Electron Impact Ionization of Adenine: Partial Cross Sections
Abstract
:1. Introduction
2. Experiment
2.1. Measurement
2.2. Uncertainty Estimation
3. Results and Discussion
3.1. Mass Spectrum
3.2. Appearance Energies and Fragmentation Channels
3.3. Cross Sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, J.F.; Webb, C.F.; Limoli, C.L.; Milligan, J.R. Ionizing Radiation Damage to DNA: Molecular Aspects; Wiley-Liss: New York, NY, USA, 1990; p. 43. [Google Scholar]
- Huels, M.A.; Hahndorf, I.; Illenberger, E.; Sanche, L. Resonant dissociation of DNA bases by subionization electrons. J. Chem. Phys. 1998, 108, 1309–1312. [Google Scholar] [CrossRef]
- Boudaõffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science 2000, 287, 1658–1660. [Google Scholar] [CrossRef] [PubMed]
- Hunniford, C.A.; McCullough, R.W.; Jeremy, R.; Davies, H.; Timson, D. DNA damage by low-energy ions. Biochem. Soc. Trans. 2009, 37, 893–896. [Google Scholar] [CrossRef]
- Baccarelli, I.; Bald, I.; Gianturco, F.A.; Illenberger, E.; Kopyra, J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011, 508, 1–44. [Google Scholar] [CrossRef]
- Nikjoo, H.; Neill, P.O.; Terrissol, M.; Goodhead, D.T. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat. Environ. Biophys. 1999, 38, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Rabus, H.; Nettelbeck, H. Nanodosimetry: Bridging the Gap to Radiation Biophysics. Radiat. Meas. 2011, 46, 1522–1528. [Google Scholar] [CrossRef]
- Nettelbeck, H.; Rabus, H. Nanodosimetry: The missing link between radiobiology and radiation physics? Radiat. Meas. 2011, 46, 893–897. [Google Scholar] [CrossRef]
- Schardt, D.; Elsasser, T.; Schulz-Ertner, D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010, 82, 383. [Google Scholar] [CrossRef]
- Shafranyosh, I.I.; Sukhoviya, M.I. Inelastic collisions of the uracil molecules with electrons. J. Chem. Phys. 2012, 137, 184303–184306. [Google Scholar] [CrossRef]
- Minaev, B.F.; Shafranyosh, M.I.; Svida, Y.Y.; Sukhoviya, M.I.; Shafranyosh, I.I.; Baryshnikov, G.V.; Minaev, V.A. Fragmentation of the adenine and guanine molecules induced by electron collisions. J. Chem. Phys. 2014, 140, 175101. [Google Scholar] [CrossRef] [PubMed]
- Shafranyosh, I.I.; Sukhoviya, M.I.; Shafranyosh, M.I. Absolute cross sections of positive- and negative-ion production in electron collision with cytosine molecules. J. Phys. B. 2006, 39, 4155–4162. [Google Scholar] [CrossRef]
- Shafranyosh, I.I.; Sukhoviya, M.I.; Shafranyosh, M.I.; Shimon, L.L. Formation of positive and negative ions of thymine. Tech. Phys. 2008, 53, 1536–1540. [Google Scholar] [CrossRef]
- Jochims, H.W.; Schwell, M.; Baumgartel, H.; Leach, S. Photoion mass spectrometry of adenine, thymine and uracil in the 6–22 eV photon energy range. Chem. Phys. 2005, 314, 263–282. [Google Scholar] [CrossRef]
- Dawley, M.M.; Tanzer, K.; Cantrell, W.A.; Plattner, P.; Brinkmann, N.R.; Scheier, P.; Denifl, S.; Ptasinska, S. Electron ionization of the nucleobases adenine and hypoxanthine near the threshold: A combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2014, 16, 25039–25053. [Google Scholar] [CrossRef] [PubMed]
- van der Burgt, P.J.M.; Finnegan, S.; Eden, S. Electron impact fragmentation of adenine: Partial ionization cross sections for positive fragments. Eur. Phys. J. D 2015, 69, 173. [Google Scholar] [CrossRef]
