Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons
Abstract
:1. Introduction
2. The Polaron in a Two-Dimensional Atomic Bose–Einstein Condensate
2.1. System
2.2. Quasiparticle Properties
2.3. Zero-Momentum Properties
3. The Polaron in a Bose–Einstein Condensate of Polaritons
3.1. System
3.2. Quasiparticle Properties
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.; Pekar, S. Effective mass of a polaron. J. Exp. Theor. Phys. 1948, 18, 419–423. [Google Scholar]
- Pekar, S. Theory of electromagnetic waves in a crystal with excitons. J. Phys. Chem. Solids 1958, 5, 11–22. [Google Scholar] [CrossRef]
- Schirotzek, A.; Wu, C.H.; Sommer, A.; Zwierlein, M.W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 2009, 102, 230402. [Google Scholar] [CrossRef]
- Kohstall, C.; Zaccanti, M.; Jag, M.; Trenkwalder, A.; Massignan, P.; Bruun, G.M.; Schreck, F.; Grimm, R. Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature 2012, 485, 615–618. [Google Scholar] [CrossRef]
- Koschorreck, M.; Pertot, D.; Vogt, E.; Fröhlich, B.; Feld, M.; Köhl, M. Attractive and repulsive Fermi polarons in two dimensions. Nature 2012, 485, 619–622. [Google Scholar] [CrossRef]
- Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. Polaron-to-polaron transitions in the radio-frequency spectrum of a quasi-two-dimensional Fermi gas. Phys. Rev. Lett. 2012, 108, 235302. [Google Scholar] [CrossRef]
- Cetina, M.; Jag, M.; Lous, R.S.; Walraven, J.T.; Grimm, R.; Christensen, R.S.; Bruun, G.M. Decoherence of impurities in a fermi sea of ultracold atoms. Phys. Rev. Lett. 2015, 115, 135302. [Google Scholar] [CrossRef]
- Massignan, P.; Zaccanti, M.; Bruun, G.M. Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases. Rep. Prog. Phys. 2014, 77, 034401. [Google Scholar] [CrossRef]
- Levinsen, J.; Parish, M.M. Strongly interacting two-dimensional Fermi gases. Annu. Rev. Cold Atoms Mol. 2015, 3, 1–75. [Google Scholar]
- Cetina, M.; Jag, M.; Lous, R.S.; Fritsche, I.; Walraven, J.T.; Grimm, R.; Levinsen, J.; Parish, M.M.; Schmidt, R.; Knap, M.; et al. Ultrafast many-body interferometry of impurities coupled to a Fermi sea. Science 2016, 354, 96–99. [Google Scholar] [CrossRef]
- Scazza, F.; Valtolina, G.; Massignan, P.; Recati, A.; Amico, A.; Burchianti, A.; Fort, C.; Inguscio, M.; Zaccanti, M.; Roati, G. Repulsive Fermi polarons in a resonant mixture of ultracold Li 6 atoms. Phys. Rev. Lett. 2017, 118, 083602. [Google Scholar] [CrossRef]
- Adlong, H.S.; Liu, W.E.; Scazza, F.; Zaccanti, M.; Oppong, N.D.; Fölling, S.; Parish, M.M.; Levinsen, J. Quasiparticle lifetime of the repulsive Fermi polaron. Phys. Rev. Lett. 2020, 125, 133401. [Google Scholar] [CrossRef]
- Fritsche, I.; Baroni, C.; Dobler, E.; Kirilov, E.; Huang, B.; Grimm, R.; Bruun, G.M.; Massignan, P. Stability and breakdown of Fermi polarons in a strongly interacting Fermi–Bose mixture. Phys. Rev. A 2021, 103, 053314. [Google Scholar] [CrossRef]
- Scazza, F.; Zaccanti, M.; Massignan, P.; Parish, M.M.; Levinsen, J. Repulsive Fermi and Bose Polarons in Quantum Gases. Atoms 2022, 10, 55. [Google Scholar] [CrossRef]
- Hu, M.G.; Van de Graaff, M.J.; Kedar, D.; Corson, J.P.; Cornell, E.A.; Jin, D.S. Bose polarons in the strongly interacting regime. Phys. Rev. Lett. 2016, 117, 055301. [Google Scholar] [CrossRef]
- Jørgensen, N.B.; Wacker, L.; Skalmstang, K.T.; Parish, M.M.; Levinsen, J.; Christensen, R.S.; Bruun, G.M.; Arlt, J.J. Observation of attractive and repulsive polarons in a Bose–Einstein condensate. Phys. Rev. Lett. 2016, 117, 055302. [Google Scholar] [CrossRef]
