)

σbc(EL, $e, ∆) is the one-electron cross-section for binary collisions of electrons and positrons
of kinetic energy E with a degenerate free-electron gas of density $e, involving energy losses
larger than the energy gap ∆ and is given by [31]:

σbc(EL, $e, ∆) =
∫ xmax

∆/EF

dσbc
dx

dx. (17)

Here, the Fermi energy, EF = h̄2

2me

(
3π2$e

)2/3, x = W/EF with W being the energy transfer,
and:

dσbc
dx

=


πe4

EEF
1
x2 for positron

πe4

EEF
1
x2

[
1− x

E/EF−x + x2

(E/EF−x)2

]
for electron.

(18)

For electron scattering, inelastic channels become open above the first excitation energy ε1.
Hence, for the collision of electrons with CF3I, ∆ = 4.7 eV [23]. Since positronium formation
is often the first inelastic channel to open for positron scattering and the ionization potentials
of CF3I is greater than the positronium binding energy 6.8 eV, ∆ = I − 6.8 eV for positron
scattering. For a positron, the maximum allowed energy transfer is the incident kinetic
energy of the projectile, i.e., xmax = E/EF. Considering Pauli’s exclusion principle and
exchange interaction it can be shown that xmax = (E/EF − 1)/2 for an electron. Aabs is an
adjustable parameter and its value depends on the projectile-target combination. In the
present calculations, the value of the empirical parameter Aabs is taken as 2 for an electron
and 1.5 for a positron.

2.2. Partial Wave Analysis

The Dirac relativistic equation for a projectile moving with a velocity v in a central
field V(r) is given as:[

cα.p + βm0c2 + VmC(r)
]
ψ(r) = (E + m0c2)ψ(r), (19)

with E + m0c2 being the total energy of the projectile and the operators α and β, the usual
4 × 4 Dirac matrices. Solutions of the Dirac equation are the spherical waves and are
given by:

ψEκm(r) =
1
r

(
PEκ(r)Ωκ,m(r̂)
iQEκ(r)Ω−κ,m(r̂)

)
, (20)
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where PEκ(r) and QEκ(r) are the upper- and lower-component radial functions and Ωκ,m(r̂)
are the spherical spinors. κ = (`− j)(2j + 1) is the relativistic quantum number with j and
` being the total and orbital angular momentum quantum numbers. The radial functions
PEκ(r) and QEκ(r) of Dirac spherical waves are the solutions of the coupled system of
differential equations [35]:

dPEκ

dr
= −κ

r
PEκ(r) +

E−V + 2m0c2

c
QEκ(r) (21)

and:
dQEκ

dr
= −E−V

c
PEκ(r) +

κ

r
QEκ(r). (22)

The spherical waves in Equation (20) are normalized so that the large-component radial
function PEκ(r) oscillates asymptotically with unit amplitude and takes the following form:

PEκ(r) ∼ sin
(

kr− `
π

2
+ δκ

)
. (23)

Here, k = p
h̄ =

√
E(E+2mec2)

h̄c is the relativistic wave number of the projectile and η = qe2me
h̄k is

the Sommerfeld parameter. Equations (21) and (22) satisfying the asymptotic condition (23),
are solved numerically using the subroutine package RADIAL [36] to obtain the global
phase shift δκ , describing the large r behavior of the spherical wave solutions, and the
direct and spin flip scattering amplitudes for the scattering of e± from a central field V(r)
as [37,38]:

f (θ) = 1
2ik ∑∞

l=0{(`+ 1)[exp(2iδκ=−`−1)− 1]

+`[exp(2iδκ=`)− 1]}P`(cosθ), (24)

and,

g(θ) =
1

2ik

∞

∑
l=0

[exp(2iδκ=`)− exp(2iδκ=−`−1)]× P1
` (cosθ) (25)

respectively. When ` is sufficiently large, the absolute value of the phase shift decreases
monotonically with `. The sums in (24) and (25) are carried out up to a maximum angular
momentum `max for the largest energies for which δκ becomes smaller than ∼10−9. At
this point, the partial wave expression for f (θ) and g(θ) converge to the required accuracy
(usually more than six decimal places) for all angles [21]. Once the phase-shifts and
the scattering amplitudes for the constituent atoms are determined, the corresponding
projectile-molecule direct and spin flip scattering amplitudes for a given target orientation
are given by [38]:

F(θ) = ∑i exp(iq.ri) fi(θ) and G(θ) = ∑
i

exp(iq.ri)gi(θ) (26)

here, h̄q is the momentum transfer by the impinging electron during the collision, ri are the
atomic positions and fi(θ) and gi(θ) are the scattering amplitudes for the constituent free
atoms of the target. Since the molecule rotates, the corresponding differential cross-section
is obtained by averaging over all the orientations of the molecular axis:

dσ

dΩ
= 〈|F(θ)|2 + |G(θ)|2〉 (27)

= ∑
i,j

sin(qrij)

qrij
[ fi(θ) f ∗j (θ) + gi(θ)g∗j (θ)] (28)

= ∑
i
[| fi(θ)|2 + |gi(θ)|2] + ∑

i 6=j

sin(qrij)

qrij
[ fi(θ) f ∗j (θ) + gi(θ)g∗j (θ)] (29)
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where q = 2k sin(θ/2), rij is the distance between the i-th and j-th atoms, sin(qrij)/qrij = 1
when qrij = 0 and the term ∑i 6=j represents interference contribution to the molecular
differential cross-section.

The integrated elastic σel , the momentum transfer σm, and the viscosity σv cross-
sections for the projectile-molecule scattering are expressed in terms of the DCS as:

σel =
∫ dσ

dΩ
dΩ = 2π

∫ π

0

(
dσ

dΩ

)
sin(θ)dθ (30)

σm = 2π
∫ π

0
(1− cos θ)

(
dσ

dΩ

)
sin(θ)dθ (31)

σv = 3π
∫ π

0

[
1− (cos θ)2

]( dσ

dΩ

)
sin(θ)dθ (32)

The molecular TCS, σtot, for both electron and positron scattering, sum of integrated elastic
(σel) and absorption cross-section (σinel), can be obtained as:

σtot = σel + σinel =
4π

k ∑
i

Im fi(0), (33)

with Im fi(0) being the imaginary part of the direct scattering amplitude in the forward
direction at θ = 0◦ for the i-th atom.

To account for the mutual overlapping of nearby atoms in molecules, Blanco and
Garcia [11] proposed a screening correction. Accordingly, a semi-classical analysis [11], the
screening correction coefficients si (0 ≤ si ≤ 1), for the i-th atom of a molecule can be given
as a sum of ε

(m)
i terms, each of them arising from m-atoms overlapping,

si = 1−
ε
(2)
i
2!

+
ε
(3)
i
3!
−

ε
(4)
i
4!

+ ...±
ε
(N)
i
N!

(34)

where:

ε
(m)
i =

N −m + 1
N − 1 ∑

i 6=j

σjε
(m−1)
j

αij
(m = 2, ..., N). (35)

Here, N is the number of atoms in the target molecule, the j index in sums ∑j( 6=1) runs over
all the N atoms except the i one, αij = max(4πr2

ij, σi, σj), σi is the atomic cross-sections for
the i-th atom of the molecule, and rij is the distance between centers of atoms i and j. The
coefficients si refrain from counting each electron interaction with a pair of overlapped
atoms twice. Another factor νij is defined, to quantify the screening corrections to the

interference contributions, as νij = r2
ij/(r

2
ij + ρ2

ij) with ρij = max(
√

σi/π,
√

σj/π, 1/k)

being a length dimensional parameter [12]. Since (
√

σ/π) corresponds to the radius
of a circle of area σ, the condition rij = max(

√
σi/π,

√
σj/π) represents a situation of

geometrical overlap between two disks for which the center of the smallest one approaches
the border of the other. The screening corrected version of Equation (29) can now be
written as:

(
dσ

dΩ

)s

= ∑i s2
i [| fi(θ)|2 + |gi(θ)|2]

+∑i 6=j νijsisj
sin(qrij)

qrij
[ fi(θ) f ∗j (θ) + gi(θ)g∗j (θ)] (36)
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The first summation in Equation (36) accounts for each atomic contribution, reduced by
si factor and the second one for the reduced interference contributions. The screening
corrected integrated elastic σs

el , momentum transfer σs
m, viscosity σs

v cross-sections are
obtained from Equations (30)–(32), replacing dσ

dΩ with ( dσ
dΩ )s from Equation (36). The

screening corrected total σs
tot cross-section is given by:

σs
tot = σs

el + σs
inel = ∑

i
si(σel + σinel) = ∑

i
siσtot. (37)