- Ostroverkh, A.; Zavilopulo, A.; Shpenik, O. Ionization of guanine, adenine and thymine molecules by electron impact. Eur. Phys. J. D 2019, 73, 38. [Google Scholar] [CrossRef]
- Bernhardt, P.H.; Paretzke, H.G. Calculation of electron impact ionization cross sections of DNA using the Deutsch–Märk and Binary–Encounter–Bethe formalisms. Int. J. Mass Spectrom. 2003, 223–224, 599–611. [Google Scholar] [CrossRef]
- Możejko, P.; Sanche, L. Cross section calculations for electron scattering from DNA and RNA bases. Radiat. Environ. Biophys. 2003, 42, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Peudon, A.; Edel, S.; Terrissol, M. Molecular basic data calculation for radiation transport in chromatin. Radiat. Prot. Dosim. 2006, 122, 128–135. [Google Scholar] [CrossRef]
- Bull, J.N.; Lee, J.W.L.; Vallance, C. Absolute electron total ionization cross-sections: Molecular analogues of DNA and RNA nucleobase and sugar constituents. Phys. Chem. Chem. Phys. 2014, 16, 10743–10752. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.M.; Dateo, C.E.; Fletcher, G.D. Molecular data for a biochemical model of DNA damage: Electron impact ionization and dissociative ionization cross sections of DNA bases and sugar-phosphate backbone. Radiat. Meas. 2006, 41, 1202–1208. [Google Scholar] [CrossRef]
- Vinodkumar, M.; Limbachiya, C.; Barot, M.; Swadia, M.; Barot, A. Electron impact total ionization cross sections for all the components of DNA and RNA molecule. Int. J. Mass Spectrom. 2013, 339–340, 16–23. [Google Scholar] [CrossRef]
- Champion, C. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components. J. Chem. Phys. 2013, 138, 184306. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Q.; Mi, Z.; Bettiol, A.A. Simple and universal model for electron-impact ionization of complex biomolecules. Phys. Rev. E 2018, 97, 032403. [Google Scholar] [CrossRef]
- Bauer, C.A.; Grimme, S. Elucidation of electron ionization induced fragmentations of adenine by semiempirical and density functional molecular dynamics. J. Phys. Chem. A 2018, 118, 11479. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Chakraborti, S.K. Can DNA bases be produced during molecular cloud collapse? Astron. Astrophys. 2000, 354, L6–L8. [Google Scholar]
- Saladino, R.; Crestini, C.; Costanzo, G.; Negri, R.; di Mauro, E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Bioorg. Med. Chem. 2001, 9, 1249–1253. [Google Scholar] [CrossRef]
- Gupta, V.P.; Tandon, P.; Rawat, P.; Singh, R.N.; Singh, A. Quantum chemical study of a new reaction pathway for the adenine formation in the interstellar space. Astron. Astrophys. 2011, 528, A129. [Google Scholar] [CrossRef]
- Evans, N.L.; Ullrich, S.; Bennett, C.J.; Kaiser, R.I. On the interaction of adenine with ionizing radiation: Mechanistical studies and astrobiological implications. Astrophys. J. 2011, 730, 69. [Google Scholar] [CrossRef]
- Callahan, M.P.; Smith, K.E.; Cleaves, H.J.; Ruzicka, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 2011, 108, 13995. [Google Scholar] [CrossRef]
