Implications of W-Boson Mass Anomaly for Atomic Parity Violation
Abstract
:1. Introduction
2. Theory
2.1. Electroweak Phenomenology and Atomic Parity Violation
2.2. New Physics Contributions to Atomic Parity Violation
3. Numerical Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, C.S.; Bennett, S.C.; Cho, D.; Masterson, B.P.; Roberts, J.L.; Tanner, C.E.; Wieman, C.E. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 1997, 275, 1759–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, E.; Orozco, L.A.; Sprouse, G.D. Spectroscopy with trapped francium: Advances and perspectives for weak interaction studies. Rep. Prog. Phys. 2005, 69, 79–118. [Google Scholar] [CrossRef] [Green Version]
- DeMille, D.; Cahn, S.B.; Murphree, D.; Rahmlow, D.A.; Kozlov, M.G. Using Molecules to Measure Nuclear Spin-Dependent Parity Violation. Phys. Rev. Lett. 2008, 100, 023003. [Google Scholar] [CrossRef] [Green Version]
- Antypas, D.; Elliott, D.S. Measurement of a weak transition moment using two-pathway coherent control. Phys. Rev. A 2013, 87, 042505. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Sutherland, R.T.; Toh, G.; Damitz, A.; Elliott, D.S. Gain measurement scheme for precise determination of atomic parity violation through two-pathway coherent control. arXiv 2018, arXiv:1808.00384. [Google Scholar]
- Aubin, S.; Behr, J.; Collister, R.; Flambaum, V.; Gomez, E.; Gwinner, G.; Jackson, K.; Melconian, D.; Orozco, L.; Pearson, M.; et al. Atomic parity non-conservation: The francium anapole project of the FrPNC collaboration at TRIUMF. Hyperfine Interact. 2013, 214, 163–171. [Google Scholar] [CrossRef]
- Portela, M.N.; van den Berg, J.; Bekker, H.; Böll, O.; Dijck, E.; Giri, G.; Hoekstra, S.; Jungmann, K.; Mohanty, A.; Onderwater, C.; et al. Towards a precise measurement of atomic parity violation in a single Ra+ ion. Hyperfine Interact. 2013, 214, 157–162. [Google Scholar] [CrossRef]
- Altuntaş, E.; Ammon, J.; Cahn, S.B.; DeMille, D. Measuring nuclear-spin-dependent parity violation with molecules: Experimental methods and analysis of systematic errors. Phys. Rev. A 2018, 97, 042101. [Google Scholar] [CrossRef] [Green Version]
- Altuntaş, E.; Ammon, J.; Cahn, S.B.; DeMille, D. Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation. Phys. Rev. Lett. 2018, 120, 142501. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abe, K.; Abe, T.; Adam, I.; Akimoto, H.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barklow, T.L.; et al. High-Precision Measurement of the Left-Right Z Boson Cross-Section Asymmetry. Phys. Rev. Lett. 2000, 84, 5945–5949. [Google Scholar] [CrossRef] [Green Version]
- LEP Collaboration; ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; LEP Electroweak Working Group. Precision Electroweak Measurements and Constraints on the Standard Model. arXiv 2010, arXiv:1012.2367. [Google Scholar]
- Dzuba, V.A.; Flambaum, V.V.; Silvestrov, P.G.; Sushkov, O.P. Relativistic many-body calculations in atoms and parity violation in caesium. J. Phys. B 1985, 18, 597–613. [Google Scholar] [CrossRef]
- Dzuba, V.; Flambaum, V.; Sushkov, O. Summation of the high orders of perturbation theory for the parity nonconserving E1-amplitude of the 6s–7s transition in the caesium atom. Phys. Lett. A 1989, 141, 147–153. [Google Scholar] [CrossRef]