- Ardila, L.P.; Jørgensen, N.; Pohl, T.; Giorgini, S.; Bruun, G.; Arlt, J. Analyzing a Bose polaron across resonant interactions. Phys. Rev. A 2019, 99, 063607. [Google Scholar] [CrossRef]
- Skou, M.G.; Skov, T.G.; Jørgensen, N.B.; Nielsen, K.K.; Camacho-Guardian, A.; Pohl, T.; Bruun, G.M.; Arlt, J.J. Non-equilibrium quantum dynamics and formation of the Bose polaron. Nat. Phys. 2021, 17, 731–735. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Ni, Y.; Robens, C.; Zwierlein, M.W. Bose polarons near quantum criticality. Science 2020, 368, 190–194. [Google Scholar] [CrossRef]
- Li, W.; Sarma, S.D. Variational study of polarons in Bose–Einstein condensates. Phys. Rev. A 2014, 90, 013618. [Google Scholar] [CrossRef]
- Christensen, R.S.; Levinsen, J.; Bruun, G.M. Quasiparticle Properties of a Mobile Impurity in a Bose–Einstein Condensate. Phys. Rev. Lett. 2015, 115, 160401. [Google Scholar] [CrossRef] [PubMed]
- Shchadilova, Y.E.; Schmidt, R.; Grusdt, F.; Demler, E. Quantum Dynamics of Ultracold Bose Polarons. Phys. Rev. Lett. 2016, 117, 113002. [Google Scholar] [CrossRef] [PubMed]
- Levinsen, J.; Parish, M.M.; Christensen, R.S.; Arlt, J.J.; Bruun, G.M. Finite-temperature behavior of the Bose polaron. Phys. Rev. A 2017, 96, 063622. [Google Scholar] [CrossRef]
- Guenther, N.E.; Massignan, P.; Lewenstein, M.; Bruun, G.M. Bose polarons at finite temperature and strong coupling. Phys. Rev. Lett. 2018, 120, 050405. [Google Scholar] [CrossRef] [PubMed]
- Rath, S.P.; Schmidt, R. Field-theoretical study of the Bose polaron. Phys. Rev. A 2013, 88, 053632. [Google Scholar] [CrossRef]
- Field, B.; Levinsen, J.; Parish, M.M. Fate of the Bose polaron at finite temperature. Phys. Rev. A 2020, 101, 013623. [Google Scholar] [CrossRef]
- Ardila, L.P.; Giorgini, S. Impurity in a Bose–Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef]
- Grusdt, F.; Seetharam, K.; Shchadilova, Y.; Demler, E. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach. Phys. Rev. A 2018, 97, 033612. [Google Scholar] [CrossRef]
- Drescher, M.; Salmhofer, M.; Enss, T. Theory of a resonantly interacting impurity in a Bose–Einstein condensate. Phys. Rev. Res. 2020, 2, 032011. [Google Scholar] [CrossRef]
- Massignan, P.; Yegovtsev, N.; Gurarie, V. Universal Aspects of a Strongly Interacting Impurity in a Dilute Bose Condensate. Phys. Rev. Lett. 2021, 126, 123403. [Google Scholar] [CrossRef]
- Guenther, N.E.; Schmidt, R.; Bruun, G.M.; Gurarie, V.; Massignan, P. Mobile impurity in a Bose–Einstein condensate and the orthogonality catastrophe. Phys. Rev. A 2021, 103, 013317. [Google Scholar] [CrossRef]
- Christianen, A.; Cirac, J.I.; Schmidt, R. Chemistry of a Light Impurity in a Bose–Einstein Condensate. Phys. Rev. Lett. 2022, 128, 183401. [Google Scholar] [CrossRef] [PubMed]
- Christianen, A.; Cirac, J.I.; Schmidt, R. Bose polaron and the Efimov effect: A Gaussian-state approach. Phys. Rev. A 2022, 105, 053302. [Google Scholar] [CrossRef]
- Yegovtsev, N.; Massignan, P.; Gurarie, V. Strongly interacting impurities in a dilute Bose condensate. Phys. Rev. A 2022, 106, 033305. [Google Scholar] [CrossRef]
- Naidon, P. Two Impurities in a Bose–Einstein Condensate: From Yukawa to Efimov Attracted Polarons. J. Phys. Soc. Jpn. 2018, 87, 043002. [Google Scholar] [CrossRef]