- Martins, Z.; Botta, O.; Fogel, M.L.; Sephton, M.A.; Glavin, D.P.; Watson, J.S.; Dworkin, J.P.; Schwartz, A.W.; Ehrenfreund, P. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 2008, 270, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Zaleski, D.P.; Seifert, N.A.; Steber, A.L.; Muckle, M.T.; Loomis, R.A.; Corby, J.F.; Martinez, O.; Crabtree, K.N.; Jewell, P.R.; Hollis, J.M.; et al. Detection of E-cyanomethanimine toward Sagittarius B2(N) in the Green Bank telescope primos survey. Astrophys. J. Lett. 2013, 765, L10. [Google Scholar] [CrossRef]
- Stoks, P.G.; Schwartz, A.W. Uracil in carbonaceous meteorites. Nature 1979, 282, 709–710. [Google Scholar] [CrossRef]
- Joyce, G.F. The antiquity of RNA-based evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef]
- Ziurys, L.M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. USA 2006, 103, 12274–12279. [Google Scholar] [CrossRef] [PubMed]
- Oro, J.; Kimball, A.P. Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide. Arch. Biochem. Biophys. 1962, 96, 293–313. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. J. Mol. Biol. 1968, 38, 121–128. [Google Scholar] [CrossRef]
- Volkenshtein, M.V. Biophysics; Mir Publishers: Moscow, Russia, 1983. [Google Scholar]
- Rahman, M.A.; Krishnakumar, E. Communication: Electron ionization of DNA bases. J. Chem. Phys. 2016, 144, 161102. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Chutjian, A.; Trajmar, S. Absolute elastic differential electron scattering cross sections in the intermediate energy region. I. H2. J. Chem. Phys. 1975, 63, 2659–2665. [Google Scholar] [CrossRef]
- Rahman, M.A.; Gangopadhyay, S.; Limbachiya, C.; Joshipura, K.N.; Krishnakumar, E. Electron ionization of NF3. Int. J. Mass Spectrom. 2012, 319–320, 48–54. [Google Scholar] [CrossRef]
- Rahman, M.A.; Krisnakumar, E. Absolute partial and total electron ionization cross sections of uracil. Int. J. Mass Spectrom. 2015, 392, 145. [Google Scholar] [CrossRef]
- Zielenkiewicz, W.J. Enthalpies of Sublimation and Vapor Pressures of Adenine, 1-Methyladenine, 2-Methyladenine, 3-Methyladenine, and 8-Methyladenine. Chem. Eng. Data 2000, 45, 626. [Google Scholar] [CrossRef]
- Rejoub, R.; Lindsay, B.G.; Stebbings, R.F. Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases. Phys. Rev. A 2002, 65, 042713. [Google Scholar] [CrossRef]
- Krishnakumar, E.; Srivastava, S.K. Ionisation cross sections of rare-gas atoms by electron impact. J. Phys. B At. Mol. Opt. Phys 1988, 21, 1055–1082. [Google Scholar] [CrossRef]
- Straub, H.C.; Renault, P.; Lindsay, B.G.; Smith, K.A.; Stebbings, R.F. Absolute partial and total cross sections for electron-impact ionization of argon from threshold to 1000 eV. Phys. Rev. A 1995, 52, 1115–1124. [Google Scholar] [CrossRef]
- Ma, C.; Sporleder, C.R.; Bonham, R.A. A pulsed electron beam time of flight apparatus for measuring absolute electron impact ionization and dissociative ionization cross sections. Rev. Sci. Instrum. 1991, 62, 909–924. [Google Scholar] [CrossRef]
- Rice, J.M.; Dudek, G.O. Mass spectra of nucleic acid derivatives. II. Guanine, adenine, and related compounds. J. Am. Chem. Soc. 1967, 89, 2719–2725. [Google Scholar] [CrossRef]
- Data Compiled by: NIST Mass Spectrometry Data Center, Wallace, W.E. Adenine Mass Spectrum (Electron Ionization). Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C73245&Units=SI&Mask=200#Mass-Spec (accessed on 1 September 2015).