- Blundell, S.A.; Johnson, W.R.; Sapirstein, J. High-accuracy calculation of the 6s1/2→7s1/2 parity-nonconserving transition in atomic cesium and implications for the standard model. Phys. Rev. Lett. 1990, 65, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Blundell, S.A.; Sapirstein, J.; Johnson, W.R. High-accuracy calculation of parity nonconservation in cesium and implications for particle physics. Phys. Rev. D 1992, 45, 1602–1623. [Google Scholar] [CrossRef]
- Porsev, S.G.; Beloy, K.; Derevianko, A. Precision determination of weak charge of 133Cs from atomic parity violation. Phys. Rev. D 2010, 82, 036008. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Berengut, J.C.; Flambaum, V.V.; Roberts, B. Revisiting Parity Nonconservation in Cesium. Phys. Rev. Lett. 2012, 109, 203003. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Das, B.P.; Spiesberger, H. New physics constraints from atomic parity violation in 133Cs. Phys. Rev. D 2021, 103, L111303. [Google Scholar] [CrossRef]
- Roberts, B.M.; Ginges, J.S.M. Comment on “New physics constraints from atomic parity violation in 133Cs”. Phys. Rev. D 2022, 105, 018301. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Das, B.P.; Spiesberger, H. Reply to “Comment on ‘New physics constraints from atomic parity violation in 133Cs’”. Phys. Rev. D 2022, 105, 018302. [Google Scholar] [CrossRef]
- Tran Tan, H.B.; Xiao, D.; Derevianko, A. Parity-mixed coupled-cluster formalism for computing parity-violating amplitudes. Phys. Rev. A 2022, 105, 022803. [Google Scholar] [CrossRef]
- Marciano, W.J.; Sirlin, A. Radiative corrections to atomic parity violation. Phys. Rev. D 1983, 27, 552–556. [Google Scholar] [CrossRef]
- Marciano, W.J.; Sirlin, A. Some general properties of the O(α) corrections to parity violation in atoms. Phys. Rev. D 1984, 29, 75–88. [Google Scholar] [CrossRef]
- Czarnecki, A.; Marciano, W.J. Electroweak radiative corrections to polarized Mo/ller scattering asymmetries. Phys. Rev. D 1996, 53, 1066–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erler, J.; Kurylov, A.; Ramsey-Musolf, M.J. Weak charge of the proton and new physics. Phys. Rev. D 2003, 68, 016006. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J.; Rosner, J.L. Atomic parity violation as a probe of new physics. Phys. Rev. Lett. 1990, 65, 2963–2966, Erratum in Phys. Rev. Lett. 1992, 68, 898–898. [Google Scholar] [CrossRef]
- Porsev, S.G.; Beloy, K.; Derevianko, A. Precision Determination of Electroweak Coupling from Atomic Parity Violation and Implications for Particle Physics. Phys. Rev. Lett. 2009, 102, 181601. [Google Scholar] [CrossRef] [Green Version]
- Peskin, M.E.; Takeuchi, T. New constraint on a strongly interacting Higgs sector. Phys. Rev. Lett. 1990, 65, 964–967. [Google Scholar] [CrossRef] [Green Version]
- Davoudiasl, H.; Lee, H.S.; Marciano, W.J. Muon Anomaly and Dark Parity Violation. Phys. Rev. Lett. 2012, 109, 031802. [Google Scholar] [CrossRef] [Green Version]
- Davoudiasl, H.; Lee, H.S.; Marciano, W.J. “Dark” Z implications for parity violation, rare meson decays, and Higgs physics. Phys. Rev. D 2012, 85, 115019. [Google Scholar] [CrossRef] [Green Version]
- Andreas, S. Update on hidden sectors with dark forces and dark matter. arXiv 2012, arXiv:1211.5160. [Google Scholar]
- Derevianko, A. Detecting dark-matter waves with a network of precision-measurement tools. Phys. Rev. A 2018, 97, 042506. [Google Scholar] [CrossRef] [Green Version]