- Dehkharghani, A.S.; Volosniev, A.G.; Zinner, N.T. Coalescence of Two Impurities in a Trapped One-dimensional Bose Gas. Phys. Rev. Lett. 2018, 121, 080405. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Peña Ardila, L.A.; Pohl, T.; Bruun, G.M. Bipolarons in a Bose–Einstein Condensate. Phys. Rev. Lett. 2018, 121, 013401. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Bruun, G.M. Landau Effective Interaction between Quasiparticles in a Bose–Einstein Condensate. Phys. Rev. X 2018, 8, 031042. [Google Scholar] [CrossRef]
- Huber, D.; Hammer, H.W.; Volosniev, A.G. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Phys. Rev. Res. 2019, 1, 033177. [Google Scholar] [CrossRef]
- Deng, F.L.; Shi, T.; Yi, S. Effective interactions between two impurities in quasi-two-dimensional dipolar Bose–Einstein condensates. Commun. Theor. Phys. 2020, 72, 075501. [Google Scholar] [CrossRef]
- Mukherjee, K.; Mistakidis, S.I.; Majumder, S.; Schmelcher, P. Induced interactions and quench dynamics of bosonic impurities immersed in a Fermi sea. Phys. Rev. A 2020, 102, 053317. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Koutentakis, G.M.; Katsimiga, G.C.; Busch, T.; Schmelcher, P. Many-body quantum dynamics and induced correlations of Bose polarons. New J. Phys. 2020, 22, 043007. [Google Scholar] [CrossRef]
- Will, M.; Astrakharchik, G.E.; Fleischhauer, M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime. Phys. Rev. Lett. 2021, 127, 103401. [Google Scholar] [CrossRef]
- Keiler, K.; Mistakidis, S.I.; Schmelcher, P. Polarons and their induced interactions in highly imbalanced triple mixtures. Phys. Rev. A 2021, 104, L031301. [Google Scholar] [CrossRef]
- Theel, F.; Mistakidis, S.I.; Keiler, K.; Schmelcher, P. Counterflow dynamics of two correlated impurities immersed in a bosonic gas. Phys. Rev. A 2022, 105, 053314. [Google Scholar] [CrossRef]
- Ardila, L.A.P. Ultra-Dilute Gas of Polarons in a Bose–Einstein Condensate. Atoms 2022, 10, 29. [Google Scholar] [CrossRef]
- Ardila, L.A.P.; Pohl, T. Ground-state properties of dipolar Bose polarons. J. Phys. B At. Mol. Opt. Phys. 2018, 52, 015004. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Ardila, L.A.P.; Schmidt, R.; Jachymski, K.; Negretti, A. Ionic polaron in a Bose–Einstein condensate. Commun. Phys. 2021, 4, 94. [Google Scholar] [CrossRef]
- Christensen, E.R.; Camacho-Guardian, A.; Bruun, G.M. Charged Polarons and Molecules in a Bose–Einstein Condensate. Phys. Rev. Lett. 2021, 126, 243001. [Google Scholar] [CrossRef]
- Ding, S.; Drewsen, M.; Arlt, J.J.; Bruun, G.M. Mediated interactions between ions in quantum degenerate gases. arXiv 2022, arXiv:2203.02768. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Peña Ardila, L.A.; Jachymski, K.; Negretti, A. Charged impurities in a Bose–Einstein condensate: Many-body bound states and induced interactions. arXiv 2022, arXiv:2206.03476. [Google Scholar]
- Ardila, L.A.P. Monte Carlo methods for impurity physics in ultracold Bose quantum gases. Nat. Rev. Phys. 2022, 4, 214. [Google Scholar] [CrossRef]
- Hopfield, J.J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112, 1555–1567. [Google Scholar] [CrossRef]
- Amo, A.; Lefrère, J.; Pigeon, S.; Adrados, C.; Ciuti, C.; Carusotto, I.; Houdré, R.; Giacobino, E.; Bramati, A. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 2009, 5, 805–810. [Google Scholar] [CrossRef]
- Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537. [Google Scholar] [CrossRef]
