Exploitation of the Timing Capabilities of Metallic Magnetic Calorimeters for a Coincidence Measurement Scheme
Abstract
:1. Introduction
2. The Experiment
3. Coincidence-Based Background Suppression
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Indelicato, P. QED tests with highly charged ions. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 232001. [Google Scholar] [CrossRef] [Green Version]
- Franzke, B. The heavy ion storage and cooler ring project ESR at GSI. Nucl. Instrum. Methods Phys. Res. Sect. B 1987, 24-25, 18–25. [Google Scholar] [CrossRef]
- Geithner, W.; Andelkovic, Z.; Beck, D.; Bräuning, H.; Bräuning-Demian, A.; Danared, H.; Dimopoulou, C.; Engström, M.; Fedotova, S.; Gorda, O.; et al. Status and outlook of the CRYRING@ESR project. Hyperfine Interact. 2017, 238, 13. [Google Scholar] [CrossRef]
- Steck, M.; Beller, P.; Beckert, K.; Franzke, B.; Nolden, F. Electron cooling experiments at the ESR. Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 532, 357–365. [Google Scholar] [CrossRef]
- Kühnel, M.; Petridis, N.; Winters, D.F.A.; Popp, U.; Dörner, R.; Stöhlker, T.; Grisenti, R.E. Low-Z internal target from a cryogenically cooled liquid microjet source. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 602, 311–314. [Google Scholar] [CrossRef]
- Enss, C.; McCammon, D. Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities. J. Low Temp. Phys. 2008, 151, 5–24. [Google Scholar] [CrossRef]
- Kempf, S.; Fleischmann, A.; Gastaldo, L.; Enss, C. Physics and Applications of Metallic Magnetic Calorimeters. J. Low Temp. Phys. 2018, 193, 365–379. [Google Scholar] [CrossRef]
- Sikorsky, T.; Geist, J.; Hengstler, D.; Kempf, S.; Gastaldo, L.; Enss, C.; Mokry, C.; Runke, J.; Düllmann, C.E.; Wobrauschek, P. et al. Measurement of the 229Th Isomer Energy with a Magnetic Microcalorimeter. Phys. Rev. Lett. 2020, 125, 142503. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Yamakawa, Y.; Kurabayashi, H.; Hoshino, A.; Ishisaki, Y.; Ohashi, T.; Mitsuda, K.; Tanaka, K. A high energy resolution gamma-ray TES microcalorimeter with fast response time. J. Low Temp. Phys. 2008, 151, 430–435. [Google Scholar] [CrossRef]
- Yamada, S.; Ichinohe, Y.; Tatsuno, H.; Hayakawa, R.; Suda, H.; Ohashi, T.; Ishisaki, Y.; Uruga, T.; Sekizawa, O.; Nitta, K.; et al. Broadband high-energy resolution hard X-ray spectroscopy using transition edge sensors at SPring-8. Rev. Sci. Instrum. 2021, 92, 013103. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Aikawa, S.; Akaishi, T.; Asano, H.; Bazzi, M.; Bennett, D.A.; Berger, M.; Bosnar, D.; Butt, A.D.; Curceanu, C.; et al. Measurements of Strong-Interaction Effects in Kaonic-Helium Isotopes at Sub-eV Precision with X-ray Microcalorimeters. Phys. Rev. Lett. 2022, 128, 112503. [Google Scholar] [CrossRef] [PubMed]
- Stöhlker, T.; Litvinov, Y.A.; Bräuning-Demian, A.; Lestinsky, M.; Herfurth, F.; Maier, R.; Prasuhn, D.; Schuch, R.; Steck, M. SPARC collaboration: New strategy for storage ring physics at FAIR. Hyperfine Interact. 2014, 227, 45–53. [Google Scholar] [CrossRef]
- Hengstler, D.; Keller, M.; Schötz, C.; Geist, J.; Krantz, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Gassner, T.; Weber, G.; et al. Towards FAIR: First measurements of metallic magnetic calorimeters for high-resolution X-ray spectroscopy at GSI. Phys. Scr. 2015, T166, 014054. [Google Scholar] [CrossRef]
- Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Ilieva, S.; Kiselev, O.; Kilbourne, C.; McCammon, D.; et al. Precise determination of the 1s Lamb shift in hydrogen-like lead and gold using microcalorimeters. J. Phys. B 2017, 50, 055603. [Google Scholar] [CrossRef]