- CDF Collaboration; Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; et al. High-precision measurement of the W boson mass with the CDF II detector. Science 2022, 376, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.T.; Wu, L.; Wu, Y.; Zhu, B. Electroweak Precision Fit and New Physics in light of W Boson Mass. arXiv 2022, arXiv:2204.03796. [Google Scholar] [CrossRef]
- Fan, J.; Li, L.; Liu, T.; Lyu, K.F. W-Boson Mass, Electroweak Precision Tests and SMEFT. arXiv 2022, arXiv:2204.04805. [Google Scholar] [CrossRef]
- De Blas, J.; Pierini, M.; Reina, L.; Silvestrini, L. Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits. arXiv 2022, arXiv:2204.04204. [Google Scholar]
- Asadi, P.; Cesarotti, C.; Fraser, K.; Homiller, S.; Parikh, A. Oblique Lessons from the W Mass Measurement at CDF II. arXiv 2022, arXiv:2204.05283. [Google Scholar]
- Bhaskar, A.; Madathil, A.A.; Mandal, T.; Mitra, S. Combined explanation of W-mass, muon g-2, RK(*) and RD(*) anomalies in a singlet-triplet scalar leptoquark model. arXiv 2022, arXiv:2204.09031. [Google Scholar]
- Heckman, J.J. Extra W-Boson Mass from a D3-Brane. arXiv 2022, arXiv:2204.05302. [Google Scholar] [CrossRef]
- Athron, P.; Bach, M.; Jacob, D.H.; Kotlarski, W.; Stöckinger, D.; Voigt, A. Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY. arXiv 2022, arXiv:2204.05285. [Google Scholar] [CrossRef]
- Athron, P.; Fowlie, A.; Lu, C.T.; Wu, L.; Wu, Y.; Zhu, B. The W boson Mass and Muon g − 2: Hadronic Uncertainties or New Physics? arXiv 2022, arXiv:2204.03996. [Google Scholar]
- Liu, X.; Guo, S.Y.; Zhu, B.; Li, Y. Unifying gravitational waves with W boson, FIMP dark matter, and Majorana Seesaw mechanism. arXiv 2022, arXiv:2204.04834. [Google Scholar]
- Addazi, A.; Marciano, A.; Pasechnik, R.; Yang, H. CDF II W-mass anomaly faces first-order electroweak phase transition. arXiv 2022, arXiv:2204.10315. [Google Scholar]
- Greiner, W.; Müller, B. Gauge Theory of Weak Interactions; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Erler, J.; Su, S. The weak neutral current. Prog. Part. Nucl. Phys. 2013, 71, 119–149. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Mantry, S.; Marciano, W.; Souder, P. Low-Energy Measurements of the Weak Mixing Angle. Annu. Rev. Nucl. Part. Sci. 2013, 63, 237–267. [Google Scholar] [CrossRef] [Green Version]
- The ALEPH Collaboration; The DELPHI Collaboration; The L3 Collaboration; The OPAL Collaboration; The SLD Collaboration; The LEP Electroweak Working Group; The SLD Electroweak and Heavy Flavour Groups. Precision electroweak measurements on the Z resonance. Phys. Rep. 2006, 427, 257–454. [Google Scholar] [CrossRef] [Green Version]
- Webber, D.M.; Tishchenko, V.; Peng, Q.; Battu, S.; Carey, R.M.; Chitwood, D.B.; Crnkovic, J.; Debevec, P.T.; Dhamija, S.; Earle, W.; et al. Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision. Phys. Rev. Lett. 2011, 106, 041803. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the Anomalous Magnetic Moment of the Electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Bouchendira, R.; Cladé, P.; Guellati-Khélifa, S.; Nez, F.; Biraben, F. New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics. Phys. Rev. Lett. 2011, 106, 080801. [Google Scholar] [CrossRef]
- Parker, R.H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchiat, M.; Guena, J.; Hunter, L.; Pottier, L. Observation of a parity violation in cesium. Phys. Lett. B 1982, 117, 358–364. [Google Scholar] [CrossRef]