- Daskalakis, K.S.; Maier, S.A.; Murray, R.; Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 2014, 13, 271–278. [Google Scholar] [CrossRef]
- Lagoudakis, K.G.; Wouters, M.; Richard, M.; Baas, A.; Carusotto, I.; André, R.; Dang, L.S.; Deveaud-Plédran, B. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 2008, 4, 706–710. [Google Scholar] [CrossRef]
- Sanvitto, D.; Marchetti, F.M.; Szymańska, M.H.; Tosi, G.; Baudisch, M.; Laussy, F.P.; Krizhanovskii, D.N.; Skolnick, M.S.; Marrucci, L.; Lemaître, A.; et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 2010, 6, 527–533. [Google Scholar] [CrossRef]
- Rubo, Y.G. Half Vortices in Exciton Polariton Condensates. Phys. Rev. Lett. 2007, 99, 106401. [Google Scholar] [CrossRef]
- Lagoudakis, K.G.; Ostatnický, T.; Kavokin, A.V.; Rubo, Y.G.; André, R.; Deveaud-Plédran, B. Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate. Science 2009, 326, 974–976. [Google Scholar] [CrossRef]
- Takemura, N.; Trebaol, S.; Wouters, M.; Portella-Oberli, M.T.; Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 2014, 10, 500–504. [Google Scholar] [CrossRef]
- Wasak, T.; Schmidt, R.; Piazza, F. Quantum-Zeno Fermi polaron in the strong dissipation limit. Phys. Rev. Res. 2021, 3, 013086. [Google Scholar] [CrossRef]
- Tan, L.B.; Cotlet, O.; Bergschneider, A.; Schmidt, R.; Back, P.; Shimazaki, Y.; Kroner, M.; İmamoğlu, A.M.C. Interacting Polaron-Polaritons. Phys. Rev. X 2020, 10, 021011. [Google Scholar] [CrossRef]
- Bastarrachea-Magnani, M.A.; Camacho-Guardian, A.; Bruun, G.M. Attractive and Repulsive Exciton-Polariton Interactions Mediated by an Electron Gas. Phys. Rev. Lett. 2021, 126, 127405. [Google Scholar] [CrossRef]
- Bastarrachea-Magnani, M.A.; Thomsen, J.; Camacho-Guardian, A.; Bruun, G.M. Polaritons in an Electron Gas Quasiparticles and Landau Effective Interactions. Atoms 2021, 9, 81. [Google Scholar] [CrossRef]
- Muir, J.B.; Levinsen, J.; Earl, S.K.; Conway, M.A.; Cole, J.H.; Wurdack, M.; Mishra, R.; David, J.; Estrecho, E.; Lu, Y.; et al. Exciton-polaron interactions in monolayer WS _2. arXiv 2022, arXiv:2206.12007. [Google Scholar]
- Sidler, M.; Back, P.; Cotlet, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255–261. [Google Scholar] [CrossRef]
- Efimkin, D.K.; MacDonald, A.H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 2018, 97, 235432. [Google Scholar] [CrossRef]
- Efimkin, D.K.; MacDonald, A.H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 2017, 95, 035417. [Google Scholar] [CrossRef]
- Efimkin, D.K.; Laird, E.K.; Levinsen, J.; Parish, M.M.; MacDonald, A.H. Electron-exciton interactions in the exciton-polaron problem. Phys. Rev. B 2021, 103, 075417. [Google Scholar] [CrossRef]
- Goldstein, T.; Wu, Y.C.; Chen, S.Y.; Taniguchi, T.; Watanabe, K.; Varga, K.; Yan, J. Ground and excited state exciton polarons in monolayer MoSe2. J. Chem. Phys. 2020, 153, 071101. [Google Scholar] [CrossRef] [PubMed]
- Ravets, S.; Knüppel, P.; Faelt, S.; Cotlet, O.; Kroner, M.; Wegscheider, W.; Imamoglu, A. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 2018, 120, 057401. [Google Scholar] [CrossRef] [PubMed]
- Cotlet, O.; Wild, D.S.; Lukin, M.D.; Imamoglu, A. Rotons in optical excitation spectra of monolayer semiconductors. Phys. Rev. B 2020, 101, 205409. [Google Scholar] [CrossRef]
