Optical Lines of Ru21+ to Ru24+ Ions
Abstract
:1. Introduction
2. Experiment
3. Theoretical Approach
4. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bekker, H.; Hensel, C.; Daniel, A.; Windberger, A.; Pfeifer, T.; López-Urrutia, J.C. Laboratory precision measurements of optical emissions from coronal iron. Phys. Rev. A 2018, 98, 062514. [Google Scholar] [CrossRef]
- Feldman, U.; Curdt, W.; Landi, E.; Wilhelm, K. Identification of Spectral Lines in the 500–1600? Wavelength Range of Highly Ionized Ne, Na, Mg, Ar, K, Ca, Ti, Cr, Mn, Fe, Co, and Ni Emitted by Flares (Te ≥ 3 × 106 K) and Their Potential Use in Plasma Diagnostics. Astrophys. J. 2000, 544, 508. [Google Scholar] [CrossRef]
- Ding, A.; Habbal, S.R. First detection of prominence material embedded within a 2 × 106 K CME front streaming away at 100–1500 km s−1 in the solar corona. Astrophys. J. Lett. 2017, 842, L7. [Google Scholar] [CrossRef]
- Morita, S.; Goto, M.; Katai, R.; Dong, C.; Sakaue, H.; Zhou, H. Observation of magnetic dipole forbidden transitions in LHD and its application to burning plasma diagnostics. Plasma Sci. Technol. 2010, 12, 341–347. [Google Scholar] [CrossRef]
- Draganić, I.; López-Urrutia, J.C.; DuBois, R.; Fritzsche, S.; Shabaev, V.M.; Orts, R.S.; Ullrich, J. High precision wavelength measurements of QED-sensitive forbidden transitions in highly charged argon ions. Phys. Rev. Lett. 2003, 91, 183001. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.P.; Wen, W.Q.; Lu, Q.F.; Yan, C.L.; Xu, G.Q.; Xiao, J.; Volotka, A.V.; Kozhedub, Y.S.; Kaygorodov, M.Y.; et al. Precision measurements of the 2P1/2−2P3/2 fine-structure splitting in B-like S11+ and Cl12+. Phys. Rev. A 2021, 104, 062804. [Google Scholar] [CrossRef]
- Windberger, A.; Lopez-Urrutia, J.R.C.; Bekker, H.; Oreshkina, N.S.; Berengut, J.C.; Bock, V.; Borschevsky, A.; Dzuba, V.A.; Eliav, E.; Harman, Z.; et al. Identification of the Predicted 5s-4f Level Crossing Optical Lines with Applications to Metrology and Searches for the Variation of Fundamental Constants. Phys. Rev. Lett. 2015, 114, 150801. [Google Scholar] [CrossRef]
- Bekker, H.; Borschevsky, A.; Harman, Z.; Keitel, C.H.; Pfeifer, T.; Schmidt, P.O.; López-Urrutia, J.R.C.; Berengut, J.C. Detection of the 5p–4f orbital crossing and its optical clock transition in Pr9+. Nat. Commun. 2019, 10, 5651. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Kodama, R.; Suzuki, K.; Oishi, S.; Wada, M.; Okada, K.; Ohmae, N.; Katori, H.; Nakamura, N. Direct determination of the energy of the first excited fine-structure level in Ba6+. Phys. Rev. A 2019, 100, 052508. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, J.; Jia, F.; Si, R.; Zhang, M.; Huang, L.; Tu, B.; Zou, Y.; Wei, B.; et al. Direct wavelength measurement of the 4p2 3P1–3P0 highly charged ion clock transition in Rh13+. J. Quant. Spectrosc. Radiat. Transf. 2022, 293, 108370. [Google Scholar] [CrossRef]
- Osin, D.; Gillaspy, J.D.; Reader, J.; Ralchenko, Y. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell. Eur. Phys. J. D 2012, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lennartsson, T.; Clementson, J.; Beiersdorfer, P. Experimental wavelengths for intrashell transitions in tungsten ions with partially filled 3p and 3d subshells. Phys. Rev. A 2013, 87, 062505. [Google Scholar] [CrossRef] [Green Version]