- Guéna, J.; Chauvat, D.; Jacquier, P.; Jahier, E.; Lintz, M.; Sanguinetti, S.; Wasan, A.; Bouchiat, M.A.; Papoyan, A.V.; Sarkisyan, D. New Manifestation of Atomic Parity Violation in Cesium: A Chiral Optical Gain Induced by Linearly Polarized 6S − 7S Excitation. Phys. Rev. Lett. 2003, 90, 143001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guéna, J.; Lintz, M.; Bouchiat, M.A. Measurement of the parity violating 6S − 7S transition amplitude in cesium achieved within 2 × 10-13 atomic-unit accuracy by stimulated-emission detection. Phys. Rev. A 2005, 71, 042108. [Google Scholar] [CrossRef] [Green Version]
- Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J.E.; Yashchuk, V.V.; Budker, D. Observation of a Large Atomic Parity Violation Effect in Ytterbium. Phys. Rev. Lett. 2009, 103, 071601. [Google Scholar] [CrossRef]
- Macpherson, M.J.D.; Zetie, K.P.; Warrington, R.B.; Stacey, D.N.; Hoare, J.P. Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 1991, 67, 2784–2787. [Google Scholar] [CrossRef]
- Meekhof, D.M.; Vetter, P.; Majumder, P.K.; Lamoreaux, S.K.; Fortson, E.N. High-precision measurement of parity nonconserving optical rotation in atomic lead. Phys. Rev. Lett. 1993, 71, 3442–3445. [Google Scholar] [CrossRef]
- Phipp, S.J.; Edwards, N.H.; Baird, P.E.G.; Nakayama, S. A measurement of parity non-conserving optical rotation in atomic lead. J. Phys. B 1996, 29, 1861–1869. [Google Scholar] [CrossRef]
- Vetter, P.A.; Meekhof, D.M.; Majumder, P.K.; Lamoreaux, S.K.; Fortson, E.N. Precise Test of Electroweak Theory from a New Measurement of Parity Nonconservation in Atomic Thallium. Phys. Rev. Lett. 1995, 74, 2658–2661. [Google Scholar] [CrossRef]
- Edwards, N.H.; Phipp, S.J.; Baird, P.E.G.; Nakayama, S. Precise Measurement of Parity Nonconserving Optical Rotation in Atomic Thallium. Phys. Rev. Lett. 1995, 74, 2654–2657. [Google Scholar] [CrossRef] [PubMed]
- Antypas, D.; Fabricant, A.; Stalnaker, J.E.; Tsigutkin, K.; Flambaum, V.; Budker, D. Isotopic variation of parity violation in atomic ytterbium. Nat. Phys. 2019, 15, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Bergsma, F.; Capone, A.; Flegel, W.; Grancagnolo, F.; Lanceri, L.; Metcalf, M.; et al. A precise determination of the electroweak mixing angle from semileptonic neutrino scattering. Z. Phys. C 1987, 36, 611–628. [Google Scholar]
- Blondel, A.; Böckmann, P.; Burkhardt, H.; Dydak, F.; Grant, A.L.; Hagelberg, R.; Hughes, E.W.; Krasny, W.; Para, A.; Taureg, H.; et al. Electroweak parameters from a high statistics neutrino nucleon scattering experiment. Z. Phys. C 1990, 45, 361–379. [Google Scholar] [CrossRef] [Green Version]
- Zeller, G.P.; McFarland, K.S.; Adams, T.; Alton, A.; Avvakumov, S.; De Barbaro, L.; De Barbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; et al. Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering. Phys. Rev. Lett. 2002, 88, 091802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimov, D.; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; et al. Observation of coherent elastic neutrino-nucleus scattering. Science 2017, 357, 1123–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, C.Y.; Atwood, W.B.; Cottrell, R.L.A.; DeStaebler, H.; Garwin, E.L.; Gonidec, A.; Miller, R.H.; Rochester, L.S.; Sato, T.; Sherden, D.J.; et al. Further measurements of parity non-conservation in inelastic electron scattering. Phys. Lett. B 1979, 84, 524–528. [Google Scholar] [CrossRef]
- Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K.A.; Armstrong, D.S.; Arrington, J.; Bellini, V.; et al. Measurement of parity violation in electron-quark scattering. Nature 2014, 506, 67. [Google Scholar]
- Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K.A.; Armstrong, D.S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering. Phys. Rev. C 2015, 91, 045506. [Google Scholar] [CrossRef] [Green Version]
- Hasty, R.; Hawthorne-Allen, A.M.; Averett, T.; Barkhuff, D.; Beck, D.H.; Beise, E.J.; Blake, A.; Breuer, H.; Carr, R.; Covrig, S.; et al. Strange Magnetism and the Anapole Structure of the Proton. Science 2000, 290, 2117–2119. [Google Scholar] [CrossRef] [Green Version]
- Beise, E.; Pitt, M.; Spayde, D. The sample experiment and weak nucleon structure. Prog. Part. Nucl. Phys. 2005, 54, 289–350. [Google Scholar] [CrossRef] [Green Version]
- Argento, A.; Benvenuti, A.C.; Bollini, D.; Camporesi, T.; Heiman, G.; Monari, L.; Navarria, F.L.; Bozzo, M.; Brun, R.; Gennow, H.; et al. Electroweak asymmetry in deep inelastic muon-nucleon scattering. Phys. Lett. B 1983, 120, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Heil, W.; Ahrens, J.; Andresen, H.G.; Bornheimer, A.; Conrath, D.; Dietz, K.J.; Gasteyer, W.; Gessinger, H.J.; Hartmann, W.; Jethwa, J.; et al. Improved limits on the weak, neutral, hadronic axial vector coupling constants from quasielastic scattering of polarized electrons. Nucl. Phys. B 1989, 327, 1–31. [Google Scholar] [CrossRef]
- Souder, P.A.; Holmes, R.; Kim, D.H.; Kumar, K.S.; Schulze, M.E.; Isakovich, K.; Dodson, G.W.; Dow, K.W.; Farkhondeh, M.; Kowalski, S.; et al. Measurement of parity violation in the elastic scattering of polarized electrons from 12C. Phys. Rev. Lett. 1990, 65, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Androic, D.; Armstrong, D.S.; Asaturyan, A.; Averett, T.; Balewski, J.; Bartlett, K.; Beaufait, J.; Beminiwattha, R.S.; Benesch, J.; Benmokhtar, F.; et al. Precision measurement of the weak charge of the proton. Nature 2018, 557, 207–211. [Google Scholar]
- Aaltonen, T.; Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Agnew, J.P.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; et al. Combination of CDF and D0 W-Boson mass measurements. Phys. Rev. D 2013, 88, 052018. [Google Scholar] [CrossRef]
- The ALEPH Collaboration; The DELPHI Collaboration; The L3 Collaboration; The OPAL Collaboration; The LEP Electroweak Working Group. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 2013, 532, 119–244. [Google Scholar] [CrossRef] [Green Version]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Measurement of the W-boson mass in pp collisions at = 7 TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 110. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abe, K.; Abe, T.; Adam, I.; Akimoto, H.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barklow, T.L.; et al. Improved Direct Measurement of Leptonic Coupling Asymmetries with Polarized Z Bosons. Phys. Rev. Lett. 2001, 86, 1162–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; et al. Measurement of sin2 using e+e− pairs from γ*/Z bosons produced in p collisions at a center-of-momentum energy of 1.96 TeV. Phys. Rev. D 2016, 93, 112016. [Google Scholar] [CrossRef] [Green Version]
- Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Agnew, J.P.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Askew, A.; et al. Measurement of the Effective Weak Mixing Angle in p→Z/γ*→ℓ+ℓ− Events. Phys. Rev. Lett. 2018, 120, 241802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S. Calculation of radiative corrections to the effect of parity nonconservation in heavy atoms. Phys. Rev. A 2003, 67, 062103. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W.; Rosner, J.L. Prospects for a second neutral vector boson at low mass in SO(10). Phys. Rev. D 1982, 25, 3036–3064. [Google Scholar] [CrossRef]
- Leung, C.N.; Rosner, J.L. Addendum to “Prospects for a second neutral vector boson at low mass in SO(10)”. Phys. Rev. D 1984, 29, 2132–2134. [Google Scholar] [CrossRef]
- Langacker, P.; Robinett, R.W.; Rosner, J.L. New heavy gauge bosons in pp and p collisions. Phys. Rev. D 1984, 30, 1470–1487. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.; Ellis, J.; Enqvist, K.; Nanopoulos, D. Experimental predictions from the superstring. Phys. Lett. B 1985, 165, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Symmetry breaking patterns in superstring models. Nucl. Phys. B 1985, 258, 75–100. [Google Scholar] [CrossRef]
- Dine, M.; Kaplunovsky, V.; Mangano, M.; Nappi, C.; Seiberg, N. Superstring model building. Nucl. Physi. B 1985, 259, 549–571. [Google Scholar] [CrossRef]
- Durkin, L.; Langacker, P. Neutral-current constraints on heavy Z bosons. Phys. Lett. B 1986, 166, 436–442. [Google Scholar] [CrossRef]
- Barger, V.; Deshpande, N.G.; Whisnant, K. Phenomenological mass limits on extra Z of E6 superstrings. Phys. Rev. Lett. 1986, 56, 30–33. [Google Scholar] [CrossRef]
- Bouchiat, C.; Piketty, C. Parity violation in atomic cesium and alternatives to the standard model of electroweak interactions. Phys. Lett. B 1983, 128, 73–78. [Google Scholar] [CrossRef]
- Bouchiat, C.; Fayet, P. Constraints on the parity-violating couplings of a new gauge boson. Phys. Lett. B 2005, 608, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Casalbuoni, R.; De Curtis, S.; Dominici, D.; Gatto, R. Bounds on new physics from the new data on parity violation in atomic cesium. Phys. Lett. B 1999, 460, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Nilles, H. Supersymmetry, supergravity and particle physics. Phys. Rep. 1984, 110, 1–162. [Google Scholar] [CrossRef]
- Susskind, L. Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 1979, 20, 2619–2625. [Google Scholar] [CrossRef] [Green Version]
- Veltman, M. Limit on mass differences in the Weinberg model. Nucl. Phys. B 1977, 123, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Rosner, J.L. Role of present and future atomic parity violation experiments in precision electroweak tests. Phys. Rev. D 2002, 65, 073026. [Google Scholar] [CrossRef] [Green Version]
- Fayet, P. Light spin-12 or spin-0 dark matter particles. Phys. Rev. D 2004, 70, 023514. [Google Scholar] [CrossRef] [Green Version]
- Finkbeiner, D.P.; Weiner, N. Exciting dark matter and the INTEGRAL/SPI 511 keV signal. Phys. Rev. D 2007, 76, 083519. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A theory of dark matter. Phys. Rev. D 2009, 79, 015014. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 2009, 458, 607–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdom, B. Two U(1)’s and ϵ charge shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Davoudiasl, H.; Lee, H.S.; Marciano, W.J. Low Q2 weak mixing angle measurements and rare Higgs decays. Phys. Rev. D 2015, 92, 055005. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J. Parity violating asymmetries at future lepton colliders. Int. J. Mod. Phys. A 1998, 13, 2235–2244. [Google Scholar] [CrossRef]