- Krishnakumar, E.; Srivastava, S.K. Cross sections for the production of N2+, N++N22+ and N2+ by electron impact on N2. J. Phys. B At. Mol. Opt. Phys. 1990, 23, 1893–1903. [Google Scholar] [CrossRef]
- Mark, T.D. Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV. J. Chem. Phys. 1975, 63, 3731–3736. [Google Scholar] [CrossRef]
- Plutzer, C.; Kleinermanns, K. Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys. Chem. Chem. Phys. 2002, 4, 4877–4882. [Google Scholar] [CrossRef]
- Pilling, S.; Lago, A.F.; Coutinho, L.H.; de Castilho, R.B.; de Souza, G.G.B.; de Brito, A.N. Dissociative photoionization of adenine following valence excitation. Rapid Commun. Mass Spectrom. 2007, 21, 3646–3652. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.K.; Gupta, S.P.; Jenkins, E.E.; Whitehead, C.W.; Townsend, L.B.; McCIoskey, J.A. Mass spectrometry of nucleic acid constituents. Electron ionization spectra of selectively labeled adenines. J. Am. Chem. Soc. 1982, 104, 3349–3353. [Google Scholar] [CrossRef]
- Porter, Q.N.; Baldas, J. Mass Spectrometry of Heterocyclic Compounds; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Goto, T.; Tatematsu, A.; Matsuura, S. Organic mass spectrometry. I. Mass spectra of pteridine, methylpteridines, and hydroxypteridines. J. Org. Chem. 1965, 30, 1844–1846. [Google Scholar] [CrossRef]
- Mendez, A.M.P.; Montanari, C.C.; Miraglia, J.E. Scaling rules for the ionization of biological molecules by highly charged ions. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 175202. [Google Scholar] [CrossRef]
m/z | Electron Impact | Photon Impact | |||||
---|---|---|---|---|---|---|---|
Present Work 100 eV | Minaev et al. [11] 95 eV | Present Work 70 eV | NIST [50] 70 eV | Rice et al. [49] 70 eV | Ostroverkh et al. [17] 70 eV | Jochims et al. [14] 20 eV | |
136 | 8.0 | 4.29 | 8 | 7.6 | - | 7.86 | - |
135 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
134 | 6 | 2.86 | 6.4 | 3 | 3 | 3.32 | 10 |
120 | 0.5 | - | 0.44 | - | 3 | 1.55 | 1 |
119 | 1.3 | - | 1.3 | 1.2 | - | 1.44 | 3 |
118 | 0.8 | - | 0.81 | 0.9 | - | 1.11 | - |
108 | 25 | 35.7 | 23.7 | 27 | 34 | 30.3 | 57 |
107 | 1.9 | 5.0 | 1.8 | 1.9 | 3 | 2.44 | 10 |
92 | 2.4 | - | 2.4 | 1.5 | - | 1.55 | 9 |
83 | 1.3 | - | 1.2 | 0.8 | - | 0.441 | - |
82 | 2.0 | - | 1.9 | 0.6 | - | 0.332 | - |
81 | 10.2 | 22.9 | 9.9 | 9.7 | 19 | 10.9 | 50 |