- López-Urrutia, J.R.C.; Beiersdorfer, P.; Widmann, K.; Decaux, V. Visible spectrum of highly charged ions: The forbidden optical lines of Kr, Xe, and Ba ions in the Ar I to Kr I isoelectronic sequence. Can. J. Phys. 2002, 80, 1687. [Google Scholar] [CrossRef]
- He, Z.; Meng, J.; Li, Y.; Jia, F.; Khan, N.; Niu, B.; Huang, L.; Hu, Z.; Li, J.; Wang, J.; et al. Magnetic-dipole lines in Fe-like and Mn-like Molybdenum ions. J. Quant. Spectrosc. Radiat. Transf. 2022, 288, 108276. [Google Scholar] [CrossRef]
- Silwal, R.; Dipti, D.; Takacs, E.; Dreiling, J.M.; Sers, S.C.; Gall, A.C.; Rudramadevi, B.H.; Gillaspy, J.D.; Ralchenko, Y. Spectroscopic analysis of M- and N-intrashell transitions in Co-like to Na-like Yb ions. J. Phys. B 2021, 54, 245001. [Google Scholar] [CrossRef]
- Suckewer, S.; Hinnov, E.; Cohen, S.; Finkenthal, M.; Sato, K. Identification of magnetic dipole lines above 2000? in several highly ionized Mo and Zr ions on the PLT tokamak. Phys. Rev. A 1982, 26, 1161–1163. [Google Scholar] [CrossRef]
- Morgan, C.A.; Serpa, F.G.; Takács, E.; Meyer, E.S.; Gillaspy, J.D.; Sugar, J.; Roberts, J.R.; Brown, C.M.; Feldman, U. Observation of Visible and UV Magnetic Dipole Transitions in Highly Charged Xenon and Barium. Phys. Rev. Lett. 1995, 74, 1716. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Crosby, D.; Currell, F.J.; Fukami, T.; Kato, D.; Ohtani, S.; Silver, J.D.; Yamada, C. Magnetic dipole transitions in titaniumlike ions. Phys. Rev. A 2001, 63, 042513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, J.; Wang, K.; Si, R.; Godefroid, M.; Jönsson, P.; Xiao, J.; Gu, M.F.; Chen, C. Benchmarking calculations of wavelengths and transition rates with spectroscopic accuracy for W XLVIII through W LVI tungsten ions. Phys. Rev. A 2022, 105, 022817. [Google Scholar] [CrossRef]
- Safronova, M.S.; Safronova, U.I.; Porsev, S.G.; Kozlov, M.G.; Ralchenko, Y. Relativistic all-order many-body calculation of energies, wavelengths, and M1 and E2 transition rates for the 3dn configurations in tungsten ions. Phys. Rev. A 2018, 97, 012502. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Chen, X. Relativistic large scale CI calculations of energies, transition rates and lifetimes in Ca-like ions between Co VIII and Zn XI. Atom. Data Nucl. Data Tables 2019, 127–128, 131–139. [Google Scholar] [CrossRef]
- Biémont, E.; Träbert, E.; Zeippen, C.J. Calculated transition probabilities in highly charged Ti-like ions. J. Phys. B 2001, 34, 1941. [Google Scholar] [CrossRef]
- Safronova, U.I.; Johnson, W.R.; Kato, D.; Ohtani, S. Excitation energies and transition rates in the 3d2 states of Ca-like ions. Phys. Rev. A 2001, 63, 032518. [Google Scholar] [CrossRef] [Green Version]
- Feldman, U.; Doron, R.; Klapisch, M.; Bar-Shalom, A. Intensity vs. electron density of the ultraviolet M1 transition in Xe32+, Gd42+, W52+, Bi61+, and U70+ (Ti-like ions). Phys. Scr. 2001, 63, 284. [Google Scholar] [CrossRef]
