Spectroscopic Peculiarities at Ionization of Excited 2p5(2PJf)3s[K]0,1,2 States of Ne: Cooper Minima and Autoionizing Resonances
Abstract
:1. Introduction
2. PhotoIonization of Metastable and States
3. Photoionization of Dipole-Allowed States
4. The Resonance Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connerade, J. Highly Exited Atoms; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Baig, M.A. Measurement of Photoionization Cross-Section for the Excited States of Atoms: A Review. Atoms 2022, 10, 39. [Google Scholar] [CrossRef]
- Avdonina, N.B.; Amusia, M.Y. Characteristic features in photoionisation of excited atomic states. J. Phys. B At. Mol. Phys. 1983, 16, L543–L545. [Google Scholar] [CrossRef]
- Cooper, J.W. Interaction of Maxima in the Absorption of Soft X Rays. Phys. Rev. Lett. 1964, 13, 762–764. [Google Scholar] [CrossRef]
- Fano, U.; Cooper, J.W. Spectral Distribution of Atomic Oscillator Strengths. Rev. Mod. Phys. 1968, 40, 441–507. [Google Scholar] [CrossRef]
- Msezane, A.; Manson, S.T. New Minima in Photoionization Cross Section. Phys. Rev. Lett. 1975, 35, 364–366. [Google Scholar] [CrossRef]
- Mamsom, S.T.; Cooper, J.W. Photo-Ionization in the Soft x-Ray Range: 1Z Dependence in a Central-Potential Model. Phys. Rev. 1968, 165, 126–138. [Google Scholar] [CrossRef]
- McGuire, E.J. Photo-Ionization Cross Sections of the Elements Helium to Xenon. Phys. Rev. 1968, 175, 20–30. [Google Scholar] [CrossRef]
- Amusia, M.; Chernysheva, L.; Yarzhemsky, V. Handbook of Theoretical Atomic Physics: Data for Photon Absorption, Electron Scattering, and Vacancies Decay; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Amusia, M.; Kheifets, A. The influence of “two-electron-two-hole excitation”s on the 3s−14p autoionization profile in Ar atoms. Phys. Lett. A 1981, 82, 407–411. [Google Scholar] [CrossRef]
- Amusia, M.Y.; Ivanov, V.K.; Cherepkov, N.A.; Chernysheva, L.V. Interference effects in photoionization of noble gas atoms outer s-shells. Phys. Lett. 1972, 40A, 361–362. [Google Scholar] [CrossRef]
- Toffoli, D.; Stener, M.; Fronzoni, G.; Decleva, P. Convergence of the multicenter B-spline DFT approach for the continuum. Chem. Phys. 2002, 276, 25–43. [Google Scholar] [CrossRef]
- Marante, C.; Klinker, M.; Corral, I.; González-Vázquez, J.; Argenti, L.; Martín, F. Hybrid-Basis Close-Coupling Interface to Quantum Chemistry Packages for the Treatment of Ionization Problems. J. Chem. Theory Comput. 2017, 13, 499–514. [Google Scholar] [CrossRef]
- Moitra, T.; Ponzi, A.; Koch, H.; Coriani, S.; Decleva, P. Accurate Description of Photoionization Dynamical Parameters. J. Phys. Chem. Lett. 2020, 11, 5330–5337. [Google Scholar] [CrossRef]
- Kheifets, A.S. Time delay in valence-shell photoionization of noble-gas atoms. Phys. Rev. A 2013, 87, 063404. [Google Scholar] [CrossRef]
- Palatchi, C.; Dahlstrom, J.M.; Kheifets, A.S.; Ivanov, I.A.; Canaday, D.M.; Agostini, P.; DiMauro, L.F. Atomic delay in helium, neon, argon and krypton. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 245003. [Google Scholar] [CrossRef]
- Alexandridi, C.; Platzer, D.; Barreau, L.; Busto, D.; Zhong, S.; Turconi, M.; Neoričić, L.; Laurell, H.; Arnold, C.L.; Borot, A.; et al. Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon. Phys. Rev. Res. 2021, 3, L012012. [Google Scholar] [CrossRef]