The asymmetry function of the randomly oriented molecule is:

S(θ) = i
〈F(θ)G∗(θ)− F∗(θ)G(θ)〉
〈|F(θ)|2 + |G(θ)|2〉 (38)

Since CF3I is a polar molecule, correction of large-r behavior of the polarization field
is required. To do it, it is assumed that the effective dipole polarizability αd,e f f (i) of the i-th
atom of the molecule is proportional to the polarizability of the free atom, αd(i), and that
the molecular polarizability must be equal to the sum of effective atomic polarizabilities.
The effective polarizability used for the calculations of scattering amplitudes from the i-th
atom is given by:

αd,e f f (i) = αmol
d αd(i)[∑

j
αd(j)]−1 (39)

here, the summation extends over all the constituent atoms in molecule.
The total inelastic cross-section σinel can be partitioned into two main contributions,

σinel(E) = ∑ σexc(E) + σion(E), where the first term is the sum over total excitation cross-
sections and the second term is the total ionization cross-section. The first term becomes
less and less important than the second at energies well above the ionization threshold.
Hence, we can write [39]:

σinel ≥ σion. (40)

In order to determine σion from σinel , an energy dependent ratio R(E) is defined as [39],

R(E) =
σion(E)
σinel(E)

(41)

The ratio R(E) rises steadily as the energy increases above the threshold, and approaches
unity at higher energies. To fulfill the requirement that R should be a continuous function
of energy for E ≥ I, the ratio R is presented in the following manner:

R(E) = 1− f (U) = 1− C1

[
C2

U + A
+

ln U
U

]
, (42)

where U = E/I is the dimensionless variable. The reasons for adopting the above equation
are the following. The ratio R increases as E increases above I and approaches unity.
The decrease of the function f (U), in the high energy range, must be proportional to
ln(U)/U, as the discrete cxcitation cross-sections, dominated by dipole transitions, falls
off as ln(U)/U at high energies. The term C2/(U + A) is used to ensure a better energy
dependence of f (U) at low and intermediate energies. The adjustable parameters C1, C2,
and A are determined using the following conditions.

R(E) =


0 for E ≤ I,
Rp for E = Ep
RF for E ≥ EF > EP.

(43)

The first condition of Equation (43) implies that no ionization takes place below the ion-
ization threshold energy of the molecule. The ionization potential of CF3I is taken in this
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work as 10.28 eV [40]. Here, Ep is the impact energy at which absorption gets its maximum
and Rp represents R at E = Ep. In the present analysis, we observe Ep = 70 eV for both
projectiles. From the discussion of references [39], we choose Rp = 0.77. This choice
follows from the general observation that at energies close to the peak of ionization, the
contribution of the molecular σion is about 70–80% in the total inelastic cross-sections σinel .
At incident energies E ≥ EF, beyond the peak position Ep, the value of R increases to RF
(very close to 1). To obtain optimal fit with the experimental observations, the value of RF
is chosen as 0.98 at EF = 700 eV. The numerical values of the parameters C1, C2, and A are,
respectively, found to be 0.945, 6.055, 4.719 both for electron and positron scattering. These
values are obtained from the solutions of Equation (43) using a FORTRAN program.

3. Results and Discussion

In this work, ELSCATM code [21], based on the solution of Dirac relativistic partial
wave equations employing a complex optical potential, is used to calculate the observable
quantities of the e±-CF3I collision system over the energy range 1 eV–1 MeV using single
scattering independent atom approximation. Interaction potential of the incident lepton
with the constituents of the target molecule is provided by the free-atom complex optical
potential (Equation (1)). The phase shifts, δκ , required for the calculations of scattering
amplitudes are calculated first from the solutions of the Dirac equations up to a matching
distance and then for matching with the known exterior solution. Then, using the obtained
scattering amplitudes multiplied by a phase vector, various scattering observables for
spin-unpolarized electrons or positrons are calculated. Finally, screening corrections of
the calculated observables are taken into consideration to extend the low energy validity
of this investigation. If partial-wave analysis is feasible, the calculated DCSs, integrated
cross-sections, and Sherman function are usually accurate to within about 0.01%. This
error estimate refers only to the accuracy of the numerical calculation, and is based on the
assumption that the adopted central potential represents the true interaction [21]. Both
screened (SCIAM) and unscreened (IAM) calculations are presented in this paper.