80 | 5.3 | 10.0 | 5.1 | 3.3 | 7 | 4.43 | 10 |
70 | 5.0 | 5.0 | 5.0 | 3.6 | 5 | 4.42 | 17 |
66 | 11.8 | 20.0 | 11.8 | 6.3 | 15 | 7.59 | 41 |
65 | 3.9 | 7.14 | 3.6 | 1.8 | 6 | 2.58 | 0 |
56 | 2.3 | - | 2.3 | 1.5 | - | 1.37 | - |
55 | 6.9 | 11.4 | 6.6 | 2.4 | - | 2.33 | - |
54 | 25 | 32.9 | 23 | 11.2 | 31 | 15.3 | 55 |
53 | 24 | 25.7 | 21 | 7.6 | 24 | 8.45 | 28 |
43 | 7.6 | 10.0 | 7.3 | 4.3 | 12 | 6.542 | 34 |
42 | 2.6 | 5.0 | 2.3 | 0.5 | 3 | 0.443 | 16 |
41 | 2.7 | 2.85 | 2.6 | 1.1 | 2 | 1.03 | 7 |
40 | 6.7 | 10.0 | 5.8 | 1.6 | 5 | 1.89 | 1 |
39 | 10.4 | 10.0 | 8 | 2.2 | 8 | 2.58 | 1 |
38 | 9.9 | 11.4 | 7.2 | 2.4 | 10 | 2.44 | 0 |
29 | 16 | 8.57 | 15.5 | 3.6 | 12 | 7.58 | 60 |
28 | 82 | 21.4 | 74 | 18.5 | 78 | 67.1 | 110 |
27 | 12.8 | 10.0 | 7.7 | 1.9 | 12 | 0.551 | 10 |
18 | - | - | - | - | - | 11.7 | - |
17 | - | - | - | - | - | 4.20 | - |
15 | - | - | - | - | - | 4.43 | - |
14 | - | - | - | - | - | 3.43 | - |
13 | 3.9 | - | 1.5 | - | - | - | - |
12 | 2.8 | - | 0.85 | - | - | - | - |
m/z | Photon Impact | Electron Impact | ||||
---|---|---|---|---|---|---|
Jochims et al. [14] | Dawley et al. [15] | van der Burgt et al. [16] | Present | |||
1st | 2nd | Difference | ||||
135 | 8.2 ± 0.03 | 8.7 ± 0.3 | 8.0 ± 0.2 | 8.8 ± 0.3 | - | - |
108 | 11.56 ± 0.05 | 11.7 ± 0.2 | 11.3 ± 0.2 | 12.3 ± 0.5 | - | - |
94 | - | - | - | 15 ± 0.5 | 17 ± 0.5 | 2 |
93 | - | - | - | 15.2 ± 0.5 | 17.2 ± 0.5 | 2 |
92 | - | - | - | 15.6 ± 0.4 | 17.6 ± 0.4 | 2 |
91 | - | - | - | 16.5 ± 0.5 | - | - |
82 | - | - | - | 15.7 ± 0.4 | 18.2 ± 0.4 | 2.5 |
81 | 12.8 ± 0.1 | 14.14 ± 0.5 | 13.1 ± 0.2 | 13.5 ± 0.5 | 16.3 ± 0.5 | 2.8 |
80 | - | 15.1 ± 0.5 | 14.8 ± 0.7 | 17.5 ± 0.4 | 21.5 ± 0.4 | 4 |
70 | 13.1 ± 0.1 | 14.9 ± 0.2 | 12.6 ± 0.4 | 13.0 ± 0.4 | 16.5 ± 0.4 | 3.5 |
66 | 13.2 ± 0.1 | 14.2 ± 0.3 | 13.5 ± 0.2 | 16.5 ± 0.4 | 19.0 ± 0.4 | 2.5 |
65 | - | 17.9 ± 0.4 | 15.7 ± 1.3 | 17.0 ± 0.4 | 20.5 ± 0.4 | 3.5 |
64 | - | - | - | 18.5 ± 0.4 | - | - |
56 | - | - | - | 16.5 ± 0.4 | 18.6 ± 0.4 | 2.1 |
55 | - | - | - | 15.5 ± 0.5 | 18 ± 0.5 | 2.5 |
54 | 13.7 ± 0.1 | 14.6 ± 0.3 | 13.5 ± 0.3 | 13.5 ± 0.5 | 17.5 ± 0.4 | 4 |
53 | - | 16.7 ± 0.5 | 15.3 ± 0.5 | 16.0 ± 0.5 | 21 ± 0.4 | 5 |
51 | - | - | - | 14 ±0.5 | 21 ± 0.4 | 7 |
43 | 13.0 ± 0.1 | 14.0 ± 0.3 | 13.3 ± 0.6 | 13.0 ± 0.5 | 17.0 ± 0.4 | 4 |
42 | - | - | - | 14 ± 0.4 | 19 ± 0.4 | 5 |
41 | - | - | - | 16 ± 0.4 | 22 ± 0.4 | 6 |