- Saha, S.; Mandal, A.; Jose, J.; Varma, H.R.; Deshmukh, P.C.; Kheifets, A.S.; Dolmatov, V.K.; Manson, S.T. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms. Phys. Rev. A 2014, 90, 053406. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Arimondo, E.; Clark, C.W.; Martin, W.C. Colloquium: Ettore Majorana and the birth of autoionization. Rev. Mod. Phys. 2010, 82, 1947–1958. [Google Scholar] [CrossRef]
- Madden, R.P.; Codling, K. New Autoionizing Atomic Energy Levels in He, Ne, and Ar. Phys. Rev. Lett. 1963, 10, 516–518. [Google Scholar] [CrossRef]
- Baig, M.A.; Connerade, J.P. Centrifugal barrier effects in the high Rydberg states and autoionising resonances of neon. J. Phys. B At. Mol. Phys. 1984, 17, 1785–1796. [Google Scholar] [CrossRef]
- Maeda, K.; Ueda, K.; Ito, K. High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr and Xe. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 1541–1555. [Google Scholar] [CrossRef]
- Kabachnik, N.M.; Sazhina, I.P. Angular distribution and polarization of photoelectrons in the region of resonances. J. Phys. B At. Mol. Opt. Phys. 1976, 9, 1681–1697. [Google Scholar] [CrossRef]
- Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L. Three-photon excitation of autoionizing states of atomic xenon between the 2∘3/2 and 2∘1/2 fine-structure thresholds. Phys. Rev. A 1987, 35, 3793–3798. [Google Scholar] [CrossRef]
- Blazewicz, P.R.; Stockdale, J.A.D.; Miller, J.C.; Efthimiopoulos, T.; Fotakis, C. Four-photon excitation of even-parity Rydberg states in krypton and xenon. Phys. Rev. A 1987, 35, 1092–1098. [Google Scholar] [CrossRef]
- Koeckhoven, S.M.; Buma, W.J.; de Lange, C.A. Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits. Phys. Rev. A 1994, 49, 3322–3332. [Google Scholar] [CrossRef]
- Moccia, R.; Rahman, N.K.; Rizzo, A. Two-photon ionisation cross section calculations of noble gases: Results for Ne and Ar. J. Phys. B At. Mol. Opt. Phys. 1983, 16, 2737–2751. [Google Scholar] [CrossRef]
- Saenz, A.; Lambropoulos, P. Theoretical two-, three- and four-photon ionization cross sections of helium in the XUV range. J. Phys. B At. Mol. Opt. Phys. 1999, 32, 5629–5637. [Google Scholar] [CrossRef]
- Aloïse, S.; O’Keeffe, P.; Cubaynes, D.; Meyer, M.; Grum-Grzhimailo, A.N. Photoionization of Synchrotron-Radiation-Excited Atoms: Separating Partial Cross Sections by Full Polarization Control. Phys. Rev. Lett. 2005, 94, 223002. [Google Scholar] [CrossRef]
- Petrov, I.; Peters, T.; Halfmann, T.; Aloıse, S.; O’Keeffe, P.; Meyer, M.; Sukhorukov, V.; Hotop, H. Lineshapes of the even autoionizing resonances of Ar, Kr and Xe. Eur. Phys. J. D 2006, 40, 181–193. [Google Scholar] [CrossRef]
- O’Keeffe, P.; Bolognesi, P.; Mihelic, A.; Moise, A.; Richter, R.; Cautero, G.; Stebel, L.; Sergo, R.; Pravica, L.; Ovcharenko, E.; et al. Photoelectron angular distributions from polarized Ne* atoms near threshold. Phys. Rev. A 2010, 82, 052522. [Google Scholar] [CrossRef]
- O’Keeffe, P.; Gryzlova, E.V.; Cubaynes, D.; Garcia, G.A.; Nahon, L.; Grum-Grzhimailo, A.N.; Meyer, M. Isotopically Resolved Photoelectron Imaging Unravels Complex Atomic Autoionization Dynamics by Two-Color Resonant Ionization. Phys. Rev. Lett. 2013, 111, 243002. [Google Scholar] [CrossRef] [PubMed]