In Figure 1, we present our DCS calculations at energies 5, 10, 12, 15, 20, and
25 eV and compare with the available experimental [24–26] and theoretical data [27,30].
In Figure 1a, our calculations show reasonable agreement with the experimental observa-
tion of H Cho et al. [26], while the SMCPP calculations of Bettega et al. [30] show excellent
agreement and the Born-corrected SEP calculations of Kiataki et al. [27], quite reasonable
agreement with the data [26] except at small scattering angles. Two minima are observed
in the experimental DCS. The first one is a shallow minimum, observed at ∼60◦, and the
second one is a deep minimum, observed at∼120◦. Our models, both IAM and SCIAM, can
predict the deep one but fails to reproduce the shallow one, while other calculations [27,30]
can predict both the minima. At 10 eV, our SCIAM calculations show quite reasonable
agreement and SMCPP calculations of Bettega et al. [30], excellent agreement with the
observation of H Cho et al. [26] and Kitajima et al. [24]. All the DCS data, experimen-
tal and theoretical, available at 10 eV, including ours, disagree significantly with that of
Francis-Staite et al. [25] at larger angles (>90◦). Although two minima are witnessed in the
angular distribution of the elastically scattered electrons of 12 eV, one at ∼60◦ and another
at ∼120◦, our models predict one deeper minimum near 105◦. In Figure 1d, our SCIAM
calculations show reasonable agreement with the experimental data [25,26] and predict a
deeper minimum near 105◦, while the SMCPP calculations of Bettega et al. [30] show better
agreement. Our IAM calculations overestimate DCS at forward angles. In Figure 1e, SCIAM
calculations show quite reasonable agreement with the experimental observation [24–26]
through the reproduction of the minimum at ∼45◦ and the hump at around 70◦ followed
by a minimum at 105◦. The depth of the second minimum predicted by our calculations
is greater than the observed one. The SMCPP calculations of Bettega et al. [30] predict
only one minimum at around 80◦. Our IAM calculations overestimate DCS in the forward
scattering region. In Figure 1d, our calculations show quite reasonable agreement with the
experimental data of Francis-Staite et al. [25].
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Figure 1. DCS (a2
0/sr) for the elastic scattering of electrons from CF3I at incident energies 5, 10, 12, 15,

20 and 25 eV. Theoretical works: SCIAM, IAM, Bettega et al. [30] and Kiataki et al. [27]. Experimental
works: Francis-Staite et al. [25], H Cho et al. [26], and Kitajima et al. [24].

In Figure 2, the SMCPP calculations of Bettega et al. [30] show good agreement with
the observed DCS [25,26], while our SCIAM method shows quite reasonable agreement.
The depth of the minimum, predicted by our model, is greater than the observed one as
seen at other low incident energies depicted in Figure 1. Our IAM calculations overestimate
data both at small and large angles. In Figure 2b–d, we compare our SCIAM and IAM
calculations with the experimental observation of Francis-Staite et al. [25]. Our SCIAM cal-
culations show reasonably good agreement with the observed data, while IAM calculations
overestimate the small angle DCS data. In Figure 2e, our SCIAM calculations agree with one
or another set of observed data [25,26]. Our calculations show reasonable agreement with
the observed data in Figure 2f. It is observed from Figures 1 and 2 that the Born-corrected
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SEP calculations of Kiataki et al. [27] and SMCPP calculations of Bettega et al. [30] show
better agreement with the low energy DCS data [25,26] than our SCIAM calculations. Our
method fails to reproduce the shallow minimum observed at around 60◦ in the DCSs and
predict the depth of the second minimum at 5, 10, 12, and 15 eV. Perhaps these failures of
our method arise due to the low energy limitation of optical potential and semi-classical
nature of the screening correction. However, the aforementioned models [27,30] are specifi-
cally designed for low energy calculations, while our model is designed for the calculations
of a broad spectrum of scattering observables over a wide energy range (1 eV–1 MeV).
Experimental data for the angular distribution of elastically scattered electrons of energy
up to 60 eV is available in the literature. To the best of our knowledge, no high energy
DCS data is available. We present our screened and unscreened calculations, depicted in
Figure 3, for future reference. Monotonous behavior is observed in DCS above 2500 eV.
This is due to the incoherent interference of a large number of angular momentum states.