- Czarnecki, A.; Marciano, W.J. Polarized Moller scattering asymmetries. Int. J. Mod. Phys. A 2000, 15, 2365–2375. [Google Scholar] [CrossRef]
- Dunford, R.W.; Holt, R.J. Parity violation in hydrogen revisited. J. Phys. G 2007, 34, 2099–2118. [Google Scholar] [CrossRef]
- Rasor, C.; Yost, D.C. Laser-based measurement of parity violation in hydrogen. Phys. Rev. A 2020, 102, 032801. [Google Scholar] [CrossRef]
- Erler, J.; Langacker, P.; Munir, S.; Rojas, E. Improved constraints on Z′ bosons from electroweak precision data. J. High Energy Phys. 2009, 2009, 017. [Google Scholar] [CrossRef] [Green Version]
- Del Aguila, F.; de Blas, J.; Pérez-Victoria, M. Electroweak limits on general new vector bosons. J. High Energy Phys. 2010, 2010, 33. [Google Scholar] [CrossRef] [Green Version]
- The LEP Collaboration; ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; The LEP Electroweak Working Group. A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model. arXiv 2004, arXiv:hep-ex/0412015. [Google Scholar]
- Jaffré, M. Search for high mass resonances in dilepton, dijet and diboson final states at the Tevatron. arXiv 2009, arXiv:0909.2979. [Google Scholar]
- Toh, G.; Damitz, A.; Glotzbach, N.; Quirk, J.; Stevenson, I.C.; Choi, J.; Safronova, M.S.; Elliott, D.S. Electric dipole matrix elements for the 6p2PJ→7s2S1/2 transition in atomic cesium. Phys. Rev. A 2019, 99, 032504. [Google Scholar] [CrossRef] [Green Version]
- Damitz, A.; Toh, G.; Putney, E.; Tanner, C.E.; Elliott, D.S. Measurement of the radial matrix elements for the 6s2S1/2→7p2PJ transitions in cesium. Phys. Rev. A 2019, 99, 062510. [Google Scholar] [CrossRef] [Green Version]
- Toh, G.; Chalus, N.; Burgess, A.; Damitz, A.; Imany, P.; Leaird, D.E.; Weiner, A.M.; Tanner, C.E.; Elliott, D.S. Measurement of the lifetimes of the 7p2P3/2 and 7p2P1/2 states of atomic cesium. Phys. Rev. A 2019, 100, 052507. [Google Scholar] [CrossRef]
- Becker, D.; Bucoveanu, R.; Grzesik, C.; Kempf, R.; Imai, K.; Molitor, M.; Tyukin, A.; Zimmermann, M.; Armstrong, D.; Aulenbacher, K.; et al. The P2 experiment. Eur. Phys. J. A 2018, 54, 208. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Erler, J.; Liu, Q.; Spiesberger, H. Accessing weak neutral-current coupling using positron and electron beams at Jefferson Lab. Eur. Phys. J. A 2021, 57, 173. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran Tan, H.B.; Derevianko, A. Implications of W-Boson Mass Anomaly for Atomic Parity Violation. Atoms 2022, 10, 149. https://doi.org/10.3390/atoms10040149
Tran Tan HB, Derevianko A. Implications of W-Boson Mass Anomaly for Atomic Parity Violation. Atoms. 2022; 10(4):149. https://doi.org/10.3390/atoms10040149
Chicago/Turabian StyleTran Tan, Hoang Bao, and Andrei Derevianko. 2022. "Implications of W-Boson Mass Anomaly for Atomic Parity Violation" Atoms 10, no. 4: 149. https://doi.org/10.3390/atoms10040149
APA StyleTran Tan, H. B., & Derevianko, A. (2022). Implications of W-Boson Mass Anomaly for Atomic Parity Violation. Atoms, 10(4), 149. https://doi.org/10.3390/atoms10040149