- Bartschat, K.; Madison, D.H. Electron impact excitation of rare gases: Differential cross sections and angular correlation parameters for neon, argon, krypton and xenon. J. Phys. B At. Mol. Opt. Phys. 1987, 20, 5839–5863. [Google Scholar] [CrossRef]
- Knight, R.D.; guo Wang, L. One-photon laser spectroscopy of the np and nf Rydberg series in xenon. J. Opt. Soc. Am. B 1985, 2, 1084–1087. [Google Scholar] [CrossRef]
- L’Huillier, A.; Lompré, L.A.; Normand, D.; Morellec, J.; Ferray, M.; Lavancier, J.; Mainfray, G.; Manus, C. Spectroscopy of the np and nf even-parity Rydberg series in xenon by two-photon excitation. J. Opt. Soc. Am. B 1989, 6, 1644–1647. [Google Scholar] [CrossRef]
- McCann, K.J.; Flannery, M.R. Photoionization of metastable rare-gas atoms (He*,Ne*,Ar*,Kr*,Xe*). Appl. Phys. Lett. 1977, 31, 599–601. [Google Scholar] [CrossRef]
- Kau, R.; Petrov, I.D.; Sukhorukov, V.L.; Hotop, H. Experimental and theoretical cross sections for photoionization of metastable atoms near threshold. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 5673–5698. [Google Scholar] [CrossRef]
- Kopeika, N.S.; Shuker, R.; Yerachmiel, Y.; Gabai, Y.; Ih, C.S. Observation of Cooper minima in excited-s-state photoionization cross sections in neon and argon. Phys. Rev. A 1983, 28, 1517–1526. [Google Scholar] [CrossRef]
- Petrov, I.D.; Lagutin, B.M.; Sukhorukov, V.L.; Knie, A.; Ehresmann, A. Correlation and polarization effects in two-photon photoionization of Ar. Phys. Rev. A 2016, 93, 033408. [Google Scholar] [CrossRef]
- Petrov, I.D.; Sukhorukov, V.L.; Hotop, H. Photoionization of excited Ne*(2p53p, J = 3) atoms near threshold. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 065205. [Google Scholar] [CrossRef]
- Sukhorukov, V.L.; Petrov, I.D.; Schafer, M.; Merkt, F.; Ruf, M.W.; Hotop, H. Photoionization dynamics of excited Ne, Ar, Kr and Xe atoms near threshold. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 092001. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, T.F. Quantum defect theory. In Rydberg Atoms; Cambridge Monographs on Atomic, Molecular and Chemical Physics; Cambridge University Press: Cambridge, UK, 1994; pp. 415–428. [Google Scholar] [CrossRef]
- Ojha, P.C.; Burke, P.G. Photoionisation of the 3p54s excited states of argon. J. Phys. B At. Mol. Opt. Phys. 1983, 16, 3513–3529. [Google Scholar] [CrossRef]
- Petrov, I.D.; Sukhorukov, V.L.; Hollenstein, U.; Kaufmann, L.J.; Merkt, F.; Hotop, H. Autoionization dynamics of even Ar (3) resonances: Comparison of experiment and theory. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 025004. [Google Scholar] [CrossRef]
- Gryzlova, E.V.; O’Keeffe, P.; Cubaynes, D.; Garcia, G.A.; Nahon, L.; Grum-Grzhimailo, A.N.; Meyer, M. Isotope effects in resonant two-color photoionization of Xe in the region of the 5p5(2P1/2)4f[5/2]2 autoionizing state. N. J. Phys. 2015, 17, 043054. [Google Scholar] [CrossRef]
- McKenna, C.; van der Hart, H.W. Multiphoton ionization cross sections of neon and argon. J. Phys. B At. Mol. Opt. Phys. 2003, 37, 457–470. [Google Scholar] [CrossRef]
- van der Hart, H.W.; Greene, C.H. Multichannel photoionization spectroscopy of Ar: Total cross section and threshold photoelectrons. Phys. Rev. A 1998, 58, 2097–2105. [Google Scholar] [CrossRef]