- Herdrich, M.O.; Fleischmann, A.; Hengstler, D.; Allgeier, S.; Enss, C.; Trotsenko, S.; Morgenroth, T.; Schuch, R.; Weber, G.; Stöhlker, T. High-precision X-ray spectroscopy of Fe ions in an EBIT using a micro-calorimeter detector: First results. X-ray Spectrom. 2020, 49, 184–187. [Google Scholar] [CrossRef]
- Pfäfflein, P.; Allgeier, S.; Bernitt, S.; Fleischmann, A.; Friedrich, M.; Hahn, C.; Hengstler, D.; Herdrich, M.O.; Kalinin, A.; Kröger, F.M.; et al. Integration of maXs-type microcalorimeter detectors for high-resolution X-ray spectroscopy into the experimental environment at the CRYRING@ESR electron cooler. Phys. Scr. 2022, 97, 114005. [Google Scholar] [CrossRef]
- Pajek, M.; Schuch, R. Radiative recombination of bare ions with low-energy free electrons. Phys. Rev. A 1992, 45, 7894. [Google Scholar] [CrossRef] [PubMed]
- Reuschl, R.; Gumberidze, A.; Stöhlker, T.; Kozhuharov, C.; Rzadkiewicz, J.; Spillmann, U.; Tashenov, S.; Fritzsche, S.; Surzhykov, A. The Balmer spectrum of H-like uranium produced by radiative recombination at low velocities. Radiat. Phys. Chem. 2006, 75, 1740. [Google Scholar] [CrossRef]
- Zhu, B.; Gumberidze, A.; Over, T.; Weber, G.; Andelkovic, Z.; Bräuning-Demian, A.; Chen, R.J.; Dmytriiev, D.; Forstner, O.; Hahn, C.; et al. X-ray emission associated with radiative recombination for Pb82+ ions at threshold energies. Phys. Rev. A 2022, 105, 052804. [Google Scholar] [CrossRef]
- Pies, C.; Schäfer, S.; Heuser, S.; Kempf, S.; Pabinger, A.; Porst, J.-P.; Ranitsch, P.; Foerster, N.; Hengstler, D.; Kampkötter, A.; et al. maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR. J. Low Temp. Phys. 2012, 167, 269–279. [Google Scholar] [CrossRef]
- Stoica, V.I. Digital Pulse-Shape Analysis and Controls for Advanced Detector Systems. Ph.D. Dissertation, Rijksuniversiteit Groningen, Groningen, The Netherlands, 2012. [Google Scholar]
- Pfäfflein, P.; Hahn, C.; Herdrich, M.O.; Kröger, F.M.; Weber, G.; Stöhlker, T. Implementation of a constant fraction algorithm for improved time resolution of metallic magnetic calorimeter measurements. Proc. Sci. 2022. submitted. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfäfflein, P.; Weber, G.; Allgeier, S.; Bernitt, S.; Fleischmann, A.; Friedrich, M.; Hahn, C.; Hengstler, D.; Herdrich, M.O.; Kalinin, A.; et al. Exploitation of the Timing Capabilities of Metallic Magnetic Calorimeters for a Coincidence Measurement Scheme. Atoms 2023, 11, 5. https://doi.org/10.3390/atoms11010005
Pfäfflein P, Weber G, Allgeier S, Bernitt S, Fleischmann A, Friedrich M, Hahn C, Hengstler D, Herdrich MO, Kalinin A, et al. Exploitation of the Timing Capabilities of Metallic Magnetic Calorimeters for a Coincidence Measurement Scheme. Atoms. 2023; 11(1):5. https://doi.org/10.3390/atoms11010005
Chicago/Turabian StylePfäfflein, Philip, Günter Weber, Steffen Allgeier, Sonja Bernitt, Andreas Fleischmann, Marvin Friedrich, Christoph Hahn, Daniel Hengstler, Marc Oliver Herdrich, Anton Kalinin, and et al. 2023. "Exploitation of the Timing Capabilities of Metallic Magnetic Calorimeters for a Coincidence Measurement Scheme" Atoms 11, no. 1: 5. https://doi.org/10.3390/atoms11010005
APA StylePfäfflein, P., Weber, G., Allgeier, S., Bernitt, S., Fleischmann, A., Friedrich, M., Hahn, C., Hengstler, D., Herdrich, M. O., Kalinin, A., Kröger, F. M., Kuntz, P., Lestinsky, M., Löher, B., Menz, E. B., Spillmann, U., Zhu, B., Enss, C., & Stöhlker, T. (2023). Exploitation of the Timing Capabilities of Metallic Magnetic Calorimeters for a Coincidence Measurement Scheme. Atoms, 11(1), 5. https://doi.org/10.3390/atoms11010005