An important point is observed that, at high energies, both of our calculations, SCIAM
and IAM, predict the same. At high incident energies, the de Broglie wavelength of
the incident lepton is low. The incident lepton possesses high resolving power due to
this smaller value of the de Broglie wave and hence the target molecule becomes fully
transparent. Therefore, considering the constituent atoms as independent scatterer causes
no significant error. Moreover, high energy atomic cross-sections are not large enough
to become overlapped. Therefore, the effect of screening correction diminishes at high
incident energies and SCIAM and IAM provide the same results. Furthermore, in low-
energy scattering, the projectile gets enough time to scan the features of the target. This
scanning of the target is manifested through the structures observed in low-energy DCSs.
Due to the high energy approximation, IAM can not picturize this manifestation properly
and, hence, IAM and SCIAM differ. On the contrary, at high energies, the projectile just
sweeps through without paying attention to the details. As a result, monotonous behavior
is observed in high-energy DCS. Hence, the requirement of screening correction becomes
negligible in the high-energy region and IAM and SCIAM predict the same.

DCSs of elastically scattered positrons off the plasma etching gas CF3I are depicted in
Figures 4 and 5. To the best of our knowledge, no positron impact DCS data, experimental
or theoretical, are available in the literature. We compare our calculations, both SCIAM and
IAM, with the data generated by employing the additivity rule on the atomic DCS data of
Dapor and Miotello [41] at incident energies 0.5 keV to 4 keV and an excellent agreement is
observed. The agreement is not unexpected as the screening corrections play a negligible
role at high incident energies due to the small atomic cross-section and high resolving
power associated with the high energy positron.

Sherman functions for the e±-CF3I collision system are presented for the first time,
to the best of our knowledge, in Figures 6 and 7. An extremum is observed at ∼110◦ in
the angular distribution of the Sherman function of electrons scattered elastically at 10 eV.
It is observed that as the energy of the impinging electron increases, the magnitude of
the extremum decreases and its peak shifts toward the left. Comparing Figure 6 with
Figures 1 and 2, we see that the angular position of the peak of S matches with the angular
position of the minimum of the differential cross-section at the same incident energy. This
close relation of the angular position of the extreme value of S and the minimum in DCS
is well established in the literature [42]. Therefore, the pattern observed in the calculated
angular distribution of the Sherman function of electrons scattered elastically from the CF3I
molecule, manifests the behavior of experimental DCS data. In Figure 7, we illustrate the
Sherman function for e+-CF3I. It is observed that the sign of S does not change over the
whole angular range or with the increase of energy. This observation reflects the fact that
there is no significant minimum in positron impact DCSs of CF3I.
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Figure 2. DCS (a2
0/sr) for the elastic scattering of electrons from CF3I at incident energies 30, 35,

40, 45, 50, and 60 eV. Theoretical works: SCIAM, IAM, and Bettega et al. [30]. Experimental works:
Francis-Staite et al. [25], H Cho et al. [26], and Kitajima et al. [24].

In Figure 8, we present the energy dependence of the angular distribution and Sherman
function of the elastically scattered electrons of incident energy 1 eV–1 MeV. It is seen from
Figure 8a,c,e that, above ∼5 eV, our SCIAM calculations agree with one or another set of
experimental data. Below ∼5 eV, our calculations underestimate the experimental DCS at
forward angles and overestimate at backward angles. The failure of screened calculations
at very low energy is due to the semi-classical nature of the screening correction and the
low energy limitation of the optical model. Oscillations are observed below 1 keV in the
energy dependent elastic DCS at θ = 120◦. The oscillatory pattern is prominent in the
energy dependent Sherman function, as seen from Figure 8b,d,f, both at forward and
backward scattering angles. This pattern is mainly due to the contribution of the exchange
potential [15].
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Figure 3. DCS (a2
0/sr) for the elastic scattering of electrons from CF3I at incident energies 75, 100,

250, 500, 750, 1000, 2500, 5000, 7500 eV, 10, 25, 50, 75, 100, 250 keV, 0.5, 0.75, and 1 MeV. Theoretical
works: SCIAM, IAM.

The energy dependency of the absolute DCS and Sherman function for elastically
scattered positrons from CF3I are presented in Figure 9. Our SCIAM calculations for
DCS show excellent agreement with the theoretical data [41] generated by employing the
additivity rule. Above 100 eV, a monotonous decrease in DCS is observed. No oscillatory
structure is found in the energy-dependent Sherman function, except an extremum above
500 keV. Perhaps this smoothness, both in the DCS and Sherman function, is mostly due to
the absence of exchange potential in the case of positron scattering.
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Figure 4. DCS (a2
0/sr) for the elastic scattering of positrons from CF3I at incident energies 10, 25, 50,

75, 100, 250, 500, 750, 1000, 1500, 2000, and 2500 eV. Theoretical works: SCIAM, IAM, and Dapor and
Miotello [41].