- Imamoglu, A.; Cotlet, O.; Schmidt, R. Exciton–polarons in two-dimensional semiconductors and the Tavis–Cummings model. Comptes Rendus. Phys. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Cotleţ, O.; Pientka, F.; Schmidt, R.; Zarand, G.; Demler, E.; Imamoglu, A. Transport of neutral optical excitations using electric fields. Phys. Rev. X 2019, 9, 041019. [Google Scholar] [CrossRef]
- Rana, F.; Koksal, O.; Manolatou, C. Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials. Phys. Rev. B 2020, 102, 085304. [Google Scholar] [CrossRef]
- Pimenov, D.; von Delft, J.; Glazman, L.; Goldstein, M. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass. Phys. Rev. B 2017, 96, 155310. [Google Scholar] [CrossRef]
- Shahnazaryan, V.; Kozin, V.; Shelykh, I.; Iorsh, I.; Kyriienko, O. Tunable optical nonlinearity for transition metal dichalcogenide polaritons dressed by a Fermi sea. Phys. Rev. B 2020, 102, 115310. [Google Scholar] [CrossRef]
- Grusdt, F.; Fleischhauer, M. Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose–Einstein Condensate. Phys. Rev. Lett. 2016, 116, 053602. [Google Scholar] [CrossRef]
- Levinsen, J.; Marchetti, F.M.; Keeling, J.; Parish, M.M. Spectroscopic Signatures of Quantum Many-Body Correlations in Polariton Microcavities. Phys. Rev. Lett. 2019, 123, 266401. [Google Scholar] [CrossRef]
- Navadeh-Toupchi, M.; Takemura, N.; Anderson, M.D.; Oberli, D.Y.; Portella-Oberli, M.T. Polaritonic Cross Feshbach Resonance. Phys. Rev. Lett. 2019, 122, 047402. [Google Scholar] [CrossRef] [PubMed]
- Bastarrachea-Magnani, M.A.; Camacho-Guardian, A.; Wouters, M.; Bruun, G.M. Strong interactions and biexcitons in a polariton mixture. Phys. Rev. B 2019, 100, 195301. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Nielsen, K.K.; Pohl, T.; Bruun, G.M. Polariton dynamics in strongly interacting quantum many-body systems. Phys. Rev. Res. 2020, 2, 023102. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Bastarrachea-Magnani, M.A.; Bruun, G.M. Mediated Interactions and Photon Bound States in an Exciton-Polariton Mixture. Phys. Rev. Lett. 2021, 126, 017401. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, A.; Richard, M.; Minguzzi, A. Bose polaron in a quantum fluid of light. SciPost Phys. 2022, 12, 008. [Google Scholar] [CrossRef]
- Hryhorchak, O.; Panochko, G.; Pastukhov, V. Mean-field study of repulsive 2D and 3D Bose polarons. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 205302. [Google Scholar] [CrossRef]
- Casteels, W.; Tempere, J.; Devreese, J.T. Polaronic properties of an impurity in a Bose–Einstein condensate in reduced dimensions. Phys. Rev. A 2012, 86, 043614. [Google Scholar] [CrossRef]
- Pastukhov, V. Polaron in dilute 2D Bose gas at low temperatures. J. Phys. B: At. Mol. Opt. Phys. 2018, 51, 155203. [Google Scholar] [CrossRef]
- Ardila, L.A.P.n.; Astrakharchik, G.E.; Giorgini, S. Strong coupling Bose polarons in a two-dimensional gas. Phys. Rev. Res. 2020, 2, 023405. [Google Scholar] [CrossRef]
- Ding, S.; Domínguez-Castro, G.A.; Julku, A.; Camacho-Guardian, A.; Bruun, G.M. Polarons and bipolarons in a two-dimensional square lattice. arXiv 2022, arXiv:2212.00890. [Google Scholar]
- Shelykh, I.A.; Taylor, T.; Kavokin, A.V. Rotons in a Hybrid Bose–Fermi System. Phys. Rev. Lett. 2010, 105, 140402. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, M.; Taylor, T.; Kavokin, A.V. Exciton Supersolidity in Hybrid Bose–Fermi Systems. Phys. Rev. Lett. 2012, 108, 060401. [Google Scholar] [CrossRef]