40 | - | 15.7 ± 0.3 | 15.9 ± 0.2 | 16.0 ± 0.5 | 20.0 ± 0.5 | 4 |
39 | - | 18.1 ± 0.2 | 17.1 ± 0.5 | 14.5 ± 0.5 | 21.5 ± 0.4 | 7 |
38 | - | - | - | 15.0 ± 0.5 | 23 ± 0.5 | 8 |
29 | 14.0 ± 0.1 | 15.15 ± 0.15 | 13.7 ± 0.3 | 14.5 ± 0.5 | - | - |
28 | 13.1 ± 0.1 | 13.1 ± 0.5 | 12.9 ± 0.4 | 15 ± 0.4 | 17.0 ± 0.4 | 2 |
27 | - | 13.5 ± 0.2 | 14.0 ± 0.6 | 14 ± 0.5 | 20 ± 0.5 | 6 |
25 | - | - | - | 14 ± 1 | - | - |
24 | - | - | - | 15 ± 1 | - | - |
15 | - | - | - | 12 ± 0.5 | 19 ± 0.5 | 7 |
14 | - | - | - | 19.5 ± 0.5 | 27 ± 0.5 | 7.5 |
13 | - | - | - | 26 ± 1 | 37 ± 1 | 11 |
12 | - | - | - | 27 ± 1 | 38 ± 1 | 11 |
Electron Energy (eV) | Partial Ionization Cross Sections for Prominent Ions (×10−18 cm2) | Total Cross Section (10−16 cm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HCN+ | HCNH+ | C2N+ | C2NH+ | C2N2H+ | C2N2H2+ | C3N3H3+ | C4N4H4+ | C5N5H5+ | ||
8.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.20 | 0.002 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.34 | 0.003 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3 | 0.03 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.8 | 0.105 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.3 | 0.138 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.026 | 21.7 | 0.138 |
14 | 0 | 0.025 | 0 | 0.015 | 0 | 0.01 | 0.03 | 0.22 | 42.9 | 0.221 |
15 | 0 | 0.05 | 0.039 | 0.018 | 0 | 0.013 | 0.04 | 1.0 | 74.6 | 0.407 |
16 | 0 | 0.10 | 0.070 | 0.022 | 0.03 | 0.02 | 0.07 | 2.4 | 116 | 0.694 |
17 | 0 | 0.20 | 0.070 | 0.032 | 0.045 | 0.054 | 0.22 | 5.9 | 159 | 1.09 |
18 | 0 | 0.73 | 0.093 | 0.044 | 0.12 | 0.20 | 0.51 | 10.4 | 203 | 1.53 |
19 | 0.079 | 1.5 | 0.11 | 0.059 | 0.11 | 0.50 | 1.2 | 17.3 | 246 | 2.05 |
20 | 0.13 | 3.1 | 0.23 | 0.071 | 0.15 | 0.97 | 2.1 | 24.0 | 288 | 2.60 |
25 | 0.37 | 22 | 0.57 | 0.25 | 2.0 | 8.3 | 10.4 | 59.7 | 418 | 3.16 |
30 | 0.92 | 65 | 1.1 | 1.3 | 9.1 | 22.3 | 21.4 | 80.3 | 459 | 5.93 |
35 | 1.8 | 122 | 2.9 | 4.1 | 22.9 | 41.4 | 30.3 | 93.0 | 483 | 8.21 |
40 | 4.8 | 178 | 7.6 | 9.2 | 39.4 | 61.0 | 36.7 | 100 | 501 | 10.8 |
45 | 8.4 | 225 | 12.6 | 15.7 | 56.3 | 77.3 | 41.1 | 105 | 520 | 12.5 |
50 | 13 | 260 | 16.9 | 20.9 | 68.1 | 86.8 | 43.2 | 107 | 529 | 14.4 |
55 | 19 | 289 | 22.5 | 26.7 | 78.7 | 96.4 | 45.3 | 111 | 535 | 15.5 |
60 | 24 | 316 | 26.1 | 30.5 | 88.5 | 103 | 47.5 | 115 | 544 | 16.9 |