In Figure 10a, we present our SCIAM and IAM calculations of TCS for the scattering of
electrons off the trifluoroiodomethane molecule and compare with the available experimen-
tal data [28,29] and the SCPF calculations of Antony et al. [7]. Our SCIAM model shows
excellent reproduction of experimental observations [28,29]. However, our unscreened
model overestimates the cross-section data below 100 eV. This low energy overestimation
occurs mainly for not considering the large value de Broglie wavelength of the incident
lepton and the overlapping of large atomic cross-sections. In SCIAM calculations, this
overlapping is taken into consideration to extend the validity of IAM to low energy. En-
hancement of TCS is observed in the energy region 5–10 eV. This enhancement is due to the
presence of shape resonances [22,27] in the low energy e−-CF3I collision. These resonances
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are the formation of temporary anions caused by the trapping of incoming electrons by
the e−-molecule potential resulting from a combination of short-range attractive and long-
range repulsive forces caused by the angular-momentum barrier [43]. The enhancements
of TCS are the consequence of the constructive interference of the quasistationary waves
reflected back and forth in the inner region of this potential. Underwood-Lemons et al. [22]
and Kiataki et al. [27] reported a broad shape resonance at around 5 eV and the other one
at around 9 eV. Our model reproduces the first broad shape resonance quite satisfactorily
with a peak at around 6 eV but fails to predict the second one. Instead of producing a peak,
our model produces a plateau at around 10 eV.

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

DC
S (

a2 0/s
r)

DC
S (

a2 0/s
r)

DC
S (

a2 0/s
r)

DC
S (

a2 0/s
r)

DC
S (

a2 0/s
r)

( a )  E =  3  k e V ;  ( e + - C F 3 I )

DC
S (

a2 0/s
r)

 S C I A M
 I A M
 D a p o r  a n d  M i o t e l l o / 1 9 9 8

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 3

1 0 - 1

1 0 1

1 0 3

1 0 5

 S C I A M
 I A M
 D a p o r  a n d  M i o t e l l o / 1 9 9 8

( b )  E =  3 . 5  k e V ;  ( e + - C F 3 I )

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 3

1 0 - 1

1 0 1

1 0 3

1 0 5

 S C I A M
 I A M
 D a p o r  a n d  M i o t e l l o / 1 9 9 8

( c )  E =  4  k e V ;  ( e + - C F 3 I )

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 4

1 0 - 2

1 0 0

1 0 2

1 0 4

1 0 6

 S C I A M
 I A M

( d )  E =  5 ,  7 . 5  &  1 0  k e V ;  ( e + - C F 3 I )

x 1 0 2

x 1 0 1

x 1 0 0

5  k e V

7 . 5  k e V
1 0  k e V

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 6

1 0 - 4

1 0 - 2

1 0 0

1 0 2

1 0 4

1 0 6

5 0  k e V

2 5  k e Vx 1 0 3

 S C I A M
 I A M

( e )  E =  2 5 ,  5 0 ,  7 5  &  1 0 0  k e V ;  ( e + - C F 3 I )

S c a t t e r i n g  A n g l e  ( q 0 )S c a t t e r i n g  A n g l e  ( q 0 )

x 1 0 2

x 1 0 1

x 1 0 0 7 5  k e V

1 0 0  k e V

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

1 0 1

1 0 3

1 0 5

1 0 7

0 . 2 5  M e Vx 1 0 3

 S C I A M
 I A M

( f )  E =  0 . 2 5 ,  0 . 5 ,  0 . 7 5  &  1  M e V ;  ( e + - C F 3 I )

x 1 0 2

x 1 0 1

x 1 0 0

0 . 5  M e V
0 . 7 5  M e V
1  M e V

Figure 5. DCS (a2
0/sr) for the elastic scattering of positrons from CF3I at incident energies 3, 3.5, 4, 5,

7.5, 10, 25, 50, 75, 100, 250, 500, 750, and 1000 keV. Theoretical works: SCIAM, IAM, and Dapor and
Miotello [41].
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Figure 6. Sherman function for the elastic scattering of electrons from CF3I at incident energies 10, 30,
50, 70, 90, and 100 eV. Theoretical works: IAM.