- Fischer, C.F.; Gaigalas, G.; Jönsson, P. Core Effects on Transition Energies for 3dk Configurations in Tungsten Ions. Atoms 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Fan, J.; Si, R.; Li, J.; Zhang, M.; Huang, L.; Xiao, J.; Zou, Y.; Wei, B.; et al. Precise wavelength determination of the 4s24p 2P3/2-2P1/2 transition in Mo11+ and Ru13+ ions. J. Phys. B 2021, 54, 235001. [Google Scholar] [CrossRef]
- Levine, M.A.; Marrs, R.E.; Henderson, J.R.; Knapp, D.A.; Schneider, M.B. The Electron Beam Ion Trap: A New Instrument for Atomic Physics Measurements. Phys. Scr. 1988, 157, T22. [Google Scholar] [CrossRef]
- Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y. Upgrade of the electron beam ion trap in Shanghai. Rev. Sci. Instrum. 2014, 85, 093301. [Google Scholar] [CrossRef]
- Micke, P.; Kuhn, S.; Buchauer, L.; Harries, J.R.; Bucking, T.M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; et al. The Heidelberg compact electron beam ion traps. Rev. Sci. Instrum. 2018, 89, 063109. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Kikuchi, H.; Sakaue, H.; Watanabe, T. Compact electron beam ion trap for spectroscopy of moderate charge state ions. Rev. Sci. Instrum. 2008, 79, 063104. [Google Scholar] [CrossRef]
- Gillaspy, J.D. First results from the EBIT at NIST. Phys. Scr. 1997, 99, T71. [Google Scholar] [CrossRef]
- Roos, B.O.; Taylor, P.R.; Sigbahn, P.E. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980, 48, 157. [Google Scholar] [CrossRef]
- Olsen, J.; Roos, B.O.; Jørgensen, P.; Jensen, H.J.A. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. J. Chem. Phys. 1988, 89, 2185. [Google Scholar] [CrossRef]
- Brage, T.; Fischer, C. Systematic calculations of correlation in complex ions. Phys. Scr. 1993, 18, T47. [Google Scholar] [CrossRef]
Ion | Transition | f | |||
---|---|---|---|---|---|
Ru | – | 350.662(08) | 334.863 | 1.7[2] | 0.30 |
− | 420.370(08) | 408.831 | 7.8[1] | 0.13 | |
− | 448.241(05) | 430.367 | 1.8[2] | 0.30 | |
* | 454.730(20) | ||||
Ru | − | 248.853(09) | 250.803 | 4.7[2] | 0.78 |
− | 338.716(08) | 330.120 | 4.6[2] | 0.11 | |
Ru | − | 236.410(20) | 230.532 | 8.3[2] | 0.54 |
− | 255.746(08) | 256.305 | 5.6[2] | 0.76 | |
− | 426.493(04) | 430.663 | 4.4[2] | 1.00 | |
− | 504.557(05) | 505.204 | 2.8[2] | 1.00 | |
Ru | − | 269.730(02) | 270.563 | 1.1[3] | 1.00 |
− | 332.755(02) | 332.369 | 4.9[2] | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Jiang, Z.; Qian, Y.; Liu, J.; Xu, P.; Huang, L.; He, Z.; Zou, Y.; Li, J.; Chen, C.; et al. Optical Lines of Ru21+ to Ru24+ Ions. Atoms 2022, 10, 154. https://doi.org/10.3390/atoms10040154
Fan J, Jiang Z, Qian Y, Liu J, Xu P, Huang L, He Z, Zou Y, Li J, Chen C, et al. Optical Lines of Ru21+ to Ru24+ Ions. Atoms. 2022; 10(4):154. https://doi.org/10.3390/atoms10040154
Chicago/Turabian StyleFan, Junyu, Zihuan Jiang, Yuyuan Qian, Jialin Liu, Pengcheng Xu, Liangyu Huang, Zhencen He, Yaming Zou, Jiguang Li, Chongyang Chen, and et al. 2022. "Optical Lines of Ru21+ to Ru24+ Ions" Atoms 10, no. 4: 154. https://doi.org/10.3390/atoms10040154
APA StyleFan, J., Jiang, Z., Qian, Y., Liu, J., Xu, P., Huang, L., He, Z., Zou, Y., Li, J., Chen, C., & Yao, K. (2022). Optical Lines of Ru21+ to Ru24+ Ions. Atoms, 10(4), 154. https://doi.org/10.3390/atoms10040154