65 | 30 | 334 | 31.1 | 35.4 | 94.7 | 109 | 46.3 | 113 | 544 | 18.0 |
70 | 37 | 351 | 34.2 | 37.9 | 99.6 | 111 | 46.9 | 114 | 542 | 18.6 |
75 | 41 | 356 | 37.4 | 40.2 | 103 | 113 | 47.7 | 116 | 545 | 19.2 |
80 | 47 | 364 | 40.0 | 43.1 | 106 | 115 | 48.3 | 115 | 543 | 19.6 |
85 | 49 | 371 | 41.1 | 45.3 | 110 | 116 | 48.2 | 118 | 544 | 19.9 |
90 | 53 | 379 | 44.0 | 46.7 | 111 | 117 | 48.6 | 118 | 544 | 20.1 |
95 | 59 | 384 | 46.2 | 48.5 | 112 | 117 | 49.2 | 119 | 540 | 20.6 |
100 | 60 | 385 | 46.6 | 48.8 | 113 | 117 | 48.0 | 119 | 536 | 21.0 |
125 | 68 | 380 | 51.5 | 49.4 | 116 | 114 | 47.8 | 120 | 527 | 20.6 |
150 | 70 | 369 | 49.9 | 47.8 | 112 | 109 | 47.4 | 120 | 512 | 20.6 |
175 | 68 | 353 | 45.7 | 44.8 | 100 | 102 | 45.2 | 117 | 495 | 19.4 |
200 | 62 | 341 | 42.2 | 42.4 | 98.4 | 99.6 | 44.8 | 120 | 485 | 19.1 |
225 | 58 | 321 | 41.0 | 38.2 | 90.4 | 94.1 | 42.8 | 113 | 469 | 17.0 |
250 | 53 | 305 | 37.1 | 35.6 | 85.5 | 90.0 | 41.4 | 111 | 455 | 16.6 |
275 | 48 | 289 | 33.3 | 33.5 | 80.3 | 84.1 | 40.1 | 108 | 443 | 16.2 |
300 | 46 | 279 | 32.6 | 30.9 | 79.8 | 80.1 | 39.2 | 105 | 428 | 15.3 |
325 | 41 | 264 | 30.6 | 28.8 | 72.4 | 76.8 | 37.8 | 101 | 418 | 14.7 |
350 | 39 | 249 | 28.3 | 27.4 | 68.2 | 73.0 | 35.2 | 97.5 | 405 | 13.9 |
375 | 36 | 239 | 25.0 | 25.4 | 63.8 | 69.7 | 33.6 | 93.5 | 391 | 13.4 |
400 | 34 | 224 | 23.6 | 24.3 | 60.0 | 66.3 | 31.8 | 89.7 | 381 | 12.9 |
425 | 32 | 215 | 22.6 | 22.6 | 56.4 | 64.0 | 30.8 | 86.9 | 368 | 12.5 |
450 | 29 | 197 | 20.8 | 20.2 | 52.8 | 58.6 | 29.2 | 81.9 | 346 | 11.8 |
475 | 28 | 193 | 20.3 | 19.8 | 52.3 | 57.8 | 29.0 | 80.8 | 347 | 11.1 |
500 | 26 | 178 | 18.3 | 18.9 | 47.7 | 54.2 | 28.1 | 77.2 | 340 | 11.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.A.; Krishnakumar, E. Electron Impact Ionization of Adenine: Partial Cross Sections. Atoms 2022, 10, 100. https://doi.org/10.3390/atoms10040100
Rehman MA, Krishnakumar E. Electron Impact Ionization of Adenine: Partial Cross Sections. Atoms. 2022; 10(4):100. https://doi.org/10.3390/atoms10040100
Chicago/Turabian StyleRehman, Mohammad Atiqur, and E. Krishnakumar. 2022. "Electron Impact Ionization of Adenine: Partial Cross Sections" Atoms 10, no. 4: 100. https://doi.org/10.3390/atoms10040100
APA StyleRehman, M. A., & Krishnakumar, E. (2022). Electron Impact Ionization of Adenine: Partial Cross Sections. Atoms, 10(4), 100. https://doi.org/10.3390/atoms10040100