From the excellent agreement between our prediction and the experimental observa-
tion [28,29], it can be said that the screening correction improves the prediction impressively
for a polyatomic molecule such as trifluoroiodomethane. At high energies, both SCIAM
and IAM predict the same due to the negligible effect of screening correction. In Figure 10b,
we compare our IECS calculations with the available experimental data [24–26] and the
theoretical prediction of Mayol and Salvat [44] generated by employing the additivity rule.
Our IAM calculations overestimate the data below 100 eV as usually. Improvement of
low-energy calculations, taking screening correction into consideration, is eye-catching.
We present transport cross-sections, MTCS in Figure 10c, and VICS in Figure 10d, and
compare with the available experimental data [24] and theoretical prediction [30,44]. Our
SCIAM calculations show excellent agreement with both forms of data. The effect of
screening correction is observed to diminish above 100 eV. In Figure 10e, we picturized
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INCS. Since there is no data available in the literature, we present it for future reference.
TICS for the scattering of electrons from CF3I is depicted in Figure 10f and compared with
the experimental [45] and theoretical data [7]. Our SCIAM calculations show quite good
agreement with the experimental data [45]. Our prediction slightly disagrees with that of
Antony et al. [7] above ∼200 eV.
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Figure 7. Sherman function for the elastic scattering of positrons from CF3I at incident energies 10,
30, 50, 70, 90, and 100 eV. Theoretical works: IAM.

We calculate TCS for the scattering of positrons from CF3I using SCIAM and IAM
models and depict the comparison of our prediction with the only available experimental
data [29] in Figure 11a. Both model fail to predict the cross-section below 10 eV and a
slight over estimation is observed above 10 eV. We present IECS, MTCS, and VICS in
Figure 11b–d, respectively, and compare our results with the additivity data [41]. A very
good agreement is observed between the data. In Figure 11e,f, we depict our INCS and
TICS results. There is no data available in the literature to compare with. Hence, it could be
a reference for future researchers.
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Figure 8. Energy-dependent DCS (a2
0/sr) and Sherman function at 40◦, 80◦, and 120◦ for the elas-

tic scattering of electrons from CF3I. Theoretical works: SCIAM (DCS), IAM (Sherman function).
Experimental works: Francis-Staite et al. [25], H Cho et al. [26], and Kitajima et al. [24].

A comparison between the observable quantities for electron impact with those for
positron impact are presented in Figure 12 to exhibit the similarity and dissimilarity arising
out of the difference of the interactions of the leptons with the target molecule. It is seen
that most of the differences occur in the energy range 1 ev–1 keV. In Figure 12a, we see that
DCS for electron impact is larger than that for positron impact. The correlation-polarization
and the static interaction have the same sign for electron scattering and a different sign for
positron scattering. Hence, the cumulative effect of these two is subtractive for positron
impact and additive for electron impact [46]. Due to this subtractive contribution and
the absence of exchange potential, the DCS for positron scattering is smaller than that for
electron scattering at low energy.
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Figure 9. Energy-dependent DCS (a2
0/sr) and Sherman function at 40◦, 80◦, and 120◦ for the elastic

scattering of positrons from CF3I. Theoretical works: SCIAM (DCS), IAM (Sherman function), and
Dapor and Miotello [41].
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Figure 10. (a) TCS, (b) IECS, (c) MTCS, (d) VICS, (e) INCS, and (f) TICS for the scattering of electrons
from CH3I. Theoretical works: IAM, SCIAM, Antony et al. [7], Bettega et al. [30], and Mayol and
Salvat [44]. Experimental works: Kawada et al. [29], Nishimura and Nakimura [28], Francis-Staite
et al. [25], Kitajima et al. [24], H Cho et al. [26], and Jiao et al. [45].