- Laussy, F.P.; Kavokin, A.V.; Shelykh, I.A. Exciton-Polariton Mediated Superconductivity. Phys. Rev. Lett. 2010, 104, 106402. [Google Scholar] [CrossRef] [PubMed]
- Cotleţ, O.; Zeytinoǧlu, S.; Sigrist, M.; Demler, E.; Imamoǧlu, A.m.c. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 2016, 93, 054510. [Google Scholar] [CrossRef]
- Julku, A.; Kinnunen, J.J.; Camacho-Guardian, A.; Bruun, G.M. Light-induced topological superconductivity in transition metal dichalcogenide monolayers. arXiv 2022, arXiv:2204.12229. [Google Scholar] [CrossRef]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225–1286. [Google Scholar] [CrossRef]
- Fetter, A.; Walecka, J. Quantum Theory of Many-Particle Systems; Dover Books on Physics Series; Dover Publications: Mineola, NY, USA, 1971. [Google Scholar]
- Sun, M.; Zhai, H.; Cui, X. Visualizing the Efimov Correlation in Bose Polarons. Phys. Rev. Lett. 2017, 119, 013401. [Google Scholar] [CrossRef]
- Sun, M.; Cui, X. Enhancing the Efimov correlation in Bose polarons with large mass imbalance. Phys. Rev. A 2017, 96, 022707. [Google Scholar] [CrossRef]
- Levinsen, J.; Ardila, L.A.P.n.; Yoshida, S.M.; Parish, M.M. Quantum Behavior of a Heavy Impurity Strongly Coupled to a Bose Gas. Phys. Rev. Lett. 2021, 127, 033401. [Google Scholar] [CrossRef]
- Wouters, M. Resonant polariton-polariton scattering in semiconductor microcavities. Phys. Rev. B 2007, 76, 045319. [Google Scholar] [CrossRef]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 1–15. [Google Scholar] [CrossRef]
- Xu, X.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350. [Google Scholar] [CrossRef]
- García Jomaso, Y.A.; Vargas, B.; Ley Dominguez, D.; Ordoñez-Romero, C.L.; Lara-García, H.A.; Camacho-Guardian, A.; Pirruccio, G. The Fate of the Upper Polariton: Breakdown of the Quasiparticle Picture in the Continuum. arXiv 2022, arXiv:2209.13698. [Google Scholar]
- Carusotto, I.; Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 2013, 85, 299–366. [Google Scholar] [CrossRef]
- Fujii, K.; Hongo, M.; Enss, T. Universal van der Waals force between heavy polarons in superfluids. arXiv 2022, arXiv:2206.01048. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.K.; Ardila, L.A.P.; Bruun, G.M.; Pohl, T. Critical slowdown of non-equilibrium polaron dynamics. New J. Phys. 2019, 21, 043014. [Google Scholar] [CrossRef]
- Seetharam, K.; Shchadilova, Y.; Grusdt, F.; Zvonarev, M.B.; Demler, E. Dynamical Quantum Cherenkov Transition of Fast Impurities in Quantum Liquids. Phys. Rev. Lett. 2021, 127, 185302. [Google Scholar] [CrossRef]
- Drescher, M.; Salmhofer, M.; Enss, T. Quench Dynamics of the Ideal Bose Polaron at Zero and Nonzero Temperatures. Phys. Rev. A 2021, 103, 033317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Castillo, L.F.; Camacho-Guardian, A. Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. Atoms 2023, 11, 3. https://doi.org/10.3390/atoms11010003
Cárdenas-Castillo LF, Camacho-Guardian A. Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. Atoms. 2023; 11(1):3. https://doi.org/10.3390/atoms11010003
Chicago/Turabian StyleCárdenas-Castillo, Luis Fernando, and Arturo Camacho-Guardian. 2023. "Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons" Atoms 11, no. 1: 3. https://doi.org/10.3390/atoms11010003
APA StyleCárdenas-Castillo, L. F., & Camacho-Guardian, A. (2023). Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. Atoms, 11(1), 3. https://doi.org/10.3390/atoms11010003