- Hamonou, L.; Lysaght, M.A.; van der Hart, H.W. Influence of autoionizing states on the pulse-length dependence of strong-field Ne+ photoionization at 38.4 eV. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 045601. [Google Scholar] [CrossRef]
- Zhou, Z.; Chu, S.I. Time-dependent localized Hartree-Fock density-functional linear response approach for photoionization of atomic excited states. Phys. Rev. A 2009, 79, 053412. [Google Scholar] [CrossRef]
- Edwards, A.K.; Rudd, M.E. Excitation of Auto-Ionizing Levels in Neon by Ion Impact. Phys. Rev. 1968, 170, 140–144. [Google Scholar] [CrossRef]
- Olsen, J.O.; Anderson, N. Autoionizing levels in neon excited by low-energy heavy-ion impact. J. Phys. B At. Mol. Opt. Phys. 1977, 10, 101–110. [Google Scholar] [CrossRef]
- Jureta, J.J.; Marinković, B.P.; Milosavljević, A.R.; Avaldi, L. Singly and doubly excited states in ejected electron spectra of neon at high incident electron energies. Eur. Phys. J. D 2015, 69, 74. [Google Scholar] [CrossRef]
- Prince, K.C.; Allaria, E.; Callegari, C.; Cucini, R.; Ninno, G.D.; Mitri, S.D.; Diviacco, B.; Ferrari, E.; Finetti, P.; Gauthier, D.; et al. Coherent control with a short-wavelength free-electron laser. Nat. Photonics 2016, 10, 176. [Google Scholar] [CrossRef]
- You, D.; Ueda, K.; Gryzlova, E.V.; Grum-Grzhimailo, A.N.; Popova, M.M.; Staroselskaya, E.I.; Tugs, O.; Orimo, Y.; Sato, T.; Ishikawa, K.L.; et al. New Method for Measuring Angle-Resolved Phases in Photoemission. Phys. Rev. X 2020, 10, 031070. [Google Scholar] [CrossRef]
- Gryzlova, E.V.; Carpeggiani, P.; Popova, M.M.; Kiselev, M.D.; Douguet, N.; Reduzzi, M.; Negro, M.; Comby, A.; Ahmadi, H.; Wanie1, V.; et al. Influence of an atomic resonance on the coherent control of the photoionization process. Phys. Rev. Res. 2022, 4, 033231. [Google Scholar] [CrossRef]
- Gryzlova, E.V.; Ma, R.; Fukuzawa, H.; Motomura, K.; Yamada, A.; Ueda, K.; Grum-Grzhimailo, A.N.; Kabachnik, N.M.; Strakhova, S.I.; Rouzée, A.; et al. Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser. Phys. Rev. A 2011, 84, 063405. [Google Scholar] [CrossRef]
- Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun. 2006, 174, 273–356. [Google Scholar] [CrossRef]
- Fischer, C.F. Towards B-Spline Atomic Structure Calculations. Atoms 2021, 9, 50. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K. B-spline calculations of oscillator strengths in noble gases. Phys. Scr. 2009, T134, 014020. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Tayal, S.S. Photoionization of potassium atoms from the ground and excited states. Phys. Rev. A 2010, 81, 043423. [Google Scholar] [CrossRef]
- Fischer, C.F.; Brage, T.; Johnsson, P. Computational Atomic Structure. An MCHF Approach; IOP Publishing: Bristol, UK, 1997. [Google Scholar]
- Zatsarinny, O.; Fischer, C.F. A general program for computing angular integrals of the Breit–Pauli Hamiltonian with non-orthogonal orbitals. Comput. Phys. Commun. 2000, 124, 247–289. [Google Scholar] [CrossRef]
- Wilden, D.G.; Hicks, P.J.; Comer, J. Electron impact studies of resonances and autoionizing states of neon. J. Phys. B At. Mol. Phys. 1977, 10, 1477–1486. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database (Version 5.8); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. Available online: https://physics.nist.gov/asd (accessed on 18 May 2020).