At high incident energies, the effect of exchange and polarization potentials diminishes
and the static potential starts to dominate. Hence, the difference between the high energy
cross-sections for both projectiles also diminishes. Oscillatory behavior is observed in
the Sherman function for electron scattering and smooth behavior, for positron scattering.
Perhaps, this is due to the exchange potential. In Figure 12c, we present the comparative
picture of TCSs for e±-CF3I collision. It is observed that as the energy decreases below
100 eV, TCS for electron impact starts to increase over that for positron impact and below
3 eV these two cross-sections almost merge. This energy region (3–100 eV) is the resonance
region, in which temporary capture of the incident electron by the target molecule occurs.
The magnitude of TCS for electron impact increase due to the shape resonances and the
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effects mentioned in the case of DCS comparison. As the energy increases, the effect of
resonance and exchange and polarization potential decreases and so the difference in
magnitude of these two TCSs almost vanishes. In Figure 12d, we compare IECSs for e±-
CF3I. A large difference in magnitude is observed at low energy, but as the energy increases,
this difference mitigates. A similar picture is observed in Figure 12e,f in the case of MTCSs
and VICSs.
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Figure 11. (a) TCS, (b) IECS, (c) MTCS, (d) VCS, (e) INCS, and (f) TICS for the scattering of positrons
from CF3I. Theoretical works: IAM, SCIAM, Dapor and Miotello [41]. Experimental works: Kawada
et al. [29].
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Figure 12. Comparison of the energy dependence of (a) DCS, (b) Sherman function, (c) TCS, (d) IECS,
(e) MTCS, and (f) VICS between the e−-CF3I and e+-CF3I scattering. Theoretical works: Electron
and Positron.

4. Conclusions

In the present work, we report theoretical investigation throughout the calculations
of the observable quantities of the scattering system e±-CF3I over a wide energy range
1 eV–1 MeV using IAM. The scattering amplitudes of the constituent atoms are calculated
in the framework of Dirac partial wave analysis employing a free-atom local complex
optical potential. The collision dynamics is studied in terms of effective local potential
instead of non-local potential to avoid strenuous and prolonged computation. A screening
correction, arising from a semiclassical analysis of atomic geometrical overlapping, of the
scattering cross-sections calculated in the independent atom approximation is taken into
consideration to extend the validity of IAM to the low energy region [12]. We compare our
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calculated results with the available experimental and theoretical data and a quite reason-
able agreement is observed. From the comparison, it is observed that the incorporation of
the screening correction improves the quality of the predicted results both at low energies
and angles.

Our DCS calculations, using SCIAM, for electron impact show reasonable agreement
below 30 eV and quite good agreement above this energy. Low energy failure of our
calculations arises due to the semi-classical nature of the screening correction, low energy
limitation of the optical model, and ignoring the multiple scattering. We compare our
high energy DCS calculations, using SCIAM and IAM and the additivity rule for both the
projectiles and a very good agreement among these three is observed. The result was not
unexpected as the screening correction becomes negligible at high incident energies. For the
first time, to the best of our knowledge, calculations of Sherman function for the e±-CF3I
scattering are presented in the literature through our investigation. Energy dependence of
absolute DCS and Sherman function are illustrated along with the available data. Failure of
our energy dependent DCS calculations is observed below 10 eV due to the aforementioned
reasons. A remarkable feature of our screening corrected calculation is that it shows
excellent reproduction of electron impact total and transport cross-sections. In the case
of positron impact TCS, our calculations underestimate the only available experimental
observation below 10 eV. More data, both experimental and theoretical, are needed to
bring out the more acceptable illustration of positron impact TCS. A comparison of the
observable quantities is made to illustrate the similarities and differences between electron
and positron collision with molecules. Most of the differences are observed to occur within
a few hundred eV. The low energy electron impact scattering cross-sections possess greater
value than those of positron impact. The cumulative effect of correlation-polarization and
static potentials and the low energy contribution of exchange potential play a significant
role in this issue. Broad shape resonance has noticeable contribution to the magnitude of
electron impact TCS. Our calculations reproduce the broad shape resonance with a peak at
around 6 eV in electron impact TCS but cannot reproduce the fine structures, arising due to
Ps formation, excitation, and ionization, observed in positron impact TCS.

Sophisticated models using realistic projectile–molecule interactions perform better
than our model at low energies at the expense of time consuming, strenuous computations.
Although the code [21] used is not designed to calculate the cross sections for inelastic
processes, such as excitation, ionization to specific electronic states, and dissociation, the
advantage of our model is that it is an easy-to-implement recipe and can generate a broad
spectrum of observable quantities with reasonable accuracy over a wide energy range.
The success of IAM with the inclusion of screening correction in describing the projectile–
molecule collision is encouraging. This easy-to-use recipe might be useful to mitigate the
demand of the observable quantities related to the scattering of electrons and positrons off
the diatomic and polyatomic molecules in many research and technical fields. More data
are needed for further refinement of the theory.
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