- Zeman, V.; Bartschat, K. Electron-impact excitation of the and states of neon. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 4609–4622. [Google Scholar] [CrossRef]
- Khakoo, M.A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; et al. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration. Phys. Rev. A 2002, 65, 062711. [Google Scholar] [CrossRef]
- Kheifets, A. Revealing the Target Electronic Structure with Under-Threshold RABBITT. Atoms 2021, 9, 66. [Google Scholar] [CrossRef]
- Baier, S.; Grum-Grzhimailo, A.N.; Kabachnik, N.M. Angular distribution of photoelectrons in resonant photoionization of polarized atoms. J. Phys. B At. Mol. Opt. Phys. 1994, 27, 3363–3388. [Google Scholar] [CrossRef]
Target | Energy | -Model | -Model | -Model |
---|---|---|---|---|
21.5645 | 99.92 +0.03 | 92.80 +3.16 | 98.24 +0.56 | |
21.6613 | 0.02 +0.01 | 2.70 +0.36 0.37 | 0.54 +0.35 | |
48.4750 | 95.39 +4.03 + | 93.58 +2.26 | 94.70 +2.33 | |
0.23 +0.21 | 0.77 +0.67 | 0.79 +0.75 | ||
48.7333 | 95.13 +3.76 | |||
48.7975 | 0.79 +0.10 | 97.28 +1.24 + | 91.68 +4.98 | |
48.8345 | 91.80 +3.63 | 0.58 +0.35 | 0.66 +0.62 | |
3.48 +0.76 | ||||
49.3478 | 95.40 +3.41 + | 97.70 +0.72 + | 94.02 +2.50 + | |
49.4237 | 1.38 +0.84 | 0.59 +0.35 | 1.38 +0.74 | |
52.0885 | ||||
52.1161 | 94.37 +4.70 + | 90.78 +6.67 + | 96.73 +1.67 + | |
0.55 +0.14 | 1.77 +0.48 | 0.58 +0.49 | ||
52.1388 | ||||
52.1135 | 95.30 +3.71 | 97.38 +1.01 | 92.77 +4.03 | |
52.1139 | 0.73 +0.16 | 0.62 +0.38 | 1.16 +0.66 |
AIS | ||||
---|---|---|---|---|
Parameter | ||||
E | -model | 22.03 | 22.13 | |
0.119 | 0.028 | |||
∞ | ||||
∞ | ∞ | |||
∞ | ||||
- | ∞ | |||
- | ||||
- | ||||
- | ∞ | |||
E | -model | 22.07 | 22.05 | |
0.116 | 0.002 | |||
∞ | ||||
65 | ∞ | |||
∞ | ||||
- | ||||
- | ∞ | |||
- | ||||
- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, M.M.; Kiselev, M.D.; Burkov, S.M.; Gryzlova, E.V.; Grum-Grzhimailo, A.N. Spectroscopic Peculiarities at Ionization of Excited 2p5(2PJf)3s[K]0,1,2 States of Ne: Cooper Minima and Autoionizing Resonances. Atoms 2022, 10, 102. https://doi.org/10.3390/atoms10040102
Popova MM, Kiselev MD, Burkov SM, Gryzlova EV, Grum-Grzhimailo AN. Spectroscopic Peculiarities at Ionization of Excited 2p5(2PJf)3s[K]0,1,2 States of Ne: Cooper Minima and Autoionizing Resonances. Atoms. 2022; 10(4):102. https://doi.org/10.3390/atoms10040102
Chicago/Turabian StylePopova, Maria M., Maksim D. Kiselev, Sergei M. Burkov, Elena V. Gryzlova, and Alexei N. Grum-Grzhimailo. 2022. "Spectroscopic Peculiarities at Ionization of Excited 2p5(2PJf)3s[K]0,1,2 States of Ne: Cooper Minima and Autoionizing Resonances" Atoms 10, no. 4: 102. https://doi.org/10.3390/atoms10040102
APA StylePopova, M. M., Kiselev, M. D., Burkov, S. M., Gryzlova, E. V., & Grum-Grzhimailo, A. N. (2022). Spectroscopic Peculiarities at Ionization of Excited 2p5(2PJf)3s[K]0,1,2 States of Ne: Cooper Minima and Autoionizing Resonances. Atoms, 10(4), 102. https://doi.org/10.3390/